JPH04188626A - Method of thermally treating compound semiconductor wafer - Google Patents

Method of thermally treating compound semiconductor wafer

Info

Publication number
JPH04188626A
JPH04188626A JP31571390A JP31571390A JPH04188626A JP H04188626 A JPH04188626 A JP H04188626A JP 31571390 A JP31571390 A JP 31571390A JP 31571390 A JP31571390 A JP 31571390A JP H04188626 A JPH04188626 A JP H04188626A
Authority
JP
Japan
Prior art keywords
compound semiconductor
semiconductor wafer
heat treatment
heat
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31571390A
Other languages
Japanese (ja)
Other versions
JPH0642489B2 (en
Inventor
Jo Sun Park
パルク、ジョー スン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP31571390A priority Critical patent/JPH0642489B2/en
Publication of JPH04188626A publication Critical patent/JPH04188626A/en
Publication of JPH0642489B2 publication Critical patent/JPH0642489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE: To uniformize As deposit distributed on the surface and in the inside of a GaAs wafer by utilizing the liquid shape of Ga solution for which poly- crystalline GaAs is dissolved and heat-treating the GaAs wafer. CONSTITUTION: After positioning a compound semiconductor wafer 11 at the groove 13 of a slider 15, putting a sample 21 into the well 19 of a holder 17 and sealing the entrance of the well 19 by a sealing material 23, primary heat is applied and the sample 21 is melted. Then, after moving the slider 15, matching the groove 13 and the well 19 and making the molten sample 21 cover the entire surface of the wafer 11, secondary heat is applied and the surface of the wafer 11 is homogenized. Then, after separating the groove 13 and the well 19 and rapidly cooling them at a normal temperature, tertiary heat is applied and heat induction stress is removed. Thus, the As deposit is uniformly distributed on the surface of the wafer 11 and in the inside.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は化合物の半導体ウェーハの熱処理方法に係わ
り、特に高い揮発性元素を含む化合物の半導体ウェーハ
の熱処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for heat treating compound semiconductor wafers, and particularly to a method for heat treating compound semiconductor wafers containing highly volatile elements.

(従来の技術) 最近情報通信の社会へ急激に発展することにより超高速
コンピューター超高周波及び光通信に対する必要性が更
に増加している。しかし既存Slを利用した素子ではこ
のような必要性を満たずことに限界がある。従って物質
特性か優れた化合物の半導体に関する研究が活発に進行
し、ている。
(Prior Art) With the recent rapid development of information and communication society, the need for ultra-high speed computers, ultra-high frequency and optical communication has further increased. However, existing elements using Sl have a limit in that they cannot meet these requirements. Therefore, research into compound semiconductors with excellent material properties is actively progressing.

化合物半導体の代表的なGaAsては、インゴットが成
長すると結晶内部に転位空虚格子点、格子間環f−及び
As析出物などの欠陥が発生ずる。
When an ingot of GaAs, which is a typical compound semiconductor, grows, defects such as dislocation vacancy lattice points, interstitial rings f-, and As precipitates occur inside the crystal.

このような欠陥なとは結晶内で不均一に分41すること
になるので、Zochralski氏による一般的なL
EC(カプセルに包まれた液体)法によって生産された
インゴットから作られたウェーハを利用して素子を製作
すると素子特性が不均一になって信頼性が低下する。従
って上記ウェーハを所定の熱処理を行なって欠陥などを
均一に分布させ、均一の電気的特性を有するようにする
Since such defects are unevenly distributed within the crystal, the general L
When devices are manufactured using wafers made from ingots produced by the EC (encapsulated liquid) method, device characteristics become non-uniform and reliability decreases. Therefore, the wafer is subjected to a predetermined heat treatment to uniformly distribute defects and the like so that it has uniform electrical characteristics.

第2図は従来の化合物半導体のウェーハの熱処理方法を
示している。先ず熱処理用ウェーハ]の両側面にこの熱
処理用ウェーハ1と同一の種類の保護用ウェーハ3など
を接触させ過剰試料5と共に石英などから作ったチュー
ブ7の中に入れる。
FIG. 2 shows a conventional heat treatment method for compound semiconductor wafers. First, a protective wafer 3 of the same type as the heat treatment wafer 1 is brought into contact with both sides of the heat treatment wafer 1, and the wafer 1 and the excess sample 5 are placed in a tube 7 made of quartz or the like.

次に、上記チューブ7の内部を真空状態にして密封した
後ヒーター9てチューブ7を加熱し800〜900℃程
度で数10分〜数時間維持した後冷却する。上記の熱処
理用ウェーハ1では、GaAs時のGaよりAsの揮発
温度が非常に低いので熱処理工程中にAsの揮発が発生
し易い。従って過剰試料5てAsを使用して真空状態の
チューブ7内部をAs雰囲気にして熱処理用ウェーハ1
からAsが揮発することを抑制する。また、上記保護用
ウェーハ3などは熱処理用ウエーノ\1のAsが揮発す
ることを抑制するたけでなくこの熱処理用ウェーハ1に
Asを供給するようになる。上記にて熱処理工程を行な
う前にチューブ7を真空にする理由は熱処理用ウェーハ
1が酸化及び汚染されることを防止するためである。
Next, the inside of the tube 7 is evacuated and sealed, and then the tube 7 is heated with a heater 9 and maintained at about 800 to 900° C. for several tens of minutes to several hours, and then cooled. In the above heat treatment wafer 1, since the volatilization temperature of As is much lower than that of Ga in the case of GaAs, volatilization of As easily occurs during the heat treatment process. Therefore, the excess sample 5 is used to create an As atmosphere inside the tube 7 in a vacuum state, and the wafer 1 for heat treatment is
This suppresses As from volatilizing. Furthermore, the protective wafer 3 and the like not only suppress the volatilization of As in the heat treatment wafer 1, but also supply As to the heat treatment wafer 1. The reason why the tube 7 is evacuated before performing the heat treatment process is to prevent the heat treatment wafer 1 from being oxidized and contaminated.

上述の熱処理方法では真空状態のチューブの内部に熱が
加えられAs気体状態にしてAs気体圧力によってウェ
ーハ内のAsの組成が制御される。
In the above-described heat treatment method, heat is applied to the inside of a tube in a vacuum state to turn As into a gaseous state, and the composition of As within the wafer is controlled by the As gas pressure.

(発明が解決しようとする課題) しかし、熱処理工程を行なう前のウェーハにはAsの析
出物か不均一に分布している。上記不均一に分布してい
るAsの析出物によって熱処理工程を行なう時、ウェー
ハの表面にてAsの揮発及び内部拡散を均一にするには
難しい問題点があった。また、固体と気体の不均一な界
面状態に熱処理工程を行なう時表面の荒さ及び空虚格子
点などの欠陥が不均一に発生ずる問題点があった。
(Problems to be Solved by the Invention) However, As precipitates are unevenly distributed on the wafer before the heat treatment process is performed. When performing a heat treatment process due to the non-uniformly distributed As precipitates, it is difficult to uniformly volatilize and internally diffuse As on the surface of the wafer. Furthermore, when a heat treatment process is performed on a non-uniform interface between a solid and a gas, defects such as surface roughness and empty lattice points may occur non-uniformly.

従って、この発明の目的はウェーハの表面及びその内部
にAs析出物が均一に分布することのできる化合物半導
体ウェーハの熱処理方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for heat treating a compound semiconductor wafer, which allows As precipitates to be uniformly distributed on the surface of the wafer and inside the wafer.

この発明の他の[1的は空虚格子点及び表面荒さなどの
欠陥か均一に分布することのできる化合物半導体ウェー
ハの熱処理方法を提供することにある。
Another object of the present invention is to provide a method for heat-treating a compound semiconductor wafer in which defects such as vacancy lattice points and surface roughness can be uniformly distributed.

[発明の構成] (課題を解決するための手段) このような1」的を達成するためのこの発明は、高い揮
発性元素を含む化合物半導体ウェーハの熱処理方法にお
いて、スライダーの溝に化合物半導体ウェーハを位置さ
せ、ホルダのウェルに試料を入れてウェルの入口を密封
材で密封した後第1次熱を加えて試料を溶融させる工程
と、上記スライダーを移動させ前記溝とウェルを一致さ
せ溶融された試料が化合物半導体ウェーハの全表面を覆
うようにした後、第2次熱を加えて化合物半導体ウェー
への表面を均質化する工程と、前記溝とウェルとを分離
して常温で急冷させた後第3次熱を加えて熱誘起応力を
除去する工程とから成ることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) This invention for achieving the above objective 1 is a method for heat treatment of a compound semiconductor wafer containing a highly volatile element. the sample is placed in the well of the holder, the entrance of the well is sealed with a sealing material, and the sample is melted by applying primary heat, and the slider is moved to align the groove and the well to melt the sample. After the sample was made to cover the entire surface of the compound semiconductor wafer, there was a step of applying secondary heat to homogenize the surface of the compound semiconductor wafer, and separating the grooves and wells and rapidly cooling them at room temperature. The method is characterized by comprising a step of applying tertiary heat to remove thermally induced stress.

(実施例) 以下、添付した図面を参照してこの発明の詳細な説明す
る。
(Example) Hereinafter, the present invention will be described in detail with reference to the attached drawings.

第1A図乃至第1C図はこの発明による化合物半導体ウ
ェーハの熱処理方法を示している。第1A図を参照する
に、所定の洗浄工程によって準備された半絶縁性GaA
sウェーハ11をスライダー15の溝13に位置させ、
このウェー7111の化学量論を維持するために10g
のGa当り300〜1000mgの多結晶GaAsを混
合させた試料21をホルダ17のウェル19の中に入れ
、二のウェル19を密封材23で密封した後電気炉の反
応管25の中に押し込む。上記にて満13にウェーハ1
1を位置させる時50μm程度の空隙tを有するように
する。また上記電気炉は均一の温度分布を維持するよう
に反応管25の外部をヒーター27で覆う。
FIGS. 1A to 1C show a method of heat treating compound semiconductor wafers according to the present invention. Referring to FIG. 1A, semi-insulating GaA prepared by a predetermined cleaning process
Position the S wafer 11 in the groove 13 of the slider 15,
10 g to maintain the stoichiometry of this wafer 7111.
A sample 21 mixed with 300 to 1000 mg of polycrystalline GaAs per Ga is placed in the well 19 of the holder 17, and after sealing the second well 19 with a sealing material 23, the sample 21 is pushed into the reaction tube 25 of an electric furnace. Above 13 wafers
1 is positioned with a gap t of about 50 μm. Further, in the electric furnace, the outside of the reaction tube 25 is covered with a heater 27 so as to maintain a uniform temperature distribution.

次に、上記ヒーター27を加熱して反応管25の温度を
600〜700℃程度で1〜5時間維持させる。この時
上記試料21などは溶融され、Gaの中に含まれるGa
2O3は上記密封材23でスラグされる。上記にて密封
材23は上記溶融された試料21と反応しないで揮発を
発生しない物質として通常B20.がケーキ状で利用さ
れる。
Next, the heater 27 is heated to maintain the temperature of the reaction tube 25 at about 600 to 700° C. for 1 to 5 hours. At this time, the above-mentioned sample 21 etc. are melted, and the Ga contained in Ga is
2O3 is slagged with the sealant 23. In the above, the sealing material 23 is usually B20. is used in cake form.

上記にて8203をH,Oの含有量が200〜400p
pm程度の起転式状態になるようにして上記溶融された
試料21と酸素とが反応して生成されるGa2O,の量
を減少させる。
In the above, 8203 has a H and O content of 200 to 400 p.
The amount of Ga2O produced by the reaction between the molten sample 21 and oxygen is reduced so that the molten sample 21 is in a rolling state of about pm.

第1B図を参照するに、上記スライダー15を移動させ
溝13をウェル19と一致させるとウェーハ11の表面
が溶融された試料21で覆われるようになる。次に、温
度を900℃以上上昇させ2〜5時間維持するとウエー
ノ111の表面に不均一に分布していたAs析出物が再
回答される。第1C図を参照するに、上記スライダー1
5を所定位置へ移動させ溝13とウェル19とを分離さ
せた後300〜1200℃/ h rの冷却速度によっ
て常温まで冷却する。この時上記ウエーノ\11の表面
に空隙の厚さtを有するエピタキシャル層が形成される
。上記にてエピタキシャル層29を急速に冷却するので
、Asの拡散時間は最小化されAs析出物が小さく均一
な大きさで再析出される。
Referring to FIG. 1B, when the slider 15 is moved to align the groove 13 with the well 19, the surface of the wafer 11 is covered with the molten sample 21. Next, when the temperature is raised to 900° C. or more and maintained for 2 to 5 hours, the As precipitates that were unevenly distributed on the surface of Ueno 111 are re-resolved. Referring to FIG. 1C, the slider 1
5 to a predetermined position to separate the groove 13 and the well 19, and then cooled to room temperature at a cooling rate of 300 to 1200° C./hr. At this time, an epitaxial layer having a void thickness t is formed on the surface of the Ueno\11. Since the epitaxial layer 29 is rapidly cooled in the above manner, the diffusion time of As is minimized, and As precipitates are reprecipitated in a small and uniform size.

また、上記冷却時にウエーノX11とエピタキシャル層
29の間に熱による残留応力が多く存在する。
Furthermore, during the cooling process, there is a large amount of residual stress due to heat between the Ueno X11 and the epitaxial layer 29.

従ってヒーター27を再び加熱して600〜700℃程
度の温度で5〜30時間維持しウェーハ11とエピタキ
シャル層29との間の熱誘起残留応力を除去する。この
時、上記急冷時に再析出された小さく均一な大きさを持
つ核を中心としてAsが拡散され均一な大きさのAs析
出物が形成される。
Therefore, the heater 27 is heated again and maintained at a temperature of about 600 to 700° C. for 5 to 30 hours to remove the thermally induced residual stress between the wafer 11 and the epitaxial layer 29. At this time, As is diffused centering around the small and uniformly sized nuclei reprecipitated during the rapid cooling, and As precipitates of uniform size are formed.

次に、上記ウェーハ11を冷却した後ポリシング工程を
経て表面に形成されたエピタキシャル層29を除去し良
質の鏡面を有するウェーハを形成する。また、上述した
熱処理工程の時にウェーハの表面及び内部にある空虚格
子点及びウェーハの表面の荒さなどの欠陥が除去される
Next, after cooling the wafer 11, a polishing process is performed to remove the epitaxial layer 29 formed on the surface to form a wafer with a good quality mirror surface. Additionally, defects such as empty lattice points on the surface and inside of the wafer and roughness on the surface of the wafer are removed during the heat treatment process described above.

以上のようにこの発明の実施例としてGaAsを説明し
たが、この発明の思想に逸脱しない限りInAs、In
P及びGaPなどに適用することもできる。
As mentioned above, GaAs was explained as an example of the present invention, but as long as it does not deviate from the idea of this invention, InAs, In
It can also be applied to P, GaP, etc.

〔発明の効果〕〔Effect of the invention〕

従って上述のごとく、この発明は多結晶GaASが溶解
されたGa溶液の液状を利用してGaAsウェーハを熱
処理するのでこのGaAsウェーハの表面及び内部に分
布されるAs析出物及び欠陥などが均一になり電気的特
性が均一になる利点がある。
Therefore, as mentioned above, in this invention, a GaAs wafer is heat-treated using a liquid Ga solution in which polycrystalline GaAS is dissolved, so that As precipitates and defects distributed on the surface and inside of this GaAs wafer are uniformized. This has the advantage of uniform electrical characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A乃至第1C図はこの発明による半絶縁性GaAs
ウェーハの熱処理方法を示す図、第2図は従来の半絶縁
性GaAsつ2.  / %の熱処理方法を示す図であ
る。 11・・・化合物半導体つ;−ノ\ 13・・・溝 15・・・スライダー 17・・・ホルダ 19・・・ウェル 2]・・・試料 23・・・密封材 25・・・反応管 27・・・ヒーター 29・・・エピタキシャル層 FIG、1 (C)
1A to 1C show semi-insulating GaAs according to the present invention.
A diagram showing a method of heat treatment of wafers, FIG. 2 shows conventional semi-insulating GaAs. / % is a diagram showing a heat treatment method. 11...Compound semiconductor one;-ノ\ 13...Groove 15...Slider 17...Holder 19...Well 2]...Sample 23...Sealing material 25...Reaction tube 27 ...Heater 29...Epitaxial layer FIG, 1 (C)

Claims (1)

【特許請求の範囲】 (1)高い揮発性物質を含む化合物半導体ウェーハの熱
処理方法において、スライダーの溝に化合物半導体ウェ
ーハを位置させ、ホルダのウェルに試料を入れてウェル
の入口を密封材で密封した後第1次熱を加えて試料を溶
融させる工程と、前記スライダーを移動させ上記溝とウ
ェルとを一致させ溶融された試料が化合物半導体ウェー
ハの全表面を覆うようにした後第2次熱を加えて化合物
半導体ウェーハの表面を均質化する工程と、前記溝とウ
ェルとを分離して常温で急冷させた後第3次熱を加えて
熱誘起応力を除去する工程とから成る化合物半導体ウェ
ーハの熱処理方法。(2)溝は化合物半導体ウェーハと
50μm程度の空隙を有するように深さを調節されたこ
とを特徴とする請求項(1)記載の化合物半導体ウェー
ハの熱処理方法。 (3)試料は高い揮発性物質外の物質の10g当り化合
物半導体ウェーハと同一の組成の多結晶物質の300〜
1000mgの比率で混合された物質であることを特徴
とする請求項(1)記載の化合物半導体ウェーハの熱処
理方法。 (4)密封材がB_2O_3であることを特徴とする請
求項(1)記載の化合物半導体ウェーハの熱処理方法。 (5)B_2O_3は水分の含有量が200〜400p
pm程度であることを特徴とする請求項(4)記載の化
合物半導体ウェーハの熱処理方法。(6)第1次熱は試
料が600〜700℃にて1〜5時間維持されるように
加えられたことを特徴とする請求項(1)記載の化合物
半導体ウェーハの熱処理方法。 (7)第2次熱は試料が900℃以上にて2〜5時間維
持されるように加えられたことを特徴とする請求項(1
)記載の化合物半導体ウェーハの熱処理方法。 (8)応力を除去する工程で化合物半導体ウェーハを常
温へ急冷させる時300〜1200℃/hrの冷却速度
を持つことを特徴とする請求項(1)記載の化合物半導
体ウェーハの熱処理方法。(9)化合物半導体ウェーハ
はIII−V族化合物半導体ウェーハであることを特徴と
する請求項(1)記載の化合物半導体ウェーハの熱処理
方法。(10)上記III−V族化合物半導体ウェーハは
GaAs、InAs、GaP及びInP中の一つである
ことを特徴とする請求項(9)記載の化合物半導体ウェ
ーハの熱処理方法。
[Claims] (1) In a heat treatment method for a compound semiconductor wafer containing a highly volatile substance, the compound semiconductor wafer is positioned in a groove of a slider, a sample is placed in a well of a holder, and the entrance of the well is sealed with a sealing material. After that, a first heat is applied to melt the sample, and a second heat is applied after the slider is moved to match the groove and the well so that the melted sample covers the entire surface of the compound semiconductor wafer. A compound semiconductor wafer comprising the steps of: homogenizing the surface of the compound semiconductor wafer by adding a heat treatment method. (2) The method for heat treatment of a compound semiconductor wafer according to claim (1), wherein the depth of the groove is adjusted so as to have a gap of about 50 μm with the compound semiconductor wafer. (3) The sample is a polycrystalline material with the same composition as a compound semiconductor wafer per 10 g of a highly volatile non-material.
2. The method for heat treatment of a compound semiconductor wafer according to claim 1, wherein the materials are mixed at a ratio of 1000 mg. (4) The method for heat treating a compound semiconductor wafer according to claim (1), wherein the sealing material is B_2O_3. (5) B_2O_3 has a water content of 200 to 400p
5. The method for heat treatment of a compound semiconductor wafer according to claim 4, wherein the heat treatment method is about pm. (6) The method for heat treatment of a compound semiconductor wafer according to claim (1), wherein the first heat is applied so that the sample is maintained at 600 to 700°C for 1 to 5 hours. (7) Claim (1) characterized in that the secondary heat is applied so that the sample is maintained at 900°C or higher for 2 to 5 hours.
) A method for heat treatment of a compound semiconductor wafer as described in . (8) The method for heat treatment of a compound semiconductor wafer according to claim (1), characterized in that the compound semiconductor wafer is rapidly cooled to room temperature in the step of removing stress at a cooling rate of 300 to 1200° C./hr. (9) The method for heat treatment of a compound semiconductor wafer according to claim (1), wherein the compound semiconductor wafer is a III-V group compound semiconductor wafer. (10) The method for heat treatment of a compound semiconductor wafer according to claim 9, wherein the III-V compound semiconductor wafer is one of GaAs, InAs, GaP, and InP.
JP31571390A 1990-11-22 1990-11-22 Heat treatment method for compound semiconductor wafer Expired - Fee Related JPH0642489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31571390A JPH0642489B2 (en) 1990-11-22 1990-11-22 Heat treatment method for compound semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31571390A JPH0642489B2 (en) 1990-11-22 1990-11-22 Heat treatment method for compound semiconductor wafer

Publications (2)

Publication Number Publication Date
JPH04188626A true JPH04188626A (en) 1992-07-07
JPH0642489B2 JPH0642489B2 (en) 1994-06-01

Family

ID=18068644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31571390A Expired - Fee Related JPH0642489B2 (en) 1990-11-22 1990-11-22 Heat treatment method for compound semiconductor wafer

Country Status (1)

Country Link
JP (1) JPH0642489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7284760B2 (en) 2003-08-07 2007-10-23 Nanophotonics Ag Holding device for disk-shaped objects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7284760B2 (en) 2003-08-07 2007-10-23 Nanophotonics Ag Holding device for disk-shaped objects

Also Published As

Publication number Publication date
JPH0642489B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
EP0090320B1 (en) A method for tailoring oxygen precipitate particle density and distribution in silicon
US6194327B1 (en) Rapid thermal etch and rapid thermal oxidation
JPH06504878A (en) Method of controlling precipitation conditions in silicon wafers
JP2009016864A (en) Method of producing silicon wafer
GB2280312A (en) Method of preparing semiconductor with good intrinsic gettering
JPH0324055B2 (en)
JPH04188626A (en) Method of thermally treating compound semiconductor wafer
JPH05308076A (en) Oxygen deposition method of silicon wafer
KR100432496B1 (en) Manufacturing method for annealed wafer
US3666546A (en) Ion-free insulating layers
KR930004120B1 (en) Thermal treating method of compound semiconductor wafer
JPH0480880B2 (en)
JP4609029B2 (en) Annealed wafer manufacturing method
JP2602857B2 (en) Method of improving semiconductor crystal substrate
JP2000203999A (en) Semiconductor silicon wafer and its production
US5098867A (en) Heat treatment for compound semiconductor wafer
JPS61135128A (en) Manufacture of semiconductor device
US20230243062A1 (en) Silicon wafer and method for producing silicon wafer
KR20090059251A (en) Method of fabricating high resistivity silicon wafer
KR100329776B1 (en) Method of fabricating semiconductor device for removing crystal-originated pit on silicon wafer
JPH022840B2 (en)
JPH0723275B2 (en) Gallium arsenide single crystal growth method
JP2906120B2 (en) Method for manufacturing GaAs substrate
JPS6211782B2 (en)
JP2003146791A (en) Method of manufacturing compound semiconductor single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees