JPH04188675A - Manufacture of non-volatile semiconductor memory device - Google Patents

Manufacture of non-volatile semiconductor memory device

Info

Publication number
JPH04188675A
JPH04188675A JP31344590A JP31344590A JPH04188675A JP H04188675 A JPH04188675 A JP H04188675A JP 31344590 A JP31344590 A JP 31344590A JP 31344590 A JP31344590 A JP 31344590A JP H04188675 A JPH04188675 A JP H04188675A
Authority
JP
Japan
Prior art keywords
oxide film
window
oxidized
semiconductor substrate
tunnel oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31344590A
Other languages
Japanese (ja)
Other versions
JP2610709B2 (en
Inventor
Yoshimitsu Yamauchi
祥光 山内
Akitsu Ayukawa
鮎川 あきつ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP31344590A priority Critical patent/JP2610709B2/en
Publication of JPH04188675A publication Critical patent/JPH04188675A/en
Priority to US08/231,740 priority patent/US5411904A/en
Application granted granted Critical
Publication of JP2610709B2 publication Critical patent/JP2610709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable a non-volatile semiconductor memory device provided with a tunnel oxide film very small in area to be easily and efficiently formed by a method wherein a thin tunnel oxide film is formed in a self-aligned manner taking advantage of a phenomenon that an oxide film is selectively formed on a semiconductor part doped with impurities at thermal oxidation. CONSTITUTION:An ion injection mask 8 provided with an ion injection window H is formed on a semiconductor substrate 1 provided with a gate oxide film 6, and impurity ions are implanted into the surface of the semiconductor substrate 1 under the window H. The gate oxide film 6 is removed by etching through the window H to form a substrate exposed part 9 wider than the window H, the expose part 9 is subjected to an oxidizing treatment to enable its center correspondent to an impurity implantation region to be oxidized, and the peripheral part 101 is made to serve substantially as a non-oxidized selective oxidation layer 10. The semiconductor substrate 1 is thermally oxidized to form an impurity diffusion region 7, and the non-oxidized part 101 is oxidized to form a tunnel oxide film 2. By this setup, a non- volatile semiconductor memory device provided with the tunnel oxide film 2 small in area can easily and efficiently be manufactured.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、不揮発性半導体記憶装置の製造法に関する
。さらに詳しくは、記憶内容を電気的に書込み/消去可
能な不揮発性半導体記憶装置(EEP[70M )に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a method of manufacturing a nonvolatile semiconductor memory device. More specifically, the present invention relates to a nonvolatile semiconductor memory device (EEP[70M) in which memory contents can be electrically written/erased.

(ロ)従来の技術 従来から上記のごとき不揮発性半導体記憶装置として、
第4図に示すごとく、フローティングゲートとコントロ
ールゲートを有するFLOTOX型のEEPIliO−
が知られている。図中、lはンリコン半導体基板、2は
トンネル酸化膜、3はフローティングゲート、4はコン
トロールゲート、5はセレクトゲート、6はゲート酸化
膜、7及び11は不純物拡散領域を各々示す乙のでめる
。かかるEEPROMにおいては、ゲート絶縁膜として
極薄のトンネル酸化膜を部分的に有するものが用いられ
、このトンネル酸化膜を通じて上記フローティングゲー
ト内へ電子を注入するか注入しないかによって、ヒツト
やワード単位等の記憶がなされる。
(b) Conventional technology Conventionally, as the above-mentioned nonvolatile semiconductor memory device,
As shown in Fig. 4, a FLOTOX-type EEPIliO-
It has been known. In the figure, l is a silicon semiconductor substrate, 2 is a tunnel oxide film, 3 is a floating gate, 4 is a control gate, 5 is a select gate, 6 is a gate oxide film, and 7 and 11 are impurity diffusion regions, respectively. . In such an EEPROM, a gate insulating film that partially has an ultra-thin tunnel oxide film is used, and depending on whether or not electrons are injected into the floating gate through this tunnel oxide film, the number of electrons in units of humans, words, etc. is remembered.

(ハ)発明か解決しようとする課題 上g2FLOTOX型ノEEFROMノ等価回路を第3
図に示した。ここでトンネル酸化膜への印加電圧Vox
(c) For the purpose of invention or problem to be solved, the equivalent circuit of g2FLOTOX type EEFROM is
Shown in the figure. Here, the voltage applied to the tunnel oxide film Vox
.

はプログラム電圧Vpに対して下記の関係を有する。has the following relationship with respect to the program voltage Vp.

すなわち、トンネル酸化膜に付加される電圧は、カップ
リングレンオRc = c +/ (c t + c 
Jて決定され、C2はトンネル領域の面積に大きく依存
し、Rcか大きい程、素子のサイズの縮小に適合する。
That is, the voltage applied to the tunnel oxide film is the coupling ratio Rc = c +/(c t + c
C2 largely depends on the area of the tunnel region, and the larger Rc is, the more suitable it is for reducing the size of the device.

モしてRcを増加させるr二めには、書込み/消去用窓
の面積、すなわちトンネル酸化膜部の面積か小さい程有
利である。
Second, it is more advantageous to reduce the area of the write/erase window, that is, the area of the tunnel oxide film.

しかしながら、上記トンネル酸化膜の面積は、フォトエ
ツチングによる微細加工技術の精度に委ねられているた
め、縮小化に限界かめった。さらに、従来の方法ではト
ンネル酸化@領域と不純物拡散領域のアライメントずれ
が生じ、セルサイズが大きくなる問題かめった。
However, since the area of the tunnel oxide film depends on the accuracy of microfabrication technology using photoetching, there is a limit to its reduction. Furthermore, in the conventional method, misalignment between the tunnel oxidation region and the impurity diffusion region occurs, causing a problem of increasing the cell size.

この発明は、かかる状況下なされfこものであり、こと
に微小面積のトンネル酸化膜を宵するEEFROMを、
アライメントずれなく簡便かつ効率良く製造する方法を
提供しようとするものである。
This invention was made under such circumstances, and in particular, an EEFROM having a tunnel oxide film of a minute area.
The purpose is to provide a simple and efficient manufacturing method without misalignment.

(ニ)課題を解決するための手段 かくしてこの発明によれば、半導体基板上に、トンネル
酸化膜を有するフローティングゲートを備えてなる書込
み/il!去可能な不揮発性半導体記憶装置を製造する
ことからなり、上記トンネル酸化膜が、(2L)ゲート
酸化膜を宵する半導体基板上にイオン注入用窓を有する
イオン注入用マスクを形成する工程、(b)上記イオン
注入用窓及びゲート酸化膜を通じて、該窓領域下方の半
導体基板表層に不純物イオンを注入する工程、(c)上
記イオン注入用窓を通じてエッチノブすることにより半
導体基板のゲート酸化膜をエツチング除去して上記窓よ
りも幅広の開口状の基板露出部を形成する工程、(d)
上記基板露出部を酸化処理に付すことにより、上記不純
物イオン注入領域に対応する中央部が酸化されその周辺
部が実質的に非酸化の選択酸化層を形成する工程、(e
)上記半導体基板を熱処理して、トンネル領域を覆うよ
うに不純物拡散領域を形成する工程、(f)上記選択酸
化層の非酸化部位を洗浄した後、当該非酸化部位を酸化
処理してトンネル酸化膜を得る工程、により形成される
ことからなる不揮発性半導体記憶装置の製造法が提供さ
れる。
(d) Means for Solving the Problems Thus, according to the present invention, a write/il! is provided with a floating gate having a tunnel oxide film on a semiconductor substrate. forming an ion implantation mask having an ion implantation window on a semiconductor substrate on which the tunnel oxide film forms a (2L) gate oxide film; b) implanting impurity ions into the surface layer of the semiconductor substrate below the window region through the ion implantation window and the gate oxide film; (c) etching the gate oxide film of the semiconductor substrate by etching through the ion implantation window; (d) removing the substrate to form an opening-like exposed portion of the substrate wider than the window;
forming a selective oxidation layer in which the central portion corresponding to the impurity ion implantation region is oxidized and the peripheral portion is substantially non-oxidized by subjecting the exposed portion of the substrate to oxidation treatment;
) heat-treating the semiconductor substrate to form an impurity diffusion region to cover the tunnel region; (f) cleaning the non-oxidized portions of the selective oxidation layer and then oxidizing the non-oxidized portions to perform tunnel oxidation; A method of manufacturing a nonvolatile semiconductor memory device is provided, which comprises a step of obtaining a film.

この発明は、前記目的を達成すべく、熱酸化時に不純物
ドープされた半導体部位に酸化膜が選択的に形成される
点を利用して、薄いトンネル酸化膜の形成か自己整合的
に行えるように構成したものである。
In order to achieve the above object, the present invention makes it possible to form a thin tunnel oxide film in a self-aligned manner by taking advantage of the fact that an oxide film is selectively formed on a semiconductor region doped with impurities during thermal oxidation. It is composed of

(ホ)作用 不純物ドープ後に、等方性エツチング技術等によって形
成されr二広幅開ロ状の基板露出部は、中央部に不純物
ドープされた部位とその周辺の未ドープの部位とからな
る。ここで不純物ドープされた部位上には熱酸化により
、比較的肉厚の酸化層が形成されるが、その周辺(未ド
ープ部位)には実質的に酸化層は形成されない(20Å
以下)。
(e) Effect After doping with impurities, the exposed portion of the substrate, which is formed by isotropic etching or the like, and is in the form of a wide open hole, consists of a region doped with an impurity in the center and an undoped region around it. Here, a relatively thick oxide layer is formed by thermal oxidation on the impurity-doped region, but virtually no oxide layer is formed around it (undoped region) (20 Å
below).

かかる非酸化部位の幅は、イオン注入用窓のノくターン
から僅かに広がった部位に対応するため、非常に狭くそ
の面積ら小さい。従って、この部位をトンネル酸化膜形
成条件に付すことにより、面積か著しく縮小化されたト
ンネル酸化膜が自己整合的に正確に形成されることとな
る。
The width of the non-oxidized region corresponds to a region slightly expanded from the notch of the ion implantation window, and is therefore very narrow and small in area. Therefore, by subjecting this portion to tunnel oxide film formation conditions, a tunnel oxide film with a significantly reduced area can be accurately formed in a self-aligned manner.

(へ)実施例 第1図は、この発明の方法によって作製された一実施例
のEEPRO!jの要部を示す構成説明図である。
(f) Example FIG. 1 shows an example of EEPRO! manufactured by the method of the present invention. FIG.

図に示すごとく、このEEFROMは、シリコン半導体
基板l上にトンネル酸化膜2を有するゲート絶縁膜6を
介してポリシリコンからなるフローティングゲート3及
びコントロールゲート4を備えてなる。なお、図中7は
不純物拡散領域を各々示すものである。
As shown in the figure, this EEFROM comprises a floating gate 3 and a control gate 4 made of polysilicon on a silicon semiconductor substrate 1 with a gate insulating film 6 having a tunnel oxide film 2 interposed therebetween. Note that 7 in the figure indicates each impurity diffusion region.

かかるEEFROMの製造工程について稟2図を参照し
て以下、詳述する。
The manufacturing process of such an EEFROM will be described in detail below with reference to Fig. 2.

まず、第2図(A)に示すごとくP型シリコン半導体基
板l上にゲート酸化膜6(膜厚約300μm)が形成さ
れ、その上にレジスト8が形成され、このレジスト8の
所定の部位に、フォトリソグラフィによって所定の大き
さのイオン注入用窓(H)が形成される。
First, as shown in FIG. 2(A), a gate oxide film 6 (film thickness of about 300 μm) is formed on a P-type silicon semiconductor substrate l, a resist 8 is formed on it, and a predetermined portion of this resist 8 is formed. An ion implantation window (H) of a predetermined size is formed by photolithography.

次いでこのレジスト8をマスクとして、窓(H)並びに
ゲート絶縁膜6を介してイオン注入により、基板!の表
層に不純物イオン(例えば、B゛イオンがドープされる
。この不純物イオン;よ、N型でもP型でもよく基板の
導電型を考慮して決定される。
Next, using this resist 8 as a mask, ions are implanted through the window (H) and the gate insulating film 6 to remove the substrate! The surface layer of the substrate is doped with impurity ions (for example, B ions). These impurity ions may be N-type or P-type and are determined in consideration of the conductivity type of the substrate.

このようにして形成されたドープ部位の幅は、窓(H)
の開口幅と略同程度である。
The width of the doped region thus formed is the window (H)
The opening width is approximately the same as that of the opening width.

次いでこの窓(H)を通じてまず、異方性エツチング(
イオンエツチング)、続いて等方性エツチング(RI 
E)によってゲート酸化膜6のエツチングかなされる(
策2図(B))。これによりζゲート酸化膜6には、窓
(H)の開口寸法よりも幅広の基板露出部9が形成され
る。この実施例においては、増加幅(X)は、約0.1
Atmである。
Next, through this window (H), anisotropic etching (
ion etching), followed by isotropic etching (RI
E) The gate oxide film 6 is etched (
Measure 2 (B)). As a result, a substrate exposed portion 9 is formed in the ζ gate oxide film 6, which is wider than the opening size of the window (H). In this example, the increase width (X) is approximately 0.1
It is ATM.

このようにして、基板露出部9を形成した後、基板を熱
酸化条件に付す。熱酸化は、例えば、低温ドライ酸化法
により700°C以下の温度下で行う二とができる。か
かる熱酸化により、基板表面、ことに露出部に熱酸化層
が形成されるが、その形成は中央の不純物ドープ部上に
選択的になされ、周辺部101上は実質的に酸化層は形
成されない(第2図(C))。この実施例においては、
中央部には軍み約200人の酸化層10が形成されてお
り、周辺部にはせいぜい測定限界以下(20Å以下)の
酸化分子層が形成される哩度である。
After forming the substrate exposed portion 9 in this manner, the substrate is subjected to thermal oxidation conditions. The thermal oxidation can be carried out, for example, by a low temperature dry oxidation method at a temperature of 700° C. or lower. Through such thermal oxidation, a thermal oxidation layer is formed on the substrate surface, especially on the exposed portion, but the formation is selectively performed on the central impurity-doped portion, and substantially no oxide layer is formed on the peripheral portion 101. (Figure 2 (C)). In this example,
An oxide layer 10 of approximately 200 layers is formed in the center, and the oxidation layer 10 of about 200 layers is formed in the periphery, at most a layer of oxide molecules below the measurement limit (20 Å or less).

次いで、上記周辺部101をエツチング洗浄した後、ア
ニーリング用の熱処理(約900℃)を行うことにより
、不純物ドープ部の不純物を熱拡散させて不純物拡散領
域7を形成する(第2図(D))。この後、基板を再び
熱酸化条件に付すことにより、第2図(E)に示すごと
く、厚み約80人のトンネル酸化膜2を形成する。かか
るトンネル酸化膜2は、第2図(B)の幅(X)と同程
度の細幅で小面積のものである。
Next, after etching and cleaning the peripheral portion 101, an annealing heat treatment (approximately 900° C.) is performed to thermally diffuse impurities in the impurity doped portion and form an impurity diffusion region 7 (FIG. 2(D)). ). Thereafter, by subjecting the substrate to thermal oxidation conditions again, a tunnel oxide film 2 having a thickness of approximately 80 mm is formed as shown in FIG. 2(E). The tunnel oxide film 2 has a narrow width and a small area, comparable to the width (X) in FIG. 2(B).

このようにして、トンネル酸化膜2を自己整合的に形成
した後、公知の方法によって、ポリシリコンからなるフ
ローティングゲート3、コントロールゲート4、セレク
トゲート5及びセレクトゲート用拡散領域11等の形成
がなされ、第4図に示すごときEEPROMが得られる
After forming the tunnel oxide film 2 in a self-aligned manner in this manner, a floating gate 3, a control gate 4, a select gate 5, a select gate diffusion region 11, etc. made of polysilicon are formed by a known method. , an EEPROM as shown in FIG. 4 is obtained.

(ト)発明の効果 この発明の製造法によれば、小面積のトンネル酸化膜を
有し、より高集積化可能な不揮発性半導体記憶装置を簡
便かつ効率良く製造することができる。さらにこのトン
ネル酸化膜は自己整合的に形成されるためアライメント
ずれも解消される。
(G) Effects of the Invention According to the manufacturing method of the present invention, a nonvolatile semiconductor memory device having a small-area tunnel oxide film and capable of higher integration can be easily and efficiently manufactured. Furthermore, since this tunnel oxide film is formed in a self-aligned manner, misalignment is also eliminated.

従って、この発明の当該分野での有用性は極めて大なる
ものである。
Therefore, the usefulness of this invention in this field is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の製造方法により得られるEEFR
OMを例示する要部構成説明図、第2図(A)−(E)
は、この発明の製造方法の工程説明図、第3図及び第4
図は、各々、EEPROMの等価回路図及び構成説明図
である。 l・・・・・・シリコン半導体基板、 2・・・・・・トンネル酸化膜、 3・・・・・・フローティングゲート、4・・・・・・
コントロールケート、 5・・・・・・セレクトゲート、 6・・・・・・ゲート絶縁膜、8・・・・・・レジスト
、7.11・・・・・・不純物拡散領域、H・・・・・
・イオン注入用窓、9・・・・・基板露出部、10・・
・・・・選択酸化層。 代理人  オ理士  よ 。1太d票巳R第 1 薗 第4 画
FIG. 1 shows the EEFR obtained by the manufacturing method of the present invention.
Main part configuration explanatory diagram illustrating OM, Fig. 2 (A)-(E)
are process explanatory diagrams of the manufacturing method of this invention, FIGS. 3 and 4.
The figures are an equivalent circuit diagram and a configuration explanatory diagram of an EEPROM, respectively. 1...Silicon semiconductor substrate, 2...Tunnel oxide film, 3...Floating gate, 4...
Control gate, 5... Select gate, 6... Gate insulating film, 8... Resist, 7.11... Impurity diffusion region, H...・・・
・Ion implantation window, 9...Substrate exposed portion, 10...
...Selective oxidation layer. My agent is a lawyer. 1 fat d vote mi R 1st Sono 4th picture

Claims (1)

【特許請求の範囲】 1、半導体基板上に、トンネル酸化膜を有するフローテ
ィングゲートを備えてなる書込み/消去可能な不揮発性
半導体記憶装置を製造することからなり、上記トンネル
酸化膜が、 (a)ゲート酸化膜を有する半導体基板上にイオン注入
用窓を有するイオン注入用マスクを形成する工程、 (b)上記イオン注入用窓及びゲート酸化膜を通じて、
該窓領域下方の半導体基板表層に不純物イオンを注入す
る工程、 (c)上記イオン注入用窓を通じてエッチングすること
により半導体基板のゲート酸化膜をエッチング除去して
上記窓よりも幅広の開口状の基板露出部を形成する工程
、 (d)上記基板露出部を酸化処理に付すことにより、上
記不純物イオン注入領域に対応する中央部が酸化されそ
の周辺部が実質的に非酸化の選択酸化層を形成する工程
、 (e)上記半導体基板を熱処理して、トンネル領域を覆
うように不純物拡散領域を形成する工程、(f)上記選
択酸化層の非酸化部位を洗浄した後、当該非酸化部位を
酸化処理してトンネル酸化膜を得る工程、 により形成されることからなる不揮発性半導体記憶装置
の製造法。
[Claims] 1. A writable/erasable nonvolatile semiconductor memory device comprising a floating gate having a tunnel oxide film on a semiconductor substrate is manufactured, the tunnel oxide film comprising: (a) forming an ion implantation mask having an ion implantation window on a semiconductor substrate having a gate oxide film; (b) through the ion implantation window and the gate oxide film;
a step of implanting impurity ions into the surface layer of the semiconductor substrate below the window region; (c) etching away the gate oxide film of the semiconductor substrate by etching through the ion implantation window to form a substrate with an opening wider than the window; forming an exposed portion; (d) subjecting the exposed portion of the substrate to an oxidation treatment to form a selective oxidation layer in which the central portion corresponding to the impurity ion implantation region is oxidized and the peripheral portion is substantially non-oxidized; (e) heat-treating the semiconductor substrate to form an impurity diffusion region to cover the tunnel region; (f) cleaning the non-oxidized portions of the selective oxidation layer, and then oxidizing the non-oxidized portions; A method for manufacturing a non-volatile semiconductor memory device, comprising the steps of: processing to obtain a tunnel oxide film.
JP31344590A 1990-11-19 1990-11-19 Manufacturing method of nonvolatile semiconductor memory device Expired - Lifetime JP2610709B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31344590A JP2610709B2 (en) 1990-11-19 1990-11-19 Manufacturing method of nonvolatile semiconductor memory device
US08/231,740 US5411904A (en) 1990-11-19 1994-04-25 Process for fabricating nonvolatile random access memory having a tunnel oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31344590A JP2610709B2 (en) 1990-11-19 1990-11-19 Manufacturing method of nonvolatile semiconductor memory device

Publications (2)

Publication Number Publication Date
JPH04188675A true JPH04188675A (en) 1992-07-07
JP2610709B2 JP2610709B2 (en) 1997-05-14

Family

ID=18041391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31344590A Expired - Lifetime JP2610709B2 (en) 1990-11-19 1990-11-19 Manufacturing method of nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JP2610709B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025350A1 (en) * 1994-03-17 1995-09-21 National Semiconductor Corporation Eeprom cell with the drain diffusion region self-aligned to the tunnel oxide region and method of manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025350A1 (en) * 1994-03-17 1995-09-21 National Semiconductor Corporation Eeprom cell with the drain diffusion region self-aligned to the tunnel oxide region and method of manufacture

Also Published As

Publication number Publication date
JP2610709B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
US5381028A (en) Nonvolatile semiconductor memory with raised source and drain
JP2600301B2 (en) Semiconductor memory device and method of manufacturing the same
KR100661225B1 (en) Method for manufacturing flash eeprom device
KR100201451B1 (en) Nonvolatile memory device
JP3876390B2 (en) Method for manufacturing nonvolatile semiconductor memory device
KR100260043B1 (en) Method for fabricating semiconductor device
JPH08107158A (en) Floating gate type non-volatile semiconductor memory device and manufacture thereof
JPH04188675A (en) Manufacture of non-volatile semiconductor memory device
JPS6272171A (en) Semiconductor memory
JPH0563206A (en) Manufacture of nonvolatile semiconductor memory
JPH05304169A (en) Manufacture of semiconductor device
JP3461107B2 (en) Manufacturing method of semiconductor integrated circuit
US5530276A (en) Nonvolatile semiconductor memory device
JPH0147905B2 (en)
JPH03250669A (en) Mos-type semiconductor device and its manufacture
KR100202115B1 (en) The method of starter for culturing mushroom
JP2672189B2 (en) Nonvolatile random access memory and memory cell array
JPH0722524A (en) Nonvolatile semiconductor storage device and fabrication thereof
JPH03211775A (en) Manufacture of nonvolatile semiconductor memory
KR100201813B1 (en) Breaking curcuit and method of duble control in exchange system
KR0142602B1 (en) Method for manufacturing a flash Y pyrom device
JPH07106443A (en) Nonvolatile semiconductor memory and fabrication thereof
JPH03263871A (en) Semiconductor device
JPH01208866A (en) Manufacture of semiconductor device
JP4040138B2 (en) Method for manufacturing nonvolatile semiconductor memory device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14