JP2008023415A - Spiral membrane module and water treatment method - Google Patents

Spiral membrane module and water treatment method Download PDF

Info

Publication number
JP2008023415A
JP2008023415A JP2006195730A JP2006195730A JP2008023415A JP 2008023415 A JP2008023415 A JP 2008023415A JP 2006195730 A JP2006195730 A JP 2006195730A JP 2006195730 A JP2006195730 A JP 2006195730A JP 2008023415 A JP2008023415 A JP 2008023415A
Authority
JP
Japan
Prior art keywords
membrane
bag
membrane module
spiral
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006195730A
Other languages
Japanese (ja)
Other versions
JP4730236B2 (en
Inventor
Kunihiro Hayakawa
邦洋 早川
Hideki Kobayashi
秀樹 小林
Motoyuki Yoda
元之 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006195730A priority Critical patent/JP4730236B2/en
Publication of JP2008023415A publication Critical patent/JP2008023415A/en
Application granted granted Critical
Publication of JP4730236B2 publication Critical patent/JP4730236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spiral membrane module which has a sufficient removal rate even in a very low concentration zone, at the same time, has a long life, and further, has a high membrane filling efficiency of the module, and a water treatment method using the spiral membrane module. <P>SOLUTION: An internal passage material 15 is inserted into a bag-like membrane 10 having an opening on a side, and the opening is inserted into a slit 17 of a perforated tube 20 and bonded. A plurality of bag-like membranes 10 are wound around the perforated tube 20 through an external passage material 21 to form a spiral membrane module 26. The membrane module 26 is arranged in a tank 40, an end of the perforated tube 20 is connected to an extraction tube 41, the other end of the perforated tube 20 is closed up, water to be treated is pressure-fed from an inlet 42, and the process water is brought out from the extraction tube 41. The bag-like membrane 10 is a membrane laminate comprising a first flat membrane having an ion-exchange group, and a second flat membrane having a removal function of fine particles. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水、水溶液、有機溶媒等の液体の処理において、あるいは気液混合物の処理において、被処理流体に含まれる微量の金属、有機物、コロイド状物質等を分離するスパイラル型膜モジュール及び水処理方法に係り、特に、超純水中の金属イオン、微粒子等の濃度を極低濃度まで低減することができるスパイラル型膜モジュール及び水処理方法に関するものである。   The present invention relates to a spiral membrane module and water for separating a trace amount of metal, organic substance, colloidal substance, etc. contained in a fluid to be treated in the treatment of a liquid such as water, an aqueous solution, an organic solvent, or in the treatment of a gas-liquid mixture. More particularly, the present invention relates to a spiral membrane module and a water treatment method capable of reducing the concentration of metal ions, fine particles, and the like in ultrapure water to an extremely low concentration.

半導体製造プロセスなどで用いられる超純水の高純度化の要求は年々厳しくなってきている。ITRS2005によると、2008年には超純水中の金属イオン濃度を0.5ng/L以下にするロードマップが提示されているが、半導体製造各社は金属濃度がより低濃度、高純度の超純水を求めている。水処理メーカーは前倒しで金属イオン濃度を低減しており、最新の超純水製造設備においては、ほとんどの金属を0.5ng/Lに低減した超純水を製造することができるものもある。さらに、超純水中の金属イオン濃度を低減する方法として、ユースポイント直前にイオン交換フィルターを設置する方法があるが、市販されているイオン交換フィルターの形状は不織布あるいは多孔質膜といった平膜をプリーツ型にしたものが一般的である(特開2003−251118)。
特開2003−251118号公報
The demand for high-purity ultrapure water used in semiconductor manufacturing processes is becoming stricter year by year. According to ITRS 2005, a roadmap for reducing metal ion concentration in ultrapure water to 0.5 ng / L or less was presented in 2008. However, semiconductor manufacturers have lower metal concentrations and higher purity ultrapure. Seeking water. Water treatment manufacturers have reduced the metal ion concentration ahead of schedule, and some of the latest ultrapure water production facilities can produce ultrapure water with most metals reduced to 0.5 ng / L. Furthermore, as a method of reducing the metal ion concentration in ultrapure water, there is a method of installing an ion exchange filter just before the use point, but the shape of the commercially available ion exchange filter is a flat membrane such as a nonwoven fabric or a porous membrane. A pleat type is generally used (Japanese Patent Laid-Open No. 2003-251118).
JP 2003-251118 A

プリーツ型イオン交換フィルターはプリーツの折り込み部分に流れが偏りやすく、上述のような極低濃度域では十分な除去率を得ることはできず、また膜厚が薄いために破過が早く寿命が短い。   Pleated ion exchange filters tend to bias the flow of pleats into the folds, making it impossible to obtain a sufficient removal rate in the ultra-low concentration range as described above. .

特に、多孔質膜によるプリーツ型フィルタは、イオン交換基の導入量を多くしすぎると膜の強度が弱くなることが知られており、イオン交換容量を制限せざるを得ず、イオン交換不織布を用いたものと比較して寿命がさらに短いという欠点があった。   In particular, it is known that a pleated filter using a porous membrane weakens the strength of the membrane if the amount of ion-exchange groups introduced is excessive, and the ion-exchange capacity must be limited. There was a drawback that the life was even shorter than that used.

本発明は、極低濃度の金属イオン、微粒子についても十分な除去率を有すると共に、寿命も長く、しかもモジュールの膜充填効率も高いスパイラル型膜モジュールと、このスパイラル型膜モジュールを用いた水処理方法を提供することを目的とする。   The present invention provides a spiral membrane module having a sufficient removal rate for extremely low concentrations of metal ions and fine particles, a long lifetime, and a high membrane filling efficiency of the module, and a water treatment using this spiral membrane module It aims to provide a method.

請求項1のスパイラル型膜モジュールは、複数の袋状膜が有孔筒の回りに巻回された巻回体を備えており、該袋状膜の内部に内部流路材が配置され、該袋状膜の内部が該有孔筒内に連通しており、該袋状膜同士の間に外部流路材が配置されているスパイラル型膜モジュールにおいて、該袋状膜の膜は、イオン交換基を有する孔径0.01〜100μmの平膜であることを特徴とするものである。   The spiral membrane module of claim 1 includes a wound body in which a plurality of bag-like membranes are wound around a perforated tube, and an internal flow path material is disposed inside the bag-like membrane, In the spiral membrane module in which the inside of the bag-like membrane communicates with the perforated cylinder, and an external flow path material is disposed between the bag-like membranes, the membrane of the bag-like membrane is ion-exchanged. It is a flat membrane having a pore diameter of 0.01 to 100 μm having a group.

請求項2のスパイラル型膜モジュールは、複数の袋状膜が有孔筒の回りに巻回された巻回体を備えており、該袋状膜の内部に内部流路材が配置され、該袋状膜の内部が該有孔筒内に連通しており、該袋状膜同士の間に外部流路材が配置されているスパイラル型膜モジュールにおいて、該袋状膜の膜は、イオン交換基を有し、孔径0.01〜100μmである第1の平膜と、微粒子除去機能を有する第2の平膜との積層膜であることを特徴とするものである。   The spiral membrane module according to claim 2 includes a wound body in which a plurality of bag-like membranes are wound around a perforated tube, and an internal flow path material is disposed inside the bag-like membrane, In the spiral membrane module in which the inside of the bag-like membrane communicates with the perforated cylinder, and an external flow path material is disposed between the bag-like membranes, the membrane of the bag-like membrane is ion-exchanged. It is a laminated film of a first flat film having a group and a pore diameter of 0.01 to 100 μm and a second flat film having a fine particle removing function.

請求項3のスパイラル型膜モジュールは、請求項2において、前記第2の平膜が孔径0.01〜1μmかつ膜厚10〜500μmの多孔質膜であることを特徴とするものである。   The spiral membrane module of claim 3 is characterized in that, in claim 2, the second flat membrane is a porous membrane having a pore diameter of 0.01 to 1 μm and a film thickness of 10 to 500 μm.

請求項4のスパイラル型膜モジュールは、請求項2又は3において、前記積層膜の充填効率が50%以上であることを特徴とするものである。   A spiral membrane module according to a fourth aspect is characterized in that, in the second or third aspect, the filling efficiency of the laminated film is 50% or more.

請求項5のスパイラル型膜モジュールは、請求項1ないし4のいずれか1項において、該袋状膜は第1、第2、第3及び第4の辺部を有した略方形であり、該第1、第2及び第3の辺部は封じられ、該第4の辺部が開放部となっており、該第4の辺部を該有孔筒に接続して該袋状膜を巻回して巻回体とし、該第4の辺部と平行な第2の辺部を該巻回体の外周面に臨ませており、該第4の辺部を介して該袋状膜の内部を該有孔筒の内部に連通させたことを特徴とするものである。   The spiral membrane module according to claim 5 is the spiral membrane module according to any one of claims 1 to 4, wherein the bag-like membrane has a substantially rectangular shape having first, second, third, and fourth sides, The first, second, and third sides are sealed, the fourth side is an open portion, the fourth side is connected to the perforated tube, and the bag-like membrane is wound. The wound body is turned so that the second side parallel to the fourth side faces the outer peripheral surface of the wound body, and the inside of the bag-like film is interposed through the fourth side. Is communicated with the inside of the perforated tube.

請求項6の水処理方法は、請求項1乃至5のいずれか1項に記載のスパイラル型膜モジュールに被処理水を通水することにより被処理水中の金属イオン及び微粒子を低減することを特徴とするものである。   The water treatment method according to claim 6 is characterized in that metal ions and fine particles in the water to be treated are reduced by passing the water to be treated through the spiral membrane module according to any one of claims 1 to 5. It is what.

請求項7の水処理方法は、請求項6において、前記被処理水中の金属イオン濃度が5ng/L以下であることを特徴とするものである。   The water treatment method according to claim 7 is characterized in that, in claim 6, the metal ion concentration in the water to be treated is 5 ng / L or less.

本発明のスパイラル型膜モジュールは、袋状膜を巻回したスパイラル型であるため、プリーツ型に比べて膜の充填効率が向上する。また、平膜表面積が大きいため、金属除去性能に優れ、かつ高容量となる。   Since the spiral membrane module of the present invention is a spiral type in which a bag-like membrane is wound, the membrane filling efficiency is improved as compared with the pleated type. Moreover, since the flat membrane surface area is large, the metal removal performance is excellent and the capacity is high.

以下図面を参照して発明の実施の形態について説明する。第1図は本発明の実施の形態に係るスパイラル型膜モジュールに用いられる一枚の袋状膜の斜視図である。第2図〜第4図はそれぞれ有孔筒の周りに袋状膜を巻き付ける方法を示す説明図、第5図はスパイラル型膜モジュールの斜視図、第6図及び第7図は通水方法を示す断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a single bag-like membrane used in a spiral membrane module according to an embodiment of the present invention. FIGS. 2 to 4 are explanatory views showing a method of winding a bag-like membrane around a perforated tube, FIG. 5 is a perspective view of a spiral membrane module, and FIGS. 6 and 7 show a water flow method. It is sectional drawing shown.

第2図の通り、この実施の形態に用いられている袋状膜10は、正方形又は長方形状のものであり、第1の辺部11、第2の辺部12、第3の辺部13及び第4の辺部14を有している。   As shown in FIG. 2, the bag-like film 10 used in this embodiment is a square or rectangular shape, and includes a first side part 11, a second side part 12, and a third side part 13. And a fourth side portion 14.

この袋状膜10は、第1図の通り、第1の平膜と第2の平膜との積層膜よりなる分離膜フィルム9を第2の辺部12の部分で二つに折り返し、第1の辺部11及び第3の辺部13において折り重なった分離膜フィルム同士を好ましくは熱融着性材料によって接着(融着)し、第4の辺部14については接着を行うことなく開放口とした袋状のものである。なお、第2の辺部12部分で二つに折り返したものの代りに、二枚の分離膜フィルムを重ね合わせ、第1の辺部11、第2の辺部12、第3の辺部13を接着するようにした袋状膜を用いても良い。   As shown in FIG. 1, the bag-like membrane 10 folds the separation membrane film 9 made of a laminated membrane of the first flat membrane and the second flat membrane into two at the second side portion 12, The separation membrane films folded at one side 11 and the third side 13 are preferably bonded (fused) with a heat-fusible material, and the fourth side 14 is opened without bonding. It is a bag-like thing. In addition, in place of the second side portion 12 folded in two, the two separation membrane films are overlapped, and the first side portion 11, the second side portion 12, and the third side portion 13 are overlapped. You may use the bag-like film | membrane made to adhere | attach.

この袋状膜10内に内部流路材(例えばメッシュスペーサ等よりなる。)15が挿入配置されている。   An internal channel material (for example, made of a mesh spacer) 15 is inserted and disposed in the bag-like film 10.

複数枚のこの袋状膜10がパイプ状の有孔筒20に巻き付けられる。この有孔筒20は、中空筒状のものであり、周面にはシャフト長手方向に延在する複数条のスリット17が設けられた有孔筒である。なお、スリット17が孔に相当する。   A plurality of the bag-like membranes 10 are wound around a pipe-shaped perforated tube 20. This perforated cylinder 20 is a hollow cylinder, and is a perforated cylinder provided with a plurality of slits 17 extending in the longitudinal direction of the shaft on the peripheral surface. The slit 17 corresponds to a hole.

第2,3図の通り、各袋状膜10の第4の辺部14を該スリット17に挿入すると共に好ましくは熱融着性材料によって、袋状膜10の辺部14の縁部をスリット17の縁部又は内面に水密的に接合させる。   As shown in FIGS. 2 and 3, the fourth side portion 14 of each bag-like film 10 is inserted into the slit 17, and the edge of the side portion 14 of the bag-like film 10 is preferably slit using a heat-fusible material. It joins to the edge or inner surface of 17 watertightly.

なお、一般にRO膜ではテープ状接着剤を使用し、封止するが、接着剤からの溶出が問題となる可能性があるため、熱融着性材料を用いて融着させることが好ましい。   In general, the RO membrane is sealed by using a tape-like adhesive. However, since elution from the adhesive may be a problem, it is preferable to use a heat-fusible material for fusion.

融着後、袋状膜10同志の間にメッシュスペーサ等よりなる外部流路材21を介在させ、第4図の通り袋状膜10及び外部流路材21を有孔筒20の周囲に巻回してスパイラル型膜モジュール26(第5図)とする。   After fusing, an external flow path material 21 made of mesh spacers or the like is interposed between the bag-shaped films 10 and the bag-shaped film 10 and the external flow path material 21 are wound around the perforated tube 20 as shown in FIG. Turn to a spiral membrane module 26 (FIG. 5).

なお、この巻回に際しては、袋状膜10に対し、第2の辺部12に沿って熱融着性材料を塗着しておいてもよい。巻回後、この熱融着性材料によって袋状膜10の第2の辺部12に沿う部分同士を融着させることにより、袋状膜10同士の間の流路は巻回体の端面を介して外部と連通する。   In this winding, a heat-fusible material may be applied to the bag-like film 10 along the second side portion 12. After winding, by fusing the portions along the second side 12 of the bag-like film 10 with this heat-fusible material, the flow path between the bag-like films 10 is connected to the end face of the wound body. Communicate with the outside through

このスパイラル型膜モジュール26では巻回体の両端面が膜モジュール26の外部に連通してもよく、一方の端面のみが膜モジュールの外部に連通するものであってもよい。   In this spiral membrane module 26, both end surfaces of the wound body may communicate with the outside of the membrane module 26, or only one end surface may communicate with the outside of the membrane module.

このように構成されたスパイラル型膜モジュール26に対しては、第6,7図のように、膜モジュール26の端面から原水を袋状膜10同士の間に流し、袋状膜10を透過した透過を有孔筒20から取り出す。   For the spiral membrane module 26 configured in this manner, raw water was passed between the bag-like membranes 10 from the end face of the membrane module 26 and passed through the bag-like membrane 10 as shown in FIGS. Permeate is removed from the perforated tube 20.

この第6,7図では、膜モジュール26を円筒状のケーシング30内に収容し、有孔筒20の一端をケーシング30から突出させる。なお、有孔筒20の他端は封じられている。ケーシング30の端面には原水の流入孔31が設けられている。   6 and 7, the membrane module 26 is accommodated in a cylindrical casing 30, and one end of the perforated tube 20 is protruded from the casing 30. Note that the other end of the perforated tube 20 is sealed. The end face of the casing 30 is provided with an inlet hole 31 for raw water.

第7図の通り、この膜モジュール26を収容したケーシング30を耐圧式の水槽40内に収容し、有孔筒20の一端を該水槽(ハウジング)40の処理水取出口42に嵌合等により接続する。   As shown in FIG. 7, the casing 30 containing the membrane module 26 is housed in a pressure-resistant water tank 40, and one end of the perforated tube 20 is fitted into the treated water outlet 42 of the water tank (housing) 40, for example. Connecting.

水槽40の原水流入口41から原水(被処理水)を水槽40内に加圧供給する。原水は、流入孔31からケース30内に流入し、袋状膜10を透過し、有孔筒20を経て取出口42から取り出される。   Raw water (treated water) is pressurized and supplied into the water tank 40 from the raw water inlet 41 of the water tank 40. The raw water flows into the case 30 from the inflow hole 31, passes through the bag-like membrane 10, and is taken out from the outlet 42 through the perforated tube 20.

第7図ではケーシング30の両端面に流入孔31が設けられているが、一方(例えば図の下側の端面)にのみ流入孔31が設けられてもよい。   In FIG. 7, inflow holes 31 are provided on both end faces of the casing 30, but the inflow holes 31 may be provided only on one side (for example, the lower end face in the figure).

この第6,7図の通水方法の場合、膜モジュール26の逆洗を行うには、有孔筒20を介して清浄水やさらに必要に応じ空気を袋状膜10内に送り込み、逆洗排水を膜モジュール26の端面から取り出す。   In the case of the water flow method shown in FIGS. 6 and 7, in order to backwash the membrane module 26, clean water and further air as needed are fed into the bag-like membrane 10 through the perforated tube 20, and backwashing is performed. Drainage is taken out from the end face of the membrane module 26.

図示は省略するが、上記とは逆に有孔筒20を介して原水を各袋状膜10内に流入させ、原水の全量を透過処理し、透過水を、膜モジュール26の両端面から流出させるようにしてもよい。   Although not shown, contrary to the above, the raw water is caused to flow into each bag-like membrane 10 through the perforated cylinder 20, the whole amount of raw water is permeated, and the permeated water is discharged from both end surfaces of the membrane module 26. You may make it make it.

このスパイラル型膜モジュール26においては、イオン交換基を有する第1の平膜と微粒子除去機能を有する第2の平膜との積層膜を用いており、イオン交換能及び微粒子除去能のいずれにも優れる。また、このスパイラル型膜モジュールは、プリーツ型モジュールに比べて膜面積を大きくすることができる。   The spiral membrane module 26 uses a laminated film of a first flat film having an ion exchange group and a second flat film having a fine particle removing function, and both the ion exchange ability and the fine particle removal ability are used. Excellent. In addition, the spiral membrane module can have a larger membrane area than the pleated module.

イオン交換基を導入する平膜は、多孔質膜、不織布、織布等を適宜選択することができるが、多孔質膜は前述のようにイオン交換基導入量に制限があること、膜厚が厚い方が性能がよいことから、特に不織布が好ましい。イオン交換基を導入した平膜の孔径は好ましくは0.01〜100μm、特に好ましくは1〜50μmである。孔径を小さくしすぎると圧力損失が大きくなり実用的でない。その場合、膜厚を薄くするか膜面積を増大させる必要があるが、膜厚を薄くしすぎると破過が早くなるため好ましくない。また、イオン交換基導入平膜の膜厚は50〜1000μmが好適である。さらに好ましくは100〜500μmである。   As the flat membrane into which the ion exchange groups are introduced, a porous membrane, a nonwoven fabric, a woven fabric, or the like can be selected as appropriate. Since a thicker one has better performance, a nonwoven fabric is particularly preferable. The pore diameter of the flat membrane introduced with ion exchange groups is preferably 0.01 to 100 μm, particularly preferably 1 to 50 μm. If the pore diameter is too small, the pressure loss increases and is not practical. In that case, it is necessary to reduce the film thickness or increase the film area. However, if the film thickness is too thin, breakthrough is accelerated, which is not preferable. The film thickness of the ion exchange group-introduced flat membrane is preferably 50 to 1000 μm. More preferably, it is 100-500 micrometers.

微粒子除去機能を有する平膜としては、多孔質膜、不織布、織布等を適宜選択することができるが、特に多孔質膜が好ましい。微粒子除去機能を有する平膜の孔径は0.01〜1μm、好ましくは0.01〜0.1μmである。上述のように孔径が小さいと圧力損失が大きくなるが、微粒子除去機能を有する平膜はできるだけ薄い方が好ましい。好適な膜厚は10〜500μm、さらに好ましくは50〜300μmである。   As the flat membrane having the function of removing fine particles, a porous membrane, a nonwoven fabric, a woven fabric, or the like can be appropriately selected, and a porous membrane is particularly preferable. The pore diameter of the flat membrane having a fine particle removing function is 0.01 to 1 μm, preferably 0.01 to 0.1 μm. As described above, when the pore diameter is small, the pressure loss increases. However, it is preferable that the flat membrane having the fine particle removing function is as thin as possible. A suitable film thickness is 10 to 500 μm, more preferably 50 to 300 μm.

流路材は多孔質膜、不織布、織布、ネット、メッシュ、溝付きシート、波形シート等どのようなものでもよい。流路材の圧力損失が大きいと供給水を膜面全体に行き渡らせることが困難になるため、流路材の孔径は50〜1000μmが好適である。膜厚は100〜1000μmが好適である。膜厚を大きくしすぎると充填量が減少するため、100〜500μmがさらに好適である。   The flow path material may be any material such as a porous film, a nonwoven fabric, a woven fabric, a net, a mesh, a grooved sheet, and a corrugated sheet. When the pressure loss of the flow path material is large, it becomes difficult to spread the supply water over the entire membrane surface. Therefore, the hole diameter of the flow path material is preferably 50 to 1000 μm. The film thickness is preferably 100 to 1000 μm. When the film thickness is too large, the filling amount decreases, and therefore 100 to 500 μm is more preferable.

熱融着性材料としては、常温で固体であり、加熱により融着可能となる材料であれば良く、ポリエチレン、エチレン/酢酸ビニル共重合体(EVA)、ポリウレタン、アクリル樹脂、その他熱可塑性樹脂、熱可塑性エラストマーなどから少なくとも1種類以上を使用するが、ポリエチレンが好適である。   The heat-fusible material may be any material that is solid at room temperature and can be fused by heating, such as polyethylene, ethylene / vinyl acetate copolymer (EVA), polyurethane, acrylic resin, other thermoplastic resins, Although at least one or more of thermoplastic elastomers are used, polyethylene is preferred.

有孔筒、平膜、流路材等の材質としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、PTFE、CTFE、PFA、ポリフッ化ビニリデンなどのフッ素樹脂、ポリ塩化ビニルなどのハロゲン化ポリオレフィン、ナイロン−6、ナイロン−66などのポリアミド、ユリア樹脂、フェノール樹脂、メラミン樹脂、ポリスチレン、セルロース、酢酸セルロース、硝酸セルロース、ポリエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、ポリアミドイミド、ポリベンゾイミダゾール、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリアクリルニトリル、ポリエーテルニトリル、及びこれらの共重合体などの素材が使用できるが、この限りではない。価格、加工性、化学的安定性、機械的強度などを考慮すると、ポリオレフィン、あるいはフッ素樹脂が好適に使用される。特に1種類の素材に限定されることはなく、必要に応じて種々の素材を選択できる。また、織布、不織布を使用する場合、その繊維には芯鞘構造等の複合繊維を使用してもよい。   Materials such as perforated cylinders, flat membranes, channel materials, etc. include polyolefins such as polyethylene and polypropylene, fluororesins such as PTFE, CTFE, PFA, polyvinylidene fluoride, halogenated polyolefins such as polyvinyl chloride, nylon-6, Polyamide such as nylon-66, urea resin, phenol resin, melamine resin, polystyrene, cellulose, cellulose acetate, cellulose nitrate, polyether ketone, polyether ketone ketone, polyether ether ketone, polysulfone, polyether sulfone, polyimide, polyether Imide, polyamideimide, polybenzimidazole, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyacrylonitrile, polyether Tolyl, and the material can be used, such as a copolymer thereof, it is not limited thereto. In consideration of price, processability, chemical stability, mechanical strength, etc., polyolefin or fluororesin is preferably used. In particular, it is not limited to one kind of material, and various materials can be selected as necessary. Moreover, when using a woven fabric and a nonwoven fabric, you may use composite fibers, such as a core-sheath structure, for the fiber.

平膜に導入されるイオン交換基はスルホン酸基、リン酸基、ホスホン酸基、ホスフィン酸基、カルボン酸基、水酸基、フェノール基、4級アンモニウム基、1〜3級アミン基、ピリジン基、アミド基、などがあるがこの限りではない。これらの官能基はH型、OH型だけでなく、Naなどの塩型であってもよい。   The ion exchange groups introduced into the flat membrane are sulfonic acid groups, phosphoric acid groups, phosphonic acid groups, phosphinic acid groups, carboxylic acid groups, hydroxyl groups, phenol groups, quaternary ammonium groups, primary to tertiary amine groups, pyridine groups, There is an amide group, but not limited to this. These functional groups may be not only H-type and OH-type but also salt-type such as Na.

本発明ではこれらの官能基が少なくとも1種類以上導入された平膜を使用する。イオン交換基の組み合わせとしては、スルホン酸基と4級アンモニウム塩、スルホン酸基とカルボン酸基、スルホン酸基と4級アンモニウム塩とカルボン酸基、の各組み合わせが好適に用いられる。   In the present invention, a flat membrane into which at least one of these functional groups is introduced is used. As combinations of ion exchange groups, combinations of sulfonic acid groups and quaternary ammonium salts, sulfonic acid groups and carboxylic acid groups, and sulfonic acid groups, quaternary ammonium salts and carboxylic acid groups are preferably used.

官能基の導入方法は樹脂の種類により異なり、適当な導入方法を選択する。ポリスチレン樹脂の場合、硫酸溶液中にパラホルムアルデヒドを適量添加し、加熱することで架橋、スルホン酸基の導入が可能である。また、イオン交換樹脂あるいはイオン交換樹脂を微粉砕したものを製膜、合成時に混練して、イオン交換基を導入してもよい。樹脂材質によって直接官能基を導入できない場合は、まず、スチレンなどの反応性の高いモノマー(反応性モノマーと呼ぶ)を導入した上で、官能基を導入するといったような、2段階以上の導入操作を経て、目的とする官能基を導入しても良い。これら反応性モノマーとしては、グリシジルメタクリレート、スチレン、クロロメチルスチレン、アクロレイン、ビニルピリジン、アクリロニトリルなどがあるが、この限りではない。   The method for introducing a functional group varies depending on the type of resin, and an appropriate method for introduction is selected. In the case of polystyrene resin, crosslinking and introduction of sulfonic acid groups are possible by adding an appropriate amount of paraformaldehyde to the sulfuric acid solution and heating. Alternatively, ion exchange resins or finely pulverized ion exchange resins may be kneaded during film formation and synthesis to introduce ion exchange groups. If the functional group cannot be directly introduced depending on the resin material, first, a highly reactive monomer such as styrene (referred to as a reactive monomer) is introduced and then the functional group is introduced in two or more stages. Then, the target functional group may be introduced. These reactive monomers include, but are not limited to, glycidyl methacrylate, styrene, chloromethyl styrene, acrolein, vinyl pyridine, acrylonitrile and the like.

本発明で除去できる微粒子の孔径は0.05〜0.2μmである。   The pore diameter of the fine particles that can be removed by the present invention is 0.05 to 0.2 μm.

本発明で用いるスパイラル型膜モジュールにおいて、積層膜の充填効率は下記式で定義することができ、好ましくは50%以上(より好ましくは60%以上)の膜モジュールを用いることができる。
充填効率=(膜面積×膜厚)/〔(膜モジュール外周断面積−有孔筒外周断面積)×膜モジュ
ール長さ〕
=膜体積/充填部体積
In the spiral membrane module used in the present invention, the filling efficiency of the laminated membrane can be defined by the following formula, and a membrane module of preferably 50% or more (more preferably 60% or more) can be used.
Filling efficiency = (membrane area × film thickness) / [(membrane module outer cross-sectional area−perforated cylinder outer cross-sectional area) × membrane module
Length)
= Membrane volume / filled part volume

本発明では、有機物やコロイド状物質については対象としていないが、荷電性であれば、有機物もコロイド状物質も除去可能である。なお超純水には有機物は1ppbほど含まれておりコロイド状物質はほとんど含まれていない。   In the present invention, organic substances and colloidal substances are not targeted, but organic substances and colloidal substances can be removed as long as they are charged. In addition, ultrapure water contains about 1 ppb of organic matter and hardly contains colloidal substances.

本発明では被処理水に含まれる金属イオンの濃度が極低濃度である場合に特に好適に用いることができ、具体的には金属イオン濃度5ng/L以下の被処理水であることが好ましい。   In this invention, when the density | concentration of the metal ion contained in to-be-processed water is very low density | concentration, it can use especially suitably, Specifically, it is preferable that it is to-be-processed water with a metal ion density | concentration of 5 ng / L or less.

[実施例1]
スチレン87.8%、ジビニルベンゼン12%、アゾビスイソブチロニトリル0.2%からなる混合物にポリプロピレン不織布(膜厚200μm、平均孔径7μm)を5時間浸漬したのち、引上げ、加熱炉で85℃、20時間加熱重合した。これを5回繰り返し、スチレン被覆ポリエステル不織布を得た。スチレン被覆ポリエステル不織布はアセトン、超純水、エタノール、超純水の順で十分に浸漬洗浄し、未反応物を除去した。その後80%硫酸水溶液に浸漬し、90℃で8時間加熱し、スルホン酸基を導入した。得られた陽イオン交換不織布は超純水、塩酸の順で洗浄し、H型とした。
[Example 1]
A polypropylene non-woven fabric (film thickness 200 μm, average pore size 7 μm) is immersed in a mixture of styrene 87.8%, divinylbenzene 12% and azobisisobutyronitrile 0.2% for 5 hours, then pulled up and heated in a heating furnace at 85 ° C. For 20 hours. This was repeated 5 times to obtain a styrene-coated polyester nonwoven fabric. The styrene-coated polyester nonwoven fabric was sufficiently immersed and washed in the order of acetone, ultrapure water, ethanol, and ultrapure water to remove unreacted substances. Thereafter, it was immersed in an 80% sulfuric acid aqueous solution and heated at 90 ° C. for 8 hours to introduce sulfonic acid groups. The obtained cation exchange nonwoven fabric was washed with ultrapure water and hydrochloric acid in this order to obtain an H type.

上記の100mm×650mm角のイオン交換不織布と、イオン交換不織布と同じ形状、大きさのポリエチレン多孔質膜(膜厚100μm、平均孔径0.05μm)を積層し、さらに内部流路材として、ポリプロピレン製不織布(膜厚200μm、平均孔径45μm、90mm×320mm角)を挟み込むように折り曲げ、対称となる2辺を熱融着により封止し、100×325mmの長方形の袋状膜を作製した。   The above-mentioned 100 mm × 650 mm square ion-exchange nonwoven fabric and a polyethylene porous membrane (thickness 100 μm, average pore diameter 0.05 μm) having the same shape and size as the ion-exchange nonwoven fabric are laminated, and the inner channel material is made of polypropylene. A non-woven fabric (film thickness: 200 μm, average pore diameter: 45 μm, 90 mm × 320 mm square) was bent and sandwiched, and two symmetrical sides were sealed by thermal fusion to produce a 100 × 325 mm rectangular bag-like film.

この袋状膜8個を、長さ100mm、外径40mm、内径30mmの有孔筒に均等間隔で融着し、袋状膜同士の間に外部流路材を挟み込みながらスパイラル状に巻回した。スパイラル状に巻回した巻回体を、外径80mm、内径70mmのポリエチレン製の円筒状ケーシングに充填し、蓋状の封止構造材で封止した。充填した平膜の充填率は60%、膜面積は0.52mであった。 Eight of these bag-like membranes were fused at equal intervals to a perforated cylinder having a length of 100 mm, an outer diameter of 40 mm, and an inner diameter of 30 mm, and wound in a spiral shape with an external flow path material sandwiched between the bag-like membranes. . The wound body wound in a spiral shape was filled into a polyethylene cylindrical casing having an outer diameter of 80 mm and an inner diameter of 70 mm, and sealed with a lid-like sealing structure material. The filling rate of the filled flat membrane was 60%, and the membrane area was 0.52 m 2 .

このケーシングを第7図の如く水槽40に設置した。   This casing was installed in the water tank 40 as shown in FIG.

原水は、この流入孔31を通って供給され、有孔筒20を経て取出口42から流出する。   The raw water is supplied through the inflow hole 31 and flows out from the outlet 42 through the perforated tube 20.

原水の金属(Na、Mg、Al、K、Ca、Cr、Fe、Cu、Zn)濃度が5ng/Lになるように原子吸光用標準液を希釈調製し、ライン注入により添加した超純水を10L/minで通水処理したところ、処理水中のすべての金属濃度を0.5ng/L以下にすることができた。結果を表1に示す。フィルター差圧は0.03MPaであった。測定はサンプリング水を濃縮してからICPMS(横河アナリティカルシステムズAgilent−4500)で分析した。   Dilute the standard solution for atomic absorption so that the metal concentration of raw water (Na, Mg, Al, K, Ca, Cr, Fe, Cu, Zn) is 5 ng / L, and add ultrapure water added by line injection. When water treatment was performed at 10 L / min, the concentration of all metals in the treated water could be reduced to 0.5 ng / L or less. The results are shown in Table 1. The filter differential pressure was 0.03 MPa. The measurement was performed by concentrating the sampling water and then analyzing with ICPMS (Yokogawa Analytical Systems Agilent-4500).

[比較例1]
実施例1と同じイオン交換不織布、ポリエチレン多孔質膜、流路材を積層しプリーツ型フィルターを作製した。有孔筒、円筒状ケーシング、蓋状の封止構造材は実施例1と同寸法であるが、ケーシングは孔を有し、封止構造材は孔を有さない。充填した平膜の充填率は34%、膜面積は0.30mであった。実施例1と同様の液を通水処理したところ、表1のような水質を得た。膜モジュールの差圧は0.04MPaであった。
[Comparative Example 1]
The same ion exchange nonwoven fabric, polyethylene porous membrane, and channel material as in Example 1 were laminated to produce a pleated filter. The perforated cylinder, the cylindrical casing, and the lid-like sealing structure material have the same dimensions as those in Example 1, but the casing has holes and the sealing structure material does not have holes. The filling rate of the filled flat membrane was 34%, and the membrane area was 0.30 m 2 . When the same liquid as in Example 1 was passed through, water quality as shown in Table 1 was obtained. The differential pressure of the membrane module was 0.04 MPa.

Figure 2008023415
Figure 2008023415

[実施例2]
実施例1と同一の膜モジュールを用い、微粒子の除去試験を実施した。微粒子はポリスチレンラテックス標準粒子(JSR STADEX SC−0050−D、粒径平均値0.048μm)を使用した。供給水中の微粒子数(孔径0.05μm)が50個/mLになるようにラテックス粒子を添加し、10L/minで膜モジュールに通水し、処理水の微粒子数をPMS社製MLPCマイクロレーザー微粒子測定器を用いて測定したところ表2のような結果になった。処理水中の微粒子数は0.9個/mLとなり1個/mL以下であった。
[Example 2]
Using the same membrane module as in Example 1, a particulate removal test was performed. As the fine particles, polystyrene latex standard particles (JSR STADEX SC-0050-D, particle size average value 0.048 μm) were used. Latex particles are added so that the number of fine particles in the feed water (pore size 0.05 μm) is 50 particles / mL, and water is passed through the membrane module at 10 L / min. When measured using a measuring instrument, the results shown in Table 2 were obtained. The number of fine particles in the treated water was 0.9 / mL, which was 1 / mL or less.

Figure 2008023415
Figure 2008023415

本発明の実施の形態に係るスパイラル型膜モジュールに用いられる一枚の袋状膜の斜視図である。1 is a perspective view of a single bag-like membrane used in a spiral membrane module according to an embodiment of the present invention. 袋状膜と有孔筒との接続方法を示す斜視図である。It is a perspective view which shows the connection method of a bag-like film | membrane and a perforated cylinder. 袋状膜と有孔筒との接続方法を示す断面図である。It is sectional drawing which shows the connection method of a bag-like film | membrane and a perforated cylinder. 有孔筒の周りに袋状膜を巻き付ける方法を示す断面図である。It is sectional drawing which shows the method of winding a bag-like film | membrane around a perforated pipe | tube. スパイラル型膜モジュールの斜視図である。It is a perspective view of a spiral membrane module. 通水方法を示す断面図である。It is sectional drawing which shows the water flow method. 膜モジュールを収容した水槽の断面図である。It is sectional drawing of the water tank which accommodated the membrane module.

符号の説明Explanation of symbols

10 袋状膜
15 内部流路材
17 スリット
20 有孔筒
21 外部流路材
26 スパイラル型膜モジュール
40 水槽
DESCRIPTION OF SYMBOLS 10 Bag-like film | membrane 15 Internal flow-path material 17 Slit 20 Perforated cylinder 21 External flow-path material 26 Spiral type membrane module 40 Water tank

Claims (7)

複数の袋状膜が有孔筒の回りに巻回された巻回体を備えており、該袋状膜の内部に内部流路材が配置され、該袋状膜の内部が該有孔筒内に連通しており、
該袋状膜同士の間に外部流路材が配置されているスパイラル型膜モジュールにおいて、
該袋状膜の膜は、イオン交換基を有する孔径0.01〜100μmの平膜であることを特徴とするスパイラル型膜モジュール。
A plurality of bag-like membranes are provided with a wound body wound around a perforated tube, an internal flow path material is disposed inside the bag-like membrane, and the inside of the bag-like membrane is the perforated tube Communicated with
In the spiral membrane module in which an external channel material is disposed between the bag-like membranes,
The spiral membrane module, wherein the bag-like membrane is a flat membrane having an ion exchange group and a pore diameter of 0.01 to 100 µm.
複数の袋状膜が有孔筒の回りに巻回された巻回体を備えており、該袋状膜の内部に内部流路材が配置され、該袋状膜の内部が該有孔筒内に連通しており、
該袋状膜同士の間に外部流路材が配置されているスパイラル型膜モジュールにおいて、
該袋状膜の膜は、イオン交換基を有し、孔径0.01〜100μmである第1の平膜と、微粒子除去機能を有する第2の平膜との積層膜であることを特徴とするスパイラル型膜モジュール。
A plurality of bag-like membranes are provided with a wound body wound around a perforated tube, an internal flow path material is disposed inside the bag-like membrane, and the inside of the bag-like membrane is the perforated tube Communicated with
In the spiral membrane module in which an external channel material is disposed between the bag-like membranes,
The bag-like membrane is a laminated membrane of a first flat membrane having an ion exchange group and a pore diameter of 0.01 to 100 μm and a second flat membrane having a fine particle removing function. Spiral type membrane module.
請求項2において、前記第2の平膜が孔径0.01〜1μmかつ膜厚10〜500μmの多孔質膜であることを特徴とするスパイラル型膜モジュール。   The spiral membrane module according to claim 2, wherein the second flat membrane is a porous membrane having a pore diameter of 0.01 to 1 µm and a thickness of 10 to 500 µm. 請求項2又は3において、前記積層膜の充填効率が50%以上であることを特徴とするスパイラル型膜モジュール。   4. The spiral membrane module according to claim 2, wherein the filling efficiency of the laminated membrane is 50% or more. 請求項1ないし4のいずれか1項において、
該袋状膜は第1、第2、第3及び第4の辺部を有した略方形であり、該第1、第2及び第3の辺部は封じられ、該第4の辺部が開放部となっており、該第4の辺部を該有孔筒に接続して該袋状膜を巻回して巻回体とし、該第4の辺部と平行な第2の辺部を該巻回体の外周面に臨ませており、
該第4の辺部を介して該袋状膜の内部を該有孔筒の内部に連通させたことを特徴とするスパイラル型膜モジュール。
In any one of Claims 1 thru | or 4,
The bag-like membrane has a substantially square shape having first, second, third, and fourth sides, the first, second, and third sides are sealed, and the fourth side is It is an open portion, the fourth side is connected to the perforated tube, the bag-like film is wound to form a wound body, and a second side parallel to the fourth side is It faces the outer peripheral surface of the wound body,
A spiral-type membrane module characterized in that the inside of the bag-like membrane is communicated with the inside of the perforated tube through the fourth side portion.
請求項1乃至5のいずれか1項に記載のスパイラル型膜モジュールに被処理水を通水することにより被処理水中の金属イオン及び微粒子を低減することを特徴とする水処理方法。   A water treatment method, wherein metal ions and fine particles in the water to be treated are reduced by passing the water to be treated through the spiral membrane module according to any one of claims 1 to 5. 請求項6において、前記被処理水中の金属イオン濃度が5ng/L以下であることを特徴とする水処理方法。   The water treatment method according to claim 6, wherein a metal ion concentration in the water to be treated is 5 ng / L or less.
JP2006195730A 2006-07-18 2006-07-18 Spiral membrane module and water treatment method Expired - Fee Related JP4730236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195730A JP4730236B2 (en) 2006-07-18 2006-07-18 Spiral membrane module and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195730A JP4730236B2 (en) 2006-07-18 2006-07-18 Spiral membrane module and water treatment method

Publications (2)

Publication Number Publication Date
JP2008023415A true JP2008023415A (en) 2008-02-07
JP4730236B2 JP4730236B2 (en) 2011-07-20

Family

ID=39114610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195730A Expired - Fee Related JP4730236B2 (en) 2006-07-18 2006-07-18 Spiral membrane module and water treatment method

Country Status (1)

Country Link
JP (1) JP4730236B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189275A (en) * 2010-03-15 2011-09-29 Kurita Water Ind Ltd Filter for filtering liquid and method for filtering liquid
JP2012149174A (en) * 2011-01-19 2012-08-09 Kurita Water Ind Ltd Composite membrane, method for producing the same, adsorbing filter and method for treating liquid
WO2012133664A1 (en) * 2011-03-31 2012-10-04 栗田工業株式会社 Ultrapure water producing system and ultrapure water producing method
JP2016530087A (en) * 2014-06-25 2016-09-29 イー・エム・デイー・ミリポア・コーポレイシヨン Small spiral filter elements, modules, and systems
US10195550B2 (en) 2014-08-29 2019-02-05 Emd Millipore Corporation Single pass tangential flow filtration systems and tangential flow filtration systems with recirculation of retentate
US10207225B2 (en) 2014-06-16 2019-02-19 Emd Millipore Corporation Single-pass filtration systems and processes
US10350518B2 (en) 2014-08-29 2019-07-16 Emd Millipore Corporation Processes for filtering liquids using single pass tangential flow filtration systems and tangential flow filtration systems with recirculation of retentate
US10550148B2 (en) 2014-06-16 2020-02-04 Emd Millipore Corporation Methods for increasing the capacity of flow-through processes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190837A (en) * 1990-11-22 1992-07-09 Toray Ind Inc Porous membrane of crosslinked sulfonated poly(vinylidene fluoride) resin and manufacture thereof
JPH11137974A (en) * 1997-11-12 1999-05-25 Nitto Denko Corp Spiral membrane element
JP2004050056A (en) * 2002-07-19 2004-02-19 Kurita Water Ind Ltd Ion exchanger and ultrapure water manufacturing apparatus
JP2005288266A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Separation membrane, its manufacturing method and water-treating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190837A (en) * 1990-11-22 1992-07-09 Toray Ind Inc Porous membrane of crosslinked sulfonated poly(vinylidene fluoride) resin and manufacture thereof
JPH11137974A (en) * 1997-11-12 1999-05-25 Nitto Denko Corp Spiral membrane element
JP2004050056A (en) * 2002-07-19 2004-02-19 Kurita Water Ind Ltd Ion exchanger and ultrapure water manufacturing apparatus
JP2005288266A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Separation membrane, its manufacturing method and water-treating apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189275A (en) * 2010-03-15 2011-09-29 Kurita Water Ind Ltd Filter for filtering liquid and method for filtering liquid
JP2012149174A (en) * 2011-01-19 2012-08-09 Kurita Water Ind Ltd Composite membrane, method for producing the same, adsorbing filter and method for treating liquid
WO2012133664A1 (en) * 2011-03-31 2012-10-04 栗田工業株式会社 Ultrapure water producing system and ultrapure water producing method
US10550148B2 (en) 2014-06-16 2020-02-04 Emd Millipore Corporation Methods for increasing the capacity of flow-through processes
US11617988B2 (en) 2014-06-16 2023-04-04 Emd Millipore Corporation Single-pass filtration systems and processes
US10207225B2 (en) 2014-06-16 2019-02-19 Emd Millipore Corporation Single-pass filtration systems and processes
US11040310B2 (en) 2014-06-16 2021-06-22 Emd Millipore Corporation Single-pass filtration systems and processes
US11311841B2 (en) 2014-06-25 2022-04-26 Emd Millipore Corp. Compact spiral-wound filter elements, modules and systems
US10399039B2 (en) 2014-06-25 2019-09-03 Emd Millipore Corporation Compact spiral-wound filter elements, modules and systems
JP2016530087A (en) * 2014-06-25 2016-09-29 イー・エム・デイー・ミリポア・コーポレイシヨン Small spiral filter elements, modules, and systems
US11986772B2 (en) 2014-06-25 2024-05-21 Emd Millipore Corporation Compact spiral-wound filter elements, modules and systems
US11033839B2 (en) 2014-08-29 2021-06-15 Emd Millipore Corporation Single pass tangential flow filtration systems and tangential flow filtration systems with recirculation of retentate
US10350518B2 (en) 2014-08-29 2019-07-16 Emd Millipore Corporation Processes for filtering liquids using single pass tangential flow filtration systems and tangential flow filtration systems with recirculation of retentate
US11278827B2 (en) 2014-08-29 2022-03-22 Emd Millipore Corporation Processes for filtering liquids using single pass tangential flow filtration systems and tangential flow filtration systems with recirculation of retentate
US10195550B2 (en) 2014-08-29 2019-02-05 Emd Millipore Corporation Single pass tangential flow filtration systems and tangential flow filtration systems with recirculation of retentate
US11679349B2 (en) 2014-08-29 2023-06-20 Emd Millipore Corporation Single pass tangential flow filtration systems and tangential flow filtration systems with recirculation of retentate

Also Published As

Publication number Publication date
JP4730236B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4730236B2 (en) Spiral membrane module and water treatment method
KR101767711B1 (en) Spiral wound membrane element product water tube with external flow grooves
EP1577319B1 (en) Protein purification with prefiltering
JP5767584B2 (en) Chromatographic membrane, apparatus including the same and method of using the same
KR101098068B1 (en) Method of increasing purity of ultrapure water and apparatus therefor
US3367504A (en) Spirally wrapped reverse osmosis membrane cell
US4707268A (en) Hollow fiber potted microfilter
US10358366B2 (en) Spiral wound filtration assembly including integral bioreactor
US10335737B2 (en) Filtration assembly including spiral wound bioreactors and membrane modules positioned in separate pressure vessels
JP5131756B2 (en) Pincushion filter and water treatment method
JP5177506B2 (en) Filter and liquid treatment method
CN107635637B (en) Adsorption type liquid filter
WO2007122909A1 (en) Pleated filter cartridge
JP5573259B2 (en) Liquid filtration filter and liquid filtration method
JP5682032B2 (en) COMPOSITE MEMBRANE, ITS MANUFACTURING METHOD, ADSORPTION FILTER, AND FLUID TREATMENT METHOD
JP6517784B2 (en) Spiral cross flow filter
JP3875288B2 (en) Cartridge filtration device
WO2016139654A1 (en) Filtration membrane cartridge
JP5713315B2 (en) Method for producing composite membrane
JP2009034646A (en) Bobbin-type filter and water treatment method
JP5081749B2 (en) Water purifier cartridge
JP5081750B2 (en) Water purifier cartridge
Bender Protein concentration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4730236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees