JP2918137B2 - Porous membrane surface-treated with modified nylon and method for producing the same - Google Patents

Porous membrane surface-treated with modified nylon and method for producing the same

Info

Publication number
JP2918137B2
JP2918137B2 JP9307493A JP9307493A JP2918137B2 JP 2918137 B2 JP2918137 B2 JP 2918137B2 JP 9307493 A JP9307493 A JP 9307493A JP 9307493 A JP9307493 A JP 9307493A JP 2918137 B2 JP2918137 B2 JP 2918137B2
Authority
JP
Japan
Prior art keywords
water
membrane
porous
nylon
modified nylon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9307493A
Other languages
Japanese (ja)
Other versions
JPH06296841A (en
Inventor
衛一 亀井
洋司 奥下
將則 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP9307493A priority Critical patent/JP2918137B2/en
Publication of JPH06296841A publication Critical patent/JPH06296841A/en
Application granted granted Critical
Publication of JP2918137B2 publication Critical patent/JP2918137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は親水性の多孔膜およびそ
の製造方法に関するものである。さらに詳しくは疎水性
高分子多孔膜の微細孔表面に水不溶性のN−メチロー
ル、N−アルコキシメチルおよびN−アルキルチオメチ
ル変性ナイロンより選ばれた変性ナイロンによって被覆
してなる親水性多孔膜およびその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrophilic porous membrane and a hydrophilic porous membrane.
And a method for producing the same. More specifically hydrophobic
Water-insoluble N-methyl on the microporous surface of polymer porous membraneLow
, N-alkoxymethyl and N-alkylthiomethyl
Coated with modified nylon selected from modified nylon
Related to hydrophilic porous membrane and method for producing the same
It is.

【0002】[0002]

【従来の技術および問題点】高分子多孔膜の用途は水系
溶液、水系懸濁液などの水処理、超純の製造などに使
用する濾過膜あるいは分離膜、または血漿分離膜、人工
肺などの医療材料、あるいは電池、電気分解などに使用
する電池セパレータなど種々の分野にわたるが、いずれ
においても膜は親水性であることが望ましい。
2. Description of the Related Art Porous polymer membranes are used for water treatment of aqueous solutions and suspensions, filtration membranes or separation membranes used for production of ultrapure water , plasma separation membranes, artificial lungs, etc. In various fields such as medical materials or batteries, and battery separators used for electrolysis, etc., it is preferable that the membrane is hydrophilic in any case.

【0003】親水性の多孔膜としては親水性高分子を原
料とする多孔膜ならびに疎水性高分子を原料とする多孔
膜の表面を親水化処理した多孔膜に大別できる。
[0003] The hydrophilic porous membrane can be roughly classified into a porous membrane made of a hydrophilic polymer as a raw material, and a porous membrane made of a hydrophobic polymer as a raw material, the surface of which is subjected to a hydrophilic treatment.

【0004】前者の多孔膜としてはセルロース、ポリビ
ニルアルコール、ナイロンなどから誘導される水不溶性
の親水性高分子材料を原料とする膜がよく知られてい
る。これらの多孔膜の特徴は、膜素材そのものが親水性
であるので、水との相互作用が大きく水に濡れやすく、
前もって膜に特別な処理をすることなく水あるいは水系
溶液が膜内に浸透し、濾過、分離が容易に行えることで
ある。
As the former porous membrane, a membrane made of a water-insoluble hydrophilic polymer material derived from cellulose, polyvinyl alcohol, nylon or the like is well known. The feature of these porous membranes is that the membrane material itself is hydrophilic, so the interaction with water is large and it is easy to get wet with water,
Water or an aqueous solution penetrates into the membrane without special treatment of the membrane in advance, and filtration and separation can be easily performed.

【0005】しかし、これらの親水性多孔膜は膜を形成
している高分子材料そのものの吸水率が高いため、膨潤
による機械的強度の低下をまねくばかりでなく、孔径、
空孔率の減少により膜性能が低下するという欠点を有す
る。また、これらの親水性多孔膜は乾燥時において脆い
ものが多く、機械的強度が小さいという欠点をもつ。
[0005] However, these hydrophilic porous membranes have a high water absorption rate of the polymer material itself forming the membrane, so that not only the mechanical strength is reduced due to swelling, but also the pore size,
There is a disadvantage that the membrane performance is reduced due to a decrease in porosity. In addition, these hydrophilic porous membranes are often brittle when dried, and have a drawback of low mechanical strength.

【0006】さらに、これらの親水性多孔膜の調製は原
料となる親水性高分子の溶液を膜状に成形し、溶媒の一
部あるいは全部を蒸発したのち、凝固浴中に浸漬し相転
換により多孔化する方法が多く採用されるため、工程が
複雑で、有機溶剤の管理、処理などが煩雑となるばかり
でなく、得られる膜が不整いな孔を持つ膜であることが
多いなどの欠点を有する。
Further, these hydrophilic porous membranes are prepared by forming a solution of a hydrophilic polymer as a raw material into a film, evaporating a part or all of the solvent, immersing it in a coagulation bath, and performing phase change. Since many methods are used to form a porous structure, the process is complicated, and the management and treatment of the organic solvent is not only complicated, but also the resulting film is often a film having irregular pores. Having.

【0007】一方、後者の疎水性多孔膜の表面を親水化
処理して得られる多孔膜としては、処理方法により種々
の膜が提案されている。
On the other hand, as the latter porous membrane obtained by hydrophilizing the surface of the hydrophobic porous membrane, various membranes have been proposed depending on the treatment method.

【0008】(1)エチルアルコール、アセトンなどの
水溶性の有機溶剤を疎水性多孔膜の微細孔内に浸透させ
たのち、水と置換する方法により得られる膜。
(1) A membrane obtained by permeating a water-soluble organic solvent such as ethyl alcohol or acetone into the fine pores of a hydrophobic porous membrane, and replacing the water with water.

【0009】(2)重合性官能基をもつあるいはもたな
いイオン系、非イオン系界面活性剤、脂質などのコーテ
ィングとそれに続く重合などにより得られる膜(特開昭
47−14269号公報、特開昭60−11536号公
報、特開昭61−2743号公報、特開昭62−114
610号公報、特開昭63−141609号公報など)
(2) Coatings of ionic or nonionic surfactants with or without polymerizable functional groups, lipids, etc., and membranes obtained by subsequent polymerization (JP-A-47-14269, JP-A-60-11536, JP-A-61-2743, JP-A-62-114
610, JP-A-63-141609, etc.)

【0010】(3)重合性官能基を有する水溶性ポリマ
ーをコーティングした後、紫外線、電子線などの電離放
射線照射あるいは加熱処理などにより該水溶性ポリマー
を水不溶化することにより得られる膜(特公昭55−3
5145号公報、特開昭62−14904号公報、特開
昭63−97634号公報など)などである。ところ
が、これらによって得られる膜は種々の欠点を有する。
(3) A film obtained by coating a water-soluble polymer having a polymerizable functional group and then insolubilizing the water-soluble polymer with water by irradiation with ionizing radiation such as ultraviolet rays or electron beams, or heat treatment (Japanese Patent Publication No. 55-3
5145, JP-A-62-14904, JP-A-63-97634, and the like. However, the films obtained by these methods have various disadvantages.

【0011】(1)で得られる膜は膜表面及び微細孔内
が湿潤状態にある限りは親水性であるが、いったん膜が
乾燥すると親水性は失われ、再び同じ操作を行わない限
り透水現象は認められない。
The membrane obtained in (1) is hydrophilic as long as the membrane surface and the inside of the micropores are in a wet state, but once the membrane is dried, the hydrophilic property is lost, and the water permeation phenomenon occurs unless the same operation is performed again. It is not allowed.

【0012】(2)で得られる膜ではコーティングした
界面活性剤あるいは脂質が透水時間とともに溶出し、処
理液が徐々に汚染されるとともに透水性能も減少する。
[0012] In the membrane obtained in (2), the coated surfactant or lipid elutes with the water permeation time, and the treatment liquid is gradually contaminated and the water permeation performance decreases.

【0013】(3)の膜においては、コーティングに用
いる水溶性ポリマーと疎水性膜との相互作用が小さく、
該水溶性ポリマーが疎水性膜の表面及び微多孔内を均一
に、しかも良好な接着性でもってコーティングしていな
い。しかも、後処理による該水溶性ポリマーの水不溶化
の際に、孔径ならびに空孔率の低下といった問題があ
り、また、水不溶化が充分に進行していない場合には、
該水溶性ポリマーの溶出による処理液の汚染等が発生す
る。さらに、電離放射線照射あるいは加熱などの後処理
は膜素材そのものの劣化を伴う。大規模な設備を必要と
する電離放射線照射による処理を高分子多孔膜の親水化
に対して工業的に採用することは困難である。
In the film (3), the interaction between the water-soluble polymer used for coating and the hydrophobic film is small,
The water-soluble polymer is not uniformly coated on the surface and in the microporous surface of the hydrophobic membrane with good adhesiveness. In addition, when the water-insoluble polymer is insolubilized by the post-treatment, there is a problem that the pore size and the porosity decrease, and when the water-insolubilization does not sufficiently proceed,
The treatment solution is contaminated due to the elution of the water-soluble polymer. Further, post-treatment such as irradiation with ionizing radiation or heating involves deterioration of the film material itself. It is difficult to industrially employ a treatment by ionizing radiation irradiation that requires a large-scale facility for hydrophilizing a polymer porous membrane.

【0014】上述のように、従来公知の親水性多孔膜は
いずれも種々の欠点を有し、透水性に優れた水系流体の
分離、浄化に好適な微多孔膜としては充分なものとはい
えない。
As described above, any of the conventionally known hydrophilic porous membranes has various disadvantages, and although it is sufficient as a microporous membrane suitable for separation and purification of an aqueous fluid having excellent water permeability. Absent.

【0015】したがって、本発明の目的は上記の欠点の
ない水系溶液、水系懸濁液等の水処理、超純水の製造な
どに使用する濾過膜あるいは分離膜、または血漿分離
膜、人工肺などの医療材料、あるいは電池、電気分解な
どに使用する電池セパレータなど親水性が要求される分
野で好適に使用できる均一な微細透孔を有する親水性の
多孔膜を提供することにある。
Accordingly, an object of the present invention is to provide a filtration membrane or a separation membrane used for water treatment of an aqueous solution or an aqueous suspension without the above-mentioned disadvantages, production of ultrapure water, a plasma separation membrane, an artificial lung, etc. It is an object of the present invention to provide a hydrophilic porous film having uniform fine pores which can be suitably used in a field requiring hydrophilicity such as a medical material or a battery separator used for batteries and electrolysis.

【0016】[0016]

【問題点を解決するための手段】そこで、本発明者らは
上記欠点を克服した親水性多孔膜およびその製造方法に
ついて鋭意検討を重ねた結果、多数の貫通微細孔を有す
る疎水性高分子多孔膜を水不溶性のN−メチロール、N
−アルコキシメチルおよびN−アルキルチオメチル変性
ナイロンより選ばれた変性ナイロンの溶液と接触するこ
とによって得られる膜は該疎水性膜の微細孔表面が該変
性ナイロンで均一に被覆された多孔膜であり、熱安定性
に優れ、水あるいは水系溶液の濾過に必要かつ十分な親
水性を有し精密濾過から限外濾過まで広範囲にわたる濾
過能を有する多孔膜であることを見出し、本発明に到達
した。すなわち本発明は多数の貫通微細孔を有する疎水
性膜の該微細孔表面の一部または全部が水不溶性のN−
メチロール、N−アルコキシメチルおよびN−アルキル
チオメチル変性ナイロンより選ばれた変性ナイロンによ
って被覆されていることを特徴とする多孔膜およびその
製造方法を提供することにある。
The inventors of the present invention have conducted intensive studies on a hydrophilic porous membrane overcoming the above-mentioned disadvantages and a method for producing the same. The membrane is made of water-insoluble N-methylol, N
A membrane obtained by contacting a solution of a modified nylon selected from -alkoxymethyl and N-alkylthiomethyl-modified nylon is a porous membrane in which the fine pore surface of the hydrophobic membrane is uniformly coated with the modified nylon; The present inventors have found that the porous membrane has excellent heat stability, has sufficient hydrophilicity necessary and sufficient for filtration of water or an aqueous solution, and has a wide range of filtration ability from microfiltration to ultrafiltration. That is, the present invention relates to a hydrophobic membrane having a large number of through micropores, wherein a part or all of the surface of the micropores is water-insoluble N-
An object of the present invention is to provide a porous membrane characterized by being coated with a modified nylon selected from methylol, N-alkoxymethyl and N-alkylthiomethyl-modified nylon, and a method for producing the same.

【0017】本発明で用いられる多数の貫通微細孔を有
する疎水性高分子膜とは、10〜90%の空孔率と0.
01〜10μmの平均孔径を有する水および水系溶液と
接触しても該膜の表面は濡れることも該膜の内部に水が
浸透することもない膜をいう。例えば、高密度ポリエチ
レン、ポリプロピレン、ポリ(4−メチル−ペンテン−
1)などのポリオレフィン、ポリテトラフロロレチレ
ン、ポリフッ化ビニリデン、ポリ塩化ビニルなどのハロ
ゲン化ポリオレフィン、ポリスルホン、ポリカーボネー
ト等を原料とする多孔膜を挙げることができる。
The hydrophobic polymer membrane having a large number of through micropores used in the present invention has a porosity of 10 to 90% and a porosity of 0.1 to 90%.
It refers to a membrane that does not wet the surface of the membrane and does not penetrate water into the interior of the membrane even when it comes into contact with water and an aqueous solution having an average pore diameter of 01 to 10 μm. For example, high density polyethylene, polypropylene, poly (4-methyl-pentene-
Examples thereof include porous membranes made of polyolefins such as 1), halogenated polyolefins such as polytetrafluoroethylene, polyvinylidene fluoride, and polyvinyl chloride, polysulfone, and polycarbonate.

【0018】本発明において用いられる上記N−メチロ
ール、N−アルコキシメチル、およびN−アルキルチオ
メチル変性ナイロンとは、ナイロンにホルムアルデヒド
とアルコールおよびホルムアルデヒドとチオアルコール
をJ.Am.Chem.Soc.71巻,651頁,1
949年;Chemical and ind.10
巻,985頁,1951年;US Patent 24
30860,1947年等に記載の公知の方法によって
作用させ、ナイロンのアミド基の一部または全部の水素
をメチロール基、アルコキシメチル基およびアルキルチ
オメチル基で置換したナイロンをいう。ここで、もとの
ナイロンとしてはナイロン6、ナイロン66、ナイロン
610、ナイロン11、ナイロン11、ナイロン61、
ナイロンメタキシリレンジアミン6、ナイロンビス(4
−アミノシクロヘキシル)メタン6及びこれらの共重合
体等を挙げることができる。これらの内、変性ナイロン
が炭素数1〜5の脂肪族アルコールに可溶なものが特に
好ましい。また、これらは、一種または二種以上の混合
物として用いることができる。また、上記のアルコール
およびチオアルコールはモノアルコールおよびモノチオ
アルコールが好ましく、特に炭素数が1ないし6の脂肪
族モノアルコールおよびモノチオアルコールが好まし
い。
The above-mentioned N-methylol, N-alkoxymethyl and N-alkylthiomethyl-modified nylons used in the present invention are described in J. Am. Am. Chem. Soc. 71 volumes, 651 pages, 1
949; Chemical and ind. 10
Volume, 985, 1951; US Patent 24
Nylon obtained by acting according to a known method described in, for example, 30860, 1947, in which some or all of the hydrogen atoms of an amide group of nylon are substituted with a methylol group, an alkoxymethyl group and an alkylthiomethyl group. Here, as the original nylon, nylon 6, nylon 66, nylon 610, nylon 11, nylon 11, nylon 61,
Nylon metaxylylenediamine 6, nylon bis (4
-Aminocyclohexyl) methane 6 and copolymers thereof. Of these, those in which the modified nylon is soluble in an aliphatic alcohol having 1 to 5 carbon atoms are particularly preferred. These can be used alone or as a mixture of two or more. The alcohols and thioalcohols are preferably monoalcohols and monothioalcohols, and particularly preferably aliphatic monoalcohols and monothioalcohols having 1 to 6 carbon atoms.

【0019】次に、本発明の多孔膜の製造方法について
説明する。上記N−メチロール、N−アルコキシメチル
およびN−アルキルチオメチル変性ナイロンより選ばれ
た変性ナイロンの一種を特定の溶媒に溶解し、溶液を調
製する。該溶媒は炭素数が1ないし5の脂肪族アルコー
ルあるいはこれの水溶液、炭化水素溶液、ハロゲン化炭
化水素溶液、エーテル溶液、ケトン溶液、エステル溶
液、アミン溶液、カルボン酸溶液およびこれらの混合溶
媒であり該変性ナイロンの良溶媒であるとともに、上記
疎水性膜の微細孔表面を濡れさせはするものの該疎水性
膜の形成ポリマーを実質的に膨潤ないし溶解させないも
のである。
Next, the method for producing the porous membrane of the present invention will be described. A type of modified nylon selected from the above-mentioned N-methylol, N-alkoxymethyl and N-alkylthiomethyl-modified nylon is dissolved in a specific solvent to prepare a solution. The solvent is an aliphatic alcohol having 1 to 5 carbon atoms or an aqueous solution thereof, a hydrocarbon solution, a halogenated hydrocarbon solution, an ether solution, a ketone solution, an ester solution, an amine solution, a carboxylic acid solution, and a mixed solvent thereof. It is a good solvent for the modified nylon and wets the surface of the micropores of the hydrophobic membrane but does not substantially swell or dissolve the polymer forming the hydrophobic membrane.

【0020】例えば、メタノール、エタノール、メタノ
ール−水、エタノール−水、イソプロパノール−水、メ
タノール−トルエン、メタノール−クロロホルム、メタ
ノール−ジエチルエーテル、エタノール−アセトン、メ
タノール−酢酸エチル、エタノール−イソプロピルアミ
ン、エタノール−ぎ酸、エタノール−トルエン−水、メ
タノール−塩化メチレン−水等が挙げられる。これら
は、該疎水性膜および該変性ナイロンの種類によって適
宜選択することができる。
For example, methanol, ethanol, methanol-water, ethanol-water, isopropanol-water, methanol-toluene, methanol-chloroform, methanol-diethyl ether, ethanol-acetone, methanol-ethyl acetate, ethanol-isopropylamine, ethanol- Formic acid, ethanol-toluene-water, methanol-methylene chloride-water and the like. These can be appropriately selected depending on the type of the hydrophobic membrane and the modified nylon.

【0021】次いで、該変性ナイロン溶液と該疎水性膜
を10ないし70℃、好ましくは20ないし50℃で1
ないし120秒間、好ましくは5ないし60秒間接触さ
せる。接触の方法は特に限定されず、該疎水性膜を該変
性ナイロン溶液に浸漬する方法、該疎水性膜の一方から
該変性ナイロン溶液を供給し膜内を通液させる方法など
濃度勾配、圧力勾配を駆動力として該変性ナイロン溶液
を膜内に浸透させる方法が採用される。しかし、装置、
操作の簡便さ、処理能力、効率の良さ等を考慮すると、
該疎水性膜を該変性ナイロン溶液に浸漬する方法を採用
するのが好ましい。該変性ナイロン溶液の浸透処理を行
った該疎水性膜は、次に、乾燥処理および/あるいは水
との接触とこれにつづく乾燥処理によって溶媒を完全に
除去し疎水性膜の微細孔表面に該変性ナイロンを均一に
被覆してなる多孔膜が得られる。
Next, the modified nylon solution and the hydrophobic membrane are heated at 10 to 70 ° C., preferably at 20 to 50 ° C. for 1 hour.
For 120 to 120 seconds, preferably 5 to 60 seconds. The method of contact is not particularly limited, such as a method in which the hydrophobic membrane is immersed in the modified nylon solution, a method in which the modified nylon solution is supplied from one of the hydrophobic membranes and passed through the membrane, and a concentration gradient or pressure gradient. Is used as a driving force to permeate the modified nylon solution into the membrane. But the device,
Considering simplicity of operation, processing capacity, efficiency, etc.,
It is preferable to adopt a method of immersing the hydrophobic membrane in the modified nylon solution. Next, the hydrophobic membrane which has been subjected to the permeation treatment of the modified nylon solution is subjected to a drying treatment and / or a contact with water followed by a drying treatment to completely remove the solvent, thereby forming the hydrophobic membrane on the surface of the fine pores. A porous membrane uniformly coated with the modified nylon is obtained.

【0022】このようにして得られる多孔膜は、該変性
ナイロン溶液の濃度、接触時間、接触回数等を適宜調節
することのよって、疎水性膜の表面および微細孔表面の
みが極く薄く被覆され、十分な濡れおよび透水性を示す
が、孔径は該変性ナイロン溶液の接触前の孔径とほとん
ど変わらないものから、疎水性膜の表面のうち少なくと
も一表面に非孔性シート層を有するもの、さらには微細
孔内が該変性ナイロンで閉塞されているものまでさまざ
まである。また、いずれの膜も水中への浸漬あるいは水
の透過と乾燥をくり返しても透水性が低下することはほ
とんどない。
The porous membrane obtained in this manner is coated with only a very thin surface of the hydrophobic membrane and the surface of the micropores by appropriately adjusting the concentration of the modified nylon solution, the contact time, the number of contacts and the like. Shows sufficient wettability and water permeability, but the pore size is almost the same as the pore size before the contact with the modified nylon solution, the one having a non-porous sheet layer on at least one of the hydrophobic membrane surfaces, There are various types including those in which the pores are closed with the modified nylon. In addition, even if any of the films is immersed in water or repeatedly permeated and dried, the water permeability hardly decreases.

【0023】[0023]

【発明の効果】本発明の親水化多孔膜は、疎水性高分子
を原料とする多孔膜の表面が水不溶性の変性ナイロンに
よって被覆された親水性の多孔膜である。本発明によっ
て得られる親水性の多孔膜は、上記の従来法で得られる
親水性多孔膜の種々の欠点を克服し、該疎水性膜本来の
物理的、化学的、機械的特性を保持しつつ、かつ優れた
透水性を有し、さらにくり返しの使用に耐える耐久性も
兼ね備えた膜である。したがって、高い透水性を利用し
た水系流体の分離、浄化に好適な分離膜として用いられ
るばかりでなく、固定化層である水不溶性の親水性材料
の特徴を生かして、電池、電気分解などに使用する電池
セパレータなどに適用することも可能となった。
The hydrophilized porous membrane of the present invention is a hydrophilic porous membrane whose surface is covered with a water-insoluble modified nylon made of a hydrophobic polymer. The hydrophilic porous membrane obtained by the present invention overcomes the various drawbacks of the hydrophilic porous membrane obtained by the above-described conventional method, while maintaining the physical, chemical, and mechanical properties inherent in the hydrophobic membrane. It is a film having excellent water permeability and durability that can withstand repeated use. Therefore, it is not only used as a separation membrane suitable for separation and purification of aqueous fluids utilizing high water permeability, but also used for batteries, electrolysis, etc. by taking advantage of the characteristics of a water-insoluble hydrophilic material as an immobilization layer. It can also be applied to battery separators and the like.

【0024】[0024]

【実施例】以下、本発明の実施例によってさらに詳しく
説明する。なお、もちろん本発明が以下の実施例に限定
されるものではない。
The present invention will be described below in more detail with reference to examples. The present invention is, of course, not limited to the following embodiments.

【0025】(実施例1)ポリプロピレン(UBE−P
P−F109K,商品名:宇部興産(株)製、MFI=
9g/10min)を外径150mmのダイスを備えた
押出成形機を使用し、成形温度190℃、引取り速度3
0mm/minの条件でインフレーションフィルムを成
形した。
(Example 1) Polypropylene (UBE-P)
P-F109K, trade name: Ube Industries, Ltd., MFI =
9 g / 10 min) using an extruder equipped with a die having an outer diameter of 150 mm, a molding temperature of 190 ° C., and a take-up speed of 3
An inflation film was formed under the condition of 0 mm / min.

【0026】得られたポリプロピレンフィルムを145
℃の加熱空気槽で30分間加熱処理し、次いで液体窒素
(−195.8℃)中で、初期長さに対して20%延伸
し、延伸状態を保ったまま145℃の加熱空気槽内で2
分間熱処理を行った。
The obtained polypropylene film was 145
Heat treatment in a heated air bath at 145 ° C. for 30 minutes, and then stretched in liquid nitrogen (-195.8 ° C.) by 20% with respect to the initial length. 2
Heat treatment was performed for minutes.

【0027】このフィルムを145℃の加熱空気槽で3
0分間加熱処理し、次いで液体窒素(−195.6℃)
中で、初期長さに対して20%延伸し、延伸状態を保っ
たまま145℃の加熱空気槽内で2分間熱処理を行っ
た。
This film was placed in a heated air bath at 145 ° C.
Heat treatment for 0 minutes, then liquid nitrogen (-195.6 ° C)
In the medium, the film was stretched by 20% with respect to the initial length, and heat-treated in a heated air bath at 145 ° C. for 2 minutes while maintaining the stretched state.

【0028】このフィルムを130℃の空気雰囲気で4
00%の熱延伸を行った後、延伸状態を保ったまま14
5℃の加熱空気槽内で15分間熱処理を行いポリプロピ
レン多孔平膜を製造した。
This film was heated at 130 ° C. in an air atmosphere for 4 hours.
After performing hot stretching of 00%, the stretched state is maintained at 14%.
Heat treatment was performed for 15 minutes in a heated air tank at 5 ° C. to produce a porous polypropylene flat membrane.

【0029】得られたポリプロピレン多孔平膜の平均孔
径はエタノールを用いるハーフドライ法によって測定し
たところ0.27μmであった。空孔率はカルロエルバ
(CARLOERBA)社(イタリア)製のポロシメト
ロシリーズ(POROSIMETRO SERIES)
1500を使用した水銀圧入法で測定したところ73.
6%であった。このポリプロピレン多孔平膜の膜表面及
び膜断面を走査型電子顕微鏡により観察したところ、膜
表面には該膜の延伸方向に対しほぼ平行かつ等間隔に微
小フィブリル群が形成され、該フィブリル及びフィブリ
ル間の空隙は膜断面方向へ二次元に広がり、多数の貫通
微細透孔を形成していることがわかった。次にN−メト
キシメチル変性ナイロン6を合成した。ナイロン6(U
BE NYLON 1013B,商品名:宇部興産
(株)製)30gを含むギ酸溶液(濃度30重量/容量
%)にパラホルムアルデヒドの50重量/容量%メタノ
ール溶液60mlを60℃で攪拌しながら徐々に加え、
30分間攪拌した後、2リットルのアセトン−水(1−
1、体積比)に注ぎ、アンモニア水で洗浄した後、乾燥
して白色粒状物を得た。得られた白色粒状物はナイロン
6のアミド基の水素の40%がメトキシメチル基によっ
て置換されたN−メトキシメチル変性ナイロン6であっ
た。
The average pore size of the obtained porous polypropylene flat membrane was 0.27 μm as measured by a half dry method using ethanol. The porosity is a POROSIMETRO SERIES made by CARLOERBA (Italy).
When measured by a mercury intrusion method using 1500, 73.
6%. When the membrane surface and membrane cross section of this polypropylene porous flat membrane were observed with a scanning electron microscope, fine fibril groups were formed on the membrane surface at approximately equal intervals and in parallel with the stretching direction of the membrane. It was found that the voids spread two-dimensionally in the direction of the cross section of the film, and formed a large number of fine through holes. Next, N-methoxymethyl-modified nylon 6 was synthesized. Nylon 6 (U
To a formic acid solution (concentration: 30% by weight / volume) containing 30 g of BE NYLON 1013B (trade name: manufactured by Ube Industries, Ltd.), 60 ml of a 50% by weight / volume% methanol solution of paraformaldehyde was gradually added with stirring at 60 ° C.
After stirring for 30 minutes, 2 liters of acetone-water (1-
1, volume ratio), washed with aqueous ammonia, and dried to obtain a white granular material. The obtained white granular material was N-methoxymethyl-modified nylon 6 in which 40% of the hydrogen of the amide group of nylon 6 was substituted with a methoxymethyl group.

【0030】続いて、上記ポリプロピレン多孔平膜を濃
度が2重量/容量%の上記N−メトキシメチル変性ナイ
ロン6のメタノール溶液に室温で1分間浸漬し、ポリプ
ロピレン多孔平膜の貫通微細孔内まで溶液を充分に行き
渡らせた後、室温で2時間風乾した。
Subsequently, the porous polypropylene flat membrane was immersed in a methanol solution of the above-mentioned N-methoxymethyl-modified nylon 6 at a concentration of 2% by weight / volume for 1 minute at room temperature, and the solution was poured into the through pores of the porous polypropylene flat membrane. After thoroughly spreading, the mixture was air-dried at room temperature for 2 hours.

【0031】こうして得られた多孔膜の表面及び断面を
走査型電子顕微鏡で観察したところ、本質的に被覆前の
多孔平膜と同一の多数の貫通微細孔が保持された形態が
観察された。この多孔平膜に水を接触させたところ、水
は微細孔内に容易に浸透し、透過した。透水速度は、1
60.9リットル/min・m2 ・kgf/cm2 であ
った。透水速度を測定した多孔平膜を乾燥し、再び水に
接触したところ、前記と同様に水は再び多孔膜の微孔内
部に容易に浸透し、透水速度の変化も5%以内であっ
た。また、この操作を10回繰り返したが、水の浸透、
透過現象に変化はなく、透水速度の変化も±5%以内で
あった。
When the surface and the cross section of the porous membrane thus obtained were observed with a scanning electron microscope, it was observed that the porous membrane had essentially the same number of through micropores as the porous flat membrane before coating. When water was brought into contact with the porous flat membrane, the water easily permeated into the micropores and permeated. Permeation rate is 1
It was 60.9 liter / min · m 2 · kgf / cm 2 . When the porous flat membrane whose water permeation rate was measured was dried and contacted again with water, water easily permeated again into the micropores of the porous membrane as described above, and the change in water permeation rate was within 5%. This operation was repeated 10 times.
There was no change in the permeation phenomenon, and the change in the water permeation rate was also within ± 5%.

【0032】(実施例2)実施例1において、変性ナイ
ロンを下記のものとした以外は実施例1と全く同様に行
った。ナイロン66(UBE NYLON 2015
B,商品名:宇部興産(株)製)60gに90%ギ酸2
00mlを加え、60℃で2時間攪拌しナイロン66の
ギ酸溶液を調製する。この溶液にパラホルムアルデヒド
の35重量%水溶液170mlを少しずつ加え、次いで
50mlの水を添加した後、1200mlのアセトン−
水(1−1、体積比)に注ぎ、水、アンモニア水、アセ
トンの順で洗浄、乾燥して、白色粒状物を得る。得られ
た白色粒状物はナイロン66のアミド基の水素の19%
がメチロール基によって置換されたN−メチロール変性
ナイロン66であった。
(Example 2) The procedure of Example 1 was repeated except that the modified nylon was changed as follows. Nylon 66 (UBE NYLON 2015
B, trade name: Ube Industries, Ltd.) 90 g formic acid 2 in 60 g
Add 00 ml and stir at 60 ° C. for 2 hours to prepare a formic acid solution of nylon 66. To this solution, 170 ml of a 35% by weight aqueous solution of paraformaldehyde was added little by little, and then 50 ml of water was added.
Pour into water (1-1, volume ratio), wash in the order of water, aqueous ammonia, and acetone, and dry to obtain a white granular material. The obtained white granules are 19% of the hydrogen of the amide group of nylon 66.
Was N-methylol-modified nylon 66 substituted by a methylol group.

【0033】続いて、上記N−メチロール変性ナイロン
66の1.5重量/容量%メタノール溶液に実施例1の
ポリプロピレン多孔平膜を室温で1分間浸漬し、ポリプ
ロピレン多孔平膜の貫通微細孔内まで溶液を充分に行き
渡らせた後、室温で2時間風乾した。
Subsequently, the porous polypropylene flat membrane of Example 1 was immersed in a 1.5% by weight / volume methanol solution of the N-methylol-modified nylon 66 at room temperature for 1 minute to reach the inside of the through-pores of the porous polypropylene flat membrane. After the solution was thoroughly spread, it was air-dried at room temperature for 2 hours.

【0034】こうして得られた多孔膜の表面及び断面を
走査型電子顕微鏡で観察したところ、本質的に被覆前の
多孔平膜と同一の多数の貫通微細孔が保持された形態が
観察された。この多孔平膜に水を接触させたところ、水
は微細孔内に容易に浸透し、透過した。透水速度は13
5リットル/min・m2 ・kgf/cm2 であった。
透水速度を測定した多孔平膜を乾燥し、再び水に接触し
たところ、前記と同様に水は再び多孔膜の微孔内部に容
易に浸透し、透水速度の変化も5%以内であった。ま
た、この操作を10回繰り返したが、水の浸透、透過現
象に変化はなく、透水速度の変化も±5%以内であっ
た。
When the surface and the cross section of the porous membrane thus obtained were observed with a scanning electron microscope, it was found that the porous membrane had essentially the same number of through micropores as the porous flat membrane before coating. When water was brought into contact with the porous flat membrane, the water easily permeated into the micropores and permeated. Permeation speed is 13
It was 5 liter / min · m 2 · kgf / cm 2 .
When the porous flat membrane whose water permeation rate was measured was dried and contacted again with water, water easily permeated again into the micropores of the porous membrane as described above, and the change in water permeation rate was within 5%. This operation was repeated 10 times, but there was no change in the permeation and permeation phenomena of water, and the change in water permeation rate was within ± 5%.

【0035】(実施例3)実施例1において、変性ナイ
ロンを下記のものとした以外は実施例1と全く同様に行
った。ナイロン66(UBE NYLON 2015
B,商品名:宇部興産(株)製)粉末80g、パラホル
ムアルデヒド100gおよびピリジン300mlを攪拌
機付き1リットルステンレス製オートクレーブに仕込
み、130〜135℃に30分間保った。室温まで冷却
した後、生成物を3リットルの水に注ぎ、流水で洗浄し
乾燥して、かさ高い白色粉末を得た。得られた白色粉末
はナイロン66のアミド基の水素の56%がメチロール
基によって置換されたN−メチロール変性ナイロン66
であった。
(Example 3) The procedure of Example 1 was repeated, except that the modified nylon was changed as follows. Nylon 66 (UBE NYLON 2015
B, trade name: Ube Industries, Ltd.) 80 g of powder, 100 g of paraformaldehyde and 300 ml of pyridine were charged into a 1-liter stainless steel autoclave equipped with a stirrer and kept at 130 to 135 ° C for 30 minutes. After cooling to room temperature, the product was poured into 3 liters of water, washed with running water and dried to give a bulky white powder. The obtained white powder was N-methylol-modified nylon 66 in which 56% of the hydrogen of the amide group of nylon 66 was replaced by a methylol group.
Met.

【0036】続いて、上記N−メチロール変性ナイロン
66の1重量/容量%メタノール溶液に実施例1のポリ
プロピレン多孔平膜を室温で30秒間浸漬し、ポリプロ
ピレン多孔平膜の貫通微細孔内まで溶液を充分に行き渡
らせた後、室温で2時間風乾した。
Subsequently, the polypropylene porous flat membrane of Example 1 was immersed in a 1% by weight / volume methanol solution of the N-methylol-modified nylon 66 at room temperature for 30 seconds, and the solution was poured into the through pores of the polypropylene porous flat membrane. After thoroughly spreading, it was air-dried at room temperature for 2 hours.

【0037】こうして得られた多孔膜の表面及び断面を
走査型電子顕微鏡で観察したところ、本質的に被覆前の
多孔平膜と同一の多数の貫通微細孔が保持された形態が
観察された。この多孔平膜に水を接触させたところ、水
は微細孔内に容易に浸透し、透過した。透水速度は15
1リットル/min・m2 ・kgf/cm2 であった。
透水速度を測定した多孔平膜を乾燥し、再び水に接触し
たところ、前記と同様に水は再び多孔膜の微孔内部に容
易に浸透し、透水速度の変化も5%以内であった。ま
た、この操作を10回繰り返したが、水の浸透、透過現
象に変化はなく、透水速度の変化も±5%以内であっ
た。
When the surface and the cross section of the porous membrane thus obtained were observed with a scanning electron microscope, it was observed that the porous membrane had essentially the same number of through micropores as the porous flat membrane before coating. When water was brought into contact with the porous flat membrane, the water easily permeated into the micropores and permeated. Permeation speed is 15
It was 1 liter / min · m 2 · kgf / cm 2 .
When the porous flat membrane whose water permeation rate was measured was dried and contacted again with water, water easily permeated again into the micropores of the porous membrane as described above, and the change in water permeation rate was within 5%. This operation was repeated 10 times, but there was no change in the permeation and permeation phenomena of water, and the change in water permeation rate was within ± 5%.

【0038】(実施例4)実施例1において、変性ナイ
ロンを下記のものとした以外は実施例1と全く同様に行
った。ナイロン66(UBE NYLON 2015
B,商品名:宇部興産(株)製)50gを90%ギ酸1
20mlに溶解し、これに0.1gの水酸化ナトリウム
を含むエチルメルカプタン120gとパラホルムアルデ
ヒド60gの混合液を室温で攪拌しながら少しずつ加え
た。1時間後に攪拌を止め、均一層を分液し、これに1
200〜1500mlのアセトンを徐々に加え、さらに
この溶液にアンモニア水を添加した後、水洗、乾燥して
白色粒状物を得た。得られた白色粒状物はナイロン66
のアミド基の水素の28%がエチルチオメチル基によっ
て置換されたN−エチルチオメチル変性ナイロン66で
あった。
(Example 4) The procedure of Example 1 was repeated, except that the modified nylon was changed as follows. Nylon 66 (UBE NYLON 2015
B, trade name: Ube Industries, Ltd.) 50 g of 90% formic acid 1
The mixture was dissolved in 20 ml, and a mixture of 120 g of ethyl mercaptan containing 0.1 g of sodium hydroxide and 60 g of paraformaldehyde was added little by little at room temperature with stirring. After 1 hour, the stirring was stopped, and the uniform layer was separated.
200 to 1500 ml of acetone was gradually added, and ammonia water was further added to this solution, followed by washing with water and drying to obtain a white granular material. The white granules obtained are nylon 66
Was N-ethylthiomethyl-modified nylon 66 in which 28% of the hydrogens of the amide groups were replaced by ethylthiomethyl groups.

【0039】続いて、上記N−エチルチオメチル変性ナ
イロン66の2重量/容量%メタノール溶液に実施例1
のポリプロピレン多孔平膜を室温で1分間浸漬し、ポリ
プロピレン多孔平膜の貫通微細孔内まで溶液を充分に行
き渡らせた後、室温で2時間風乾した。
Subsequently, Example 1 was added to a 2% w / v methanol solution of N-ethylthiomethyl-modified nylon 66.
Was immersed at room temperature for 1 minute to sufficiently spread the solution into the through-pores of the porous polypropylene flat membrane, and then air-dried at room temperature for 2 hours.

【0040】こうして得られた多孔膜の表面及び断面を
走査型電子顕微鏡で観察したところ、本質的に被覆前の
多孔平膜と同一の多数の貫通微細孔が保持された形態が
観察された。この多孔平膜に水を接触させたところ、水
は微細孔内に容易に浸透し、透過した。透水速度は12
3リットル/min・m2 ・kgf/cm2 であった。
透水速度を測定した多孔平膜を乾燥し、再び水に接触し
たところ、前記と同様に水は再び多孔膜の微孔内部に容
易に浸透し、透水速度の変化も5%以内であった。ま
た、この操作を10回繰り返したが、水の浸透、透過現
象に変化はなく、透水速度の変化も±5%以内であっ
た。
When the surface and the cross section of the porous membrane thus obtained were observed with a scanning electron microscope, it was found that the porous membrane had essentially the same number of through micropores as the porous flat membrane before coating. When water was brought into contact with the porous flat membrane, the water easily permeated into the micropores and permeated. Permeability is 12
It was 3 liters / min · m 2 · kgf / cm 2 .
When the porous flat membrane whose water permeation rate was measured was dried and contacted again with water, water easily permeated again into the micropores of the porous membrane as described above, and the change in water permeation rate was within 5%. This operation was repeated 10 times, but there was no change in the permeation and permeation phenomena of water, and the change in water permeation rate was within ± 5%.

【0041】(実施例5)実施例1において、N−アル
コキシメチル変性ナイロンの溶液としてLuckami
de 5003(N−メトキシメチル変性ナイロン6、
商品名:大日本インキ工業(株)製)2重量/容量%メ
タノール溶液を用いた以外は実施例1と同様に操作し
た。
(Example 5) In Example 1, Luckami was used as a solution of N-alkoxymethyl-modified nylon.
de 5003 (N-methoxymethyl-modified nylon 6,
The operation was performed in the same manner as in Example 1 except that a 2% by weight / volume% methanol solution was used.

【0042】こうして得られた多孔膜の表面及び断面を
走査型電子顕微鏡で観察したところ、本質的に被覆前の
多孔平膜と同一の多数の貫通微細孔が保持された形態が
観察された。この多孔平膜に水を接触させたところ、水
は微細孔内に容易に浸透し、透過した。透水速度は16
4リットル/min・m2 ・kgf/cm2 であった。
透水速度を測定した多孔平膜を乾燥し、再び水に接触し
たところ、前記と同様に水は再び多孔膜の微孔内部に容
易に浸透し、透水速度の変化も5%以内であった。ま
た、この操作を10回繰り返したが、水の浸透、透過現
象に変化はなく、透水速度の変化も±5%以内であっ
た。
When the surface and the cross section of the porous film thus obtained were observed with a scanning electron microscope, it was found that the porous film had essentially the same number of through micropores as the porous flat film before coating. When water was brought into contact with the porous flat membrane, the water easily permeated into the micropores and permeated. Permeability is 16
It was 4 liter / min · m 2 · kgf / cm 2 .
When the porous flat membrane whose water permeation rate was measured was dried and contacted again with water, water easily permeated again into the micropores of the porous membrane as described above, and the change in water permeation rate was within 5%. This operation was repeated 10 times, but there was no change in the permeation and permeation phenomena of water, and the change in water permeation rate was within ± 5%.

【0043】(実施例6)ポリプロピレン(UBE−P
P−J109K,商品名:宇部興産(株)製,MFI=
9g/10min)を外径33mm、内径27mmの気
体供給管を備えた中空糸製造用ノズルを使用し、紡糸温
度200℃、引取速度116m/minの条件で紡糸し
た。得られたポリプロピレン中空糸を145℃の加熱空
気槽で6分間加熱処理し、次いで液体窒素(−195.
8℃)中で初期長さに対し20%延伸し、延伸状態を保
ったまま145℃の加熱空気槽内で2分間加熱処理を行
った。
Example 6 Polypropylene (UBE-P)
P-J109K, trade name: Ube Industries, Ltd., MFI =
9 g / 10 min) was spun at a spinning temperature of 200 ° C. and a take-up speed of 116 m / min using a hollow fiber production nozzle equipped with a gas supply pipe having an outer diameter of 33 mm and an inner diameter of 27 mm. The obtained polypropylene hollow fiber was heat-treated in a heated air bath at 145 ° C. for 6 minutes, and then liquid nitrogen (−195.
(8 ° C.) in the heated air bath at 145 ° C. for 2 minutes while maintaining the stretched state.

【0044】この中空糸を140℃の空気雰囲気で40
0%熱延伸を行った後、延伸状態を保ったまま145℃
の加熱空気槽内で15分間加熱処理を行い、ポリプロピ
レン多孔中空糸膜を製造した。得られたポリプロピレン
多孔中空糸膜の平均孔径は0.41μmであり、空孔率
は76.5%であった。このポリプロピレン多孔中空糸
膜の膜表面及び膜断面を走査型電子顕微鏡で観察したと
ころ、膜表面には該膜の延伸方向に対しほぼ平行かつ等
間隔に微小フィブリル群が形成され、該フィブリル及び
フィブリル間の空隙は膜断面方向へ二次元に広がり、多
数の貫通微細透孔を形成していることがわかった。
The hollow fiber was placed in an air atmosphere at 140 ° C. for 40 hours.
After performing 0% thermal stretching, 145 ° C. while maintaining the stretched state
Was heated in a heated air tank for 15 minutes to produce a polypropylene porous hollow fiber membrane. The average pore size of the obtained polypropylene porous hollow fiber membrane was 0.41 μm, and the porosity was 76.5%. Observation of the membrane surface and membrane cross section of this polypropylene porous hollow fiber membrane with a scanning electron microscope revealed that microfibrils were formed on the membrane surface at substantially regular intervals at equal intervals in the stretching direction of the membrane, and the fibrils and fibrils were formed. It was found that the gaps between them spread two-dimensionally in the cross-sectional direction of the film, and formed a large number of fine through holes.

【0045】次に、上記ポリプロピレン多孔中空糸膜を
実施例1で使用したN−メトキシメチル変性ナイロン6
の2重量/容量%のメタノール溶液に室温で1分間浸漬
し、ポリプロピレン多孔平膜の貫通微細孔内まで溶液を
充分に行き渡らせた後、室温で2時間風乾した。こうし
て得られた多孔膜の表面及び断面を走査型電子顕微鏡で
観察したところ、本質的に被覆前の多孔中空糸膜と同一
の多数の貫通微細孔が保持された形態が観察された。
Next, the polypropylene porous hollow fiber membrane described above was used for N-methoxymethyl-modified nylon 6 used in Example 1.
Was immersed in a 2% by weight / volume% methanol solution at room temperature for 1 minute to sufficiently spread the solution into the through-holes of the porous polypropylene flat membrane, and then air-dried at room temperature for 2 hours. Observation of the surface and the cross section of the porous membrane thus obtained with a scanning electron microscope revealed a form in which essentially the same number of through micropores as the porous hollow fiber membrane before coating were retained.

【0046】この多孔平膜に水を接触させたところ、水
は微孔内に容易に浸透し、透過した。透水速度は172
リットル/min・m2 ・kgf/cm2 であった。透
水速度を測定した多孔中空糸膜を乾燥し、再び水と接触
したところ、前記と同様に水は再び多孔膜の微孔内部に
用意に浸透し、透水速度の変化も5%以内であった。ま
た、この操作を10回繰り返したが、水の浸透、透過現
象に変化はなく、透水速度の変化も±5%以内であっ
た。
When the porous flat membrane was brought into contact with water, the water easily penetrated into the micropores and permeated. Permeability is 172
Liter / min · m 2 · kgf / cm 2 . When the porous hollow fiber membrane whose water permeation rate was measured was dried and again contacted with water, water permeated into the pores of the porous membrane again as described above, and the change in water permeation rate was also within 5%. . This operation was repeated 10 times, but there was no change in the permeation and permeation phenomena of water, and the change in water permeation rate was within ± 5%.

【0047】(比較例1)実施例1から5に記載のポリ
プロピレン多孔平膜をエタノール等で前処理することな
く水と接触させたところ、多孔平膜は水をはじき、水は
多孔平膜の表面で半球状を呈した。水圧2kgf/cm
2 で水の透過を試みたが透水速度は0リットル/min
・m2 ・kgf/cm2 であった。
(Comparative Example 1) When the polypropylene porous flat membranes described in Examples 1 to 5 were brought into contact with water without pretreatment with ethanol or the like, the porous flat membrane repelled water, and water was used as the porous flat membrane. The surface was hemispherical. Water pressure 2kgf / cm
Attempted water permeation at 2 but the water permeation rate was 0 l / min
M 2 · kgf / cm 2 .

【0048】(比較例2)実施例6に記載のポリプロピ
レン多孔中空糸膜をエタノール等で前処理することなく
水と接触させたところ、多孔平膜は水をはじき、水は多
孔平膜の表面で半球状を呈した。水圧2kgf/cm2
で水の透過を試みたが透水速度は0リットル/min・
2 ・kgf/cm2 であった。
(Comparative Example 2) When the porous polypropylene hollow fiber membrane described in Example 6 was brought into contact with water without pretreatment with ethanol or the like, the porous flat membrane repelled water, and water was exposed on the surface of the porous flat membrane. Showed a hemispherical shape. Water pressure 2kgf / cm 2
Tried to permeate water, but the water permeation rate was 0 l / min.
m 2 · kgf / cm 2 .

【0049】(比較例3)実施例1から5に記載のポリ
プロピレン多孔平膜をポリ−N−ビニルピロリドン(平
均分子量10000)の2重量/容量%のメタノール溶
液に室温で30秒間浸漬し、ポリプロピレン多孔平膜の
貫通微細孔内まで溶液を充分に行き渡らせた後、室温で
2時間風乾した。こうして得られた多孔膜の表面及び断
面を走査型電子顕微鏡で観察したところ、本質的に被覆
前の多孔中空糸膜と同一の多数の貫通微細孔が保持され
た形態が観察された。
Comparative Example 3 The porous polypropylene flat membranes described in Examples 1 to 5 were immersed in a 2% by weight / volume% methanol solution of poly-N-vinylpyrrolidone (average molecular weight 10,000) at room temperature for 30 seconds. After sufficiently spreading the solution to the inside of the through micropores of the porous flat membrane, it was air-dried at room temperature for 2 hours. Observation of the surface and the cross section of the porous membrane thus obtained with a scanning electron microscope revealed a form in which essentially the same number of through micropores as the porous hollow fiber membrane before coating were retained.

【0050】この多孔平膜に水を接触させたところ、水
は微孔内に容易に浸透し、透過した。透水速度は122
リットル/min・m2 ・kgf/cm2 であった。透
水速度を測定した多孔平膜を乾燥し、再び水と接触させ
たところ、多孔平膜は水をはじき、水は多孔平膜の表面
で半球状を呈した。水圧2kgf/cm2 で水の透過を
試みたが透水速度は0リットル/min・m2 ・kgf
/cm2 であった。
When the porous flat membrane was brought into contact with water, the water easily penetrated into the micropores and permeated. Permeability is 122
Liter / min · m 2 · kgf / cm 2 . When the porous flat membrane whose water permeation rate was measured was dried and brought into contact with water again, the porous flat membrane repelled water, and the water exhibited a hemispherical shape on the surface of the porous flat membrane. Water permeation was attempted at a water pressure of 2 kgf / cm 2 , but the water permeation rate was 0 l / min · m 2 · kgf
/ Cm 2 .

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−84434(JP,A) 特開 平4−187226(JP,A) 特開 昭61−283305(JP,A) 特開 平4−265131(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 53/22 B01D 61/00 - 71/82 510 C02F 1/44 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-84434 (JP, A) JP-A-4-187226 (JP, A) JP-A-61-283305 (JP, A) JP-A-4-283 265131 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B01D 53/22 B01D 61/00-71/82 510 C02F 1/44

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多数の貫通微細孔を有する疎水性高分子
多孔膜の表面が水不溶性のN−メチロール、N−アルコ
キシメチルおよびN−アルキルチオメチル変性ナイロン
より選ばれた変性ナイロンによって被覆されていること
を特徴とする多孔膜。
1. A number of through the surface of the hydrophobic polymer membrane having micropores is water-insoluble N- methylcarbamoyl role, is covered by N- alkoxymethyl and N- alkylthiomethyl modified selected modified nylon than nylon A porous membrane, characterized in that:
【請求項2】 多数の貫通微細孔を有する疎水性高分子
多孔膜を作成し、該疎水性膜を水不溶性変性ナイロンの
溶液と接触させ、しかるのち加熱および/あるいは該変
性ナイロンが不溶でかつ該溶液を形成している溶媒が可
溶な液体と接触することを特徴とする特許請求の範囲第
1項に記載の多孔膜の製造方法。
2. A hydrophobic polymer porous membrane having a large number of through micropores is prepared, and the hydrophobic membrane is brought into contact with a solution of a water-insoluble modified nylon, and then heated and / or the modified nylon is insoluble. The method for producing a porous membrane according to claim 1, wherein the solvent forming the solution is brought into contact with a soluble liquid.
JP9307493A 1993-04-20 1993-04-20 Porous membrane surface-treated with modified nylon and method for producing the same Expired - Fee Related JP2918137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9307493A JP2918137B2 (en) 1993-04-20 1993-04-20 Porous membrane surface-treated with modified nylon and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9307493A JP2918137B2 (en) 1993-04-20 1993-04-20 Porous membrane surface-treated with modified nylon and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06296841A JPH06296841A (en) 1994-10-25
JP2918137B2 true JP2918137B2 (en) 1999-07-12

Family

ID=14072372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9307493A Expired - Fee Related JP2918137B2 (en) 1993-04-20 1993-04-20 Porous membrane surface-treated with modified nylon and method for producing the same

Country Status (1)

Country Link
JP (1) JP2918137B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102397756A (en) * 2010-09-08 2012-04-04 天津工业大学 Method for processing hydrophobic separation membrane
CN115672288B (en) * 2022-10-12 2024-01-23 浙大宁波理工学院 Modified nylon membrane for selectively separating bivalent mercury and zero-valent mercury in atmosphere and preparation method thereof

Also Published As

Publication number Publication date
JPH06296841A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
US4073733A (en) PVA membrane and method for preparing the same
US4113912A (en) Hydrophilic porous structures and process for production thereof
US5019261A (en) Permeable, porous polymeric membrane with hydrophilic character methods for preparing said membranes and their use
JP2008543546A (en) Cross-linking treatment of polymer film
US4385094A (en) Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof
JPH0451209B2 (en)
JPH0525529B2 (en)
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
WO1989005182A1 (en) Hydrolyzed membrane and process for its production
JP2918137B2 (en) Porous membrane surface-treated with modified nylon and method for producing the same
JP2519831B2 (en) Method for producing charged separation membrane
JPH05317664A (en) Porous hollow fiber membrane
CN112403290B (en) Hydrophilic modification treatment liquid for porous polyolefin material
JPH0790154B2 (en) Method for producing aromatic polysulfone composite semipermeable membrane
JP3016451B2 (en) Microporous membrane surface treated with nylon
JP3102591B2 (en) Microporous membrane
JP2874742B2 (en) Microporous membrane
JPS6257613A (en) Production of hydrophilic organic polymer substrate
CN114749035B (en) Low-pressure large-flux hollow fiber nanofiltration membrane, and preparation method and application thereof
CN115245758B (en) Composite forward osmosis membrane and preparation method and application thereof
JPS6365904A (en) Porous hollow yarn membrane
JP2883406B2 (en) Hydrophilic membrane
JPS6041503A (en) Polyether sulfone microporous membrane and its manufacture
JPS614733A (en) Permselective membrane and its production
JPH0693989B2 (en) Aromatic polysulfone composite semipermeable membrane and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees