JP2906120B2 - Method for manufacturing GaAs substrate - Google Patents

Method for manufacturing GaAs substrate

Info

Publication number
JP2906120B2
JP2906120B2 JP5764295A JP5764295A JP2906120B2 JP 2906120 B2 JP2906120 B2 JP 2906120B2 JP 5764295 A JP5764295 A JP 5764295A JP 5764295 A JP5764295 A JP 5764295A JP 2906120 B2 JP2906120 B2 JP 2906120B2
Authority
JP
Japan
Prior art keywords
arsenic
temperature
annealing
gaas
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5764295A
Other languages
Japanese (ja)
Other versions
JPH08255799A (en
Inventor
春人 島倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP5764295A priority Critical patent/JP2906120B2/en
Publication of JPH08255799A publication Critical patent/JPH08255799A/en
Application granted granted Critical
Publication of JP2906120B2 publication Critical patent/JP2906120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、GaAs基板の製造方
法に関し、特に結晶成長後のウェーハアニール技術に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a GaAs substrate, and more particularly to a wafer annealing technique after crystal growth.

【0002】[0002]

【従来の技術】GaAs等の化合物半導体の単結晶を製
造する方法として、液体封止チョクラルスキー(LE
C)法、グラジェントフリージング(GF)法、垂直ブ
リッジマン(VB)法、水平ブリッジマン(HB)法な
どがあるが、いずれの方法も結晶と融液の間に温度勾配
を設けて融液を固化させることにより結晶の育成を行う
ものであるため、育成した結晶内の特性が不均一となる
のを避けることはできない。そのため、そのような育成
結晶から切り出した薄板状のウェーハを基板として用い
て電子デバイスを作製しても、ウェーハ面内でのデバイ
ス特性のばらつきが大きく、歩留りが低下してしまうと
いう問題がある。例えば、アンドープまたはCrドープ
のGaAs単結晶よりなるウェーハに作製した数多くの
イオン注入型のFET(Field-Effect Transistor )に
おいては、上述した不均一特性のために、FETの各し
きい値電圧Vthがばらついてしまうという問題がある。
2. Description of the Related Art As a method of manufacturing a single crystal of a compound semiconductor such as GaAs, a liquid-sealed Czochralski (LE) is used.
C) method, gradient freezing (GF) method, vertical Bridgman (VB) method, horizontal Bridgman (HB) method, and the like. In any of these methods, a temperature gradient is provided between the crystal and the melt. Since the crystal is grown by solidifying the crystal, it is inevitable that the characteristics in the grown crystal become non-uniform. Therefore, even if an electronic device is manufactured using a thin wafer cut from such a grown crystal as a substrate, there is a problem that device characteristics vary greatly within the wafer surface and the yield is reduced. For example, in many ion-implanted FETs (Field-Effect Transistors) fabricated on undoped or Cr-doped GaAs single crystal wafers, the threshold voltage Vth of each FET is reduced due to the non-uniform characteristics described above. There is a problem of dispersion.

【0003】そこで、本出願人は、育成結晶から切り出
したウェーハを、真空の石英アンプル中で、1100℃
を超え融点未満の温度で30分以上保持して第1段階ア
ニールを行い、次に1〜30℃/minの降温速度で室温
まで冷却し、該ウェーハをエッチングし、その後非酸化
性雰囲気中で、750℃以上1100℃以下の温度で2
0分以上保持して第2段階アニールを行った後、室温ま
で冷却を行うようにした熱処理方法を提案している(特
開平2−192500号公報に記載されている)。この
提案によれば、カソードルミネッセンス像が均一であ
る、すなわちウェーハの面内特性が均一であり、かつA
Bエッチングにより出現する微小欠陥(卵状ピット)の
少ないウェーハを得ることができ、かかるウェーハを基
板として用いることにより非常に安定した特性を有する
電子デバイスを歩留まりよく製造できるという効果が得
られる。
[0003] The applicant of the present invention has proposed that a wafer cut out of a grown crystal is placed in a vacuum quartz ampoule at 1100 ° C.
The first stage annealing is carried out at a temperature higher than the melting point and lower than the melting point for 30 minutes or more, then cooled to room temperature at a temperature lowering rate of 1 to 30 ° C./min, the wafer is etched, and then, in a non-oxidizing atmosphere. At a temperature of 750 ° C or more and 1100 ° C or less
A heat treatment method has been proposed in which the second-stage annealing is performed for at least 0 minute and then cooled to room temperature (described in JP-A-2-192500). According to this proposal, the cathodoluminescence image is uniform, that is, the in-plane characteristics of the wafer are uniform, and A
It is possible to obtain a wafer having few micro defects (egg-shaped pits) appearing by the B etching, and to use such a wafer as a substrate to obtain an effect that an electronic device having extremely stable characteristics can be manufactured with a high yield.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、その後
の我々の研究により、上記2段階アニール法では、デバ
イス製造プロセスにおいてイオン注入を行うと、製造プ
ロセスの条件によってはGaAsウェーハに注入したシ
リコン等のイオンの活性化率が期待した程には高くなら
ない場合があることがわかった。
However, according to our research after that, in the above-mentioned two-step annealing method, when ion implantation is performed in a device manufacturing process, depending on the conditions of the manufacturing process, ions such as silicon implanted into a GaAs wafer are implanted. It has been found that the activation rate of is not as high as expected.

【0005】本発明は、上記事情に鑑みなされたもの
で、ウェーハアニールにより従来よりもシリコン等の注
入イオンの活性化率が高くなるようなGaAs基板の製
造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a GaAs substrate in which the activation rate of implanted ions such as silicon is increased by wafer annealing as compared with the conventional method.

【0006】[0006]

【課題を解決するための手段】注入イオンの活性化を阻
害する要因の一つとして、ヒ素サイトの空孔が多く、そ
こに注入イオンが入ってしまうことが挙げられる。すな
わち、ガリウムサイトに入ることによってドナーとなる
シリコンを注入した場合、その多くがヒ素サイトに入っ
てアクセプタとなってしまい、ガリウムサイトに入って
ドナーとなったシリコンを補償してしまうために、活性
化率が下がってしまうのである。
One of the factors inhibiting the activation of implanted ions is that there are many arsenic site vacancies and the implanted ions enter there. In other words, when silicon as a donor is implanted by entering a gallium site, most of the silicon enters an arsenic site and becomes an acceptor, and the silicon which has entered the gallium site and becomes a donor is compensated. The conversion rate falls.

【0007】そこで、本発明者らは、活性化率を改善す
るには、ヒ素サイトの空孔を減らし、基板内をヒ素過剰
状態とすればよいと考えた。そして、基板内をヒ素過剰
状態とするために、過剰なヒ素に関係した固有欠陥であ
ると考えられているEL2に着目し、基板内のEL2濃
度を高くすることが有効であると考えた。すなわち、E
L2濃度が高ければヒ素サイトの空孔が少ないと考えら
れ、またデバイス製造プロセスなどにおいてヒ素サイト
に空孔が生じたとしても、過剰なヒ素が補充されること
となって空孔のままで存在し難いと考えられるからであ
る。このような考察に基づいて、本発明者らは、LEC
法等により育成したGaAsウェーハのアニールを2段
階に分けて行い、先ず最初の第1段階アニールによりウ
ェーハの表面からある深さ(通常の表面研磨量以上の深
さ、例えば数十〜百数十μm)までの範囲に過剰なヒ素
を拡散させ、続いてそのウェーハをEL2の生成温度に
保持する第2段階アニールを行うことによって、ヒ素過
剰状態のGaAs基板を得ることができると考えた。そ
して、その考えを実現すべく実験を重ね、本発明を完成
した。
Therefore, the present inventors thought that the activating rate could be improved by reducing the number of arsenic site vacancies and bringing the inside of the substrate into an arsenic excess state. Then, in order to bring the inside of the substrate into an arsenic excess state, focusing on EL2 which is considered to be an intrinsic defect related to excess arsenic, it was considered effective to increase the concentration of EL2 in the substrate. That is, E
If the L2 concentration is high, it is considered that vacancies in the arsenic sites are small, and even if vacancies are formed in the arsenic sites in the device manufacturing process or the like, excess arsenic is replenished and the vacancies remain as vacancies. This is because it is considered difficult. Based on these considerations, the present inventors
Annealing of a GaAs wafer grown by a method or the like is performed in two stages. First, a first depth annealing from the surface of the wafer (a depth greater than a normal surface polishing amount, for example, several tens to hundreds It was thought that a GaAs substrate in an arsenic-rich state could be obtained by diffusing excess arsenic to a range of up to μm) and then performing a second-stage anneal to keep the wafer at the EL2 generation temperature. Experiments were repeated to realize the idea, and the present invention was completed.

【0008】請求項1記載の発明は、育成されたGaA
s単結晶より切り出したウェーハを、化学量論平衡蒸気
圧の2倍以上のヒ素圧雰囲気中で1000℃以上108
0℃以下の温度で所定時間保持する第1段階アニールを
行い、次いで400℃以下まで冷却し、続いてヒ素圧雰
囲気中で800℃以上1000℃未満の温度で所定時間
保持する第2段階アニールを行った後、室温まで冷却す
るようにしたことを特徴とする。
According to the first aspect of the present invention, the grown GaAs
The wafer cut out of the s single crystal is placed in an arsenic pressure atmosphere at least twice the stoichiometric equilibrium vapor pressure at a temperature of 1000 ° C.
First-stage annealing is performed at a temperature of 0 ° C. or less for a predetermined time, then cooled to 400 ° C. or less, and then second-stage annealing is performed at a temperature of 800 ° C. or more and less than 1000 ° C. in an arsenic pressure atmosphere. The method is characterized in that after performing, cooling to room temperature is performed.

【0009】そして、請求項2記載の発明のように、前
記第2段階アニールの終了後室温まで冷却した前記Ga
As基板の表面を所定量だけ鏡面研磨し、該研磨面から
不純物のイオン注入を行う。
Then, as in the second aspect of the present invention, the Ga is cooled to room temperature after the completion of the second step annealing.
The surface of the As substrate is mirror-polished by a predetermined amount, and ion implantation of impurities is performed from the polished surface.

【0010】ここで、本明細書中において、化学量論平
衡蒸気圧とは、「Journal of Crystal Growth 99 (199
0) 1-8 “STOICHIOMETRY CONTROL FOR GROWTH OF III-V
CRYSTALS”) 」の第3頁の右欄の第11行目〜第12
行目に記載されている式: PGaAs,opt=2.6×106 exp[−1.05(eV)
/(kT)]Torr で定義されるPGaAs,optTorrのことである。
Here, in this specification, the stoichiometric equilibrium vapor pressure refers to “Journal of Crystal Growth 99 (199).
0) 1-8 “STOICHIOMETRY CONTROL FOR GROWTH OF III-V
CRYSTALS ")" on the right column of page 3 from line 11 to twelfth
Equation described in the line: P GaAs, opt = 2.6 × 10 6 exp [−1.05 (eV)
/ (KT)] Torr, which is defined as P GaAs, opt Torr.

【0011】[0011]

【作用】請求項1及び2記載の発明によれば、第1段階
アニールによりウェーハの表面から通常の表面研磨量以
上の深さまでの領域に過剰なヒ素が拡散し、或はウェー
ハからのヒ素の飛散が防止され、第2段階アニールによ
りEL2が生成し、少なくともイオン注入型FET等の
電子デバイスの製造に供される基板表面に近い部分がヒ
素欠乏状態になるのを防ぐことができ、条件によって
は、通常のバルク結晶より過剰な状態とすることができ
る。従って、そのような基板の表面を所定量だけ鏡面研
磨してシリコン等をイオン注入すれば、注入したイオン
の活性化率が高くなる。
According to the first and second aspects of the present invention, excessive arsenic is diffused from the surface of the wafer to a depth equal to or larger than the normal surface polishing amount by the first-step annealing, or arsenic is removed from the wafer. Scattering is prevented, EL2 is generated by the second-stage annealing, and at least a portion near the substrate surface used for manufacturing an electronic device such as an ion-implanted FET can be prevented from becoming arsenic-deficient. Can be in excess of normal bulk crystals. Therefore, if the surface of such a substrate is mirror-polished by a predetermined amount and silicon or the like is ion-implanted, the activation rate of the implanted ions is increased.

【0012】[0012]

【実施例】以下に、実施例及び比較例を挙げて本発明の
特徴とするところを明らかとする。なお、本発明は以下
の実施例により何等制限されるものではないのはいうま
でもない。
EXAMPLES The features of the present invention will be clarified below with reference to examples and comparative examples. It goes without saying that the present invention is not limited at all by the following examples.

【0013】(実施例)先ず、LEC法により直径11
0mm、直胴部長さ120mmの半絶縁性のアンドープGa
As単結晶を育成した。そして、その単結晶の上下端を
切断し、円筒研削を施してオリエンテーションフラット
を形成した後、ウェーハリングを行った。得られた各ウ
ェーハについて、NaOH系のエッチャントにより片面
当たり約30μmずつのエッチングを行った後、洗浄を
行った。その後、それらのウェーハ12枚ずつをダミー
のGaAsウェーハ88枚と一緒に計100枚を複数個
の石英アンプル内に真空封入した。
(Embodiment) First, a diameter of 11 was obtained by the LEC method.
0mm, straight body 120mm semi-insulating undoped Ga
An As single crystal was grown. Then, the upper and lower ends of the single crystal were cut and subjected to cylindrical grinding to form an orientation flat, followed by wafer ring. Each of the obtained wafers was etched by about 30 μm per side with a NaOH-based etchant, and then washed. Thereafter, a total of 100 wafers were sealed in vacuum in a plurality of quartz ampoules together with 88 dummy GaAs wafers, 12 wafers each.

【0014】続いて、各石英アンプルを熱処理炉内にセ
ットして1000〜1080℃の温度で第1段階アニー
ルを行った。その後、各石英アンプルを一旦室温付近ま
で冷却した後、そのままの状態で再度昇温して800℃
から1000℃未満の一定温度で第2段階アニールを行
った。その後、各石英アンプルを室温まで冷却し、熱処
理炉から取り出した。なお、各石英アンプル内にはウェ
ーハとともに予め適量のヒ素を封入しておき、各石英ア
ンプル内のヒ素圧PASが上記第1段階アニール時に化学
量論平衡蒸気圧の2倍以上になる(すなわち、次の
(1)及び(2)式を満たす。)ようにした。
Subsequently, each of the quartz ampoules was set in a heat treatment furnace, and the first stage annealing was performed at a temperature of 1000 to 1080 ° C. Thereafter, each quartz ampoule was once cooled to around room temperature, and then heated again to 800 ° C.
The second stage annealing was performed at a constant temperature of less than 1000.degree. Thereafter, each quartz ampule was cooled to room temperature and taken out of the heat treatment furnace. In addition, an appropriate amount of arsenic is sealed in advance in each quartz ampule together with the wafer, and the arsenic pressure PAS in each quartz ampule becomes twice or more of the stoichiometric equilibrium vapor pressure during the first-stage annealing (that is, The following equations (1) and (2) are satisfied).

【0015】 PAS≧F(T)Aexp(B/kT) ‥‥(1) F(T)=2.0 ‥‥(2) ただし、kはボルツマン定数、Tは絶対温度で表された
熱処理温度、A=2.6×106 Torr、B=−1.05
eVである。なお、第2段階アニールにおける石英アンプ
ル内のヒ素圧は、該アンプル内に封入したヒ素量とアニ
ール温度により決まる。
PAS ≧ F (T) Aexp (B / kT) ‥‥ (1) F (T) = 2.0 ‥‥ (2) where k is Boltzmann's constant, and T is a heat treatment temperature expressed in absolute temperature. , A = 2.6 × 10 6 Torr, B = −1.05
eV. The arsenic pressure in the quartz ampoule in the second stage annealing is determined by the amount of arsenic sealed in the ampoule and the annealing temperature.

【0016】具体的には、各石英アンプルの熱処理条件
は表1の試料No.1〜4に示す通りであった。なお、
化学量論平衡蒸気圧をPi と表記すると、Pi は先述し
たPGaAs,optと同一であり、 Pi =PGaAs,opt=2.6×106 exp[−1.05
(eV)/(kT)]Torr となり、第1段階アニール時のヒ素圧比(PAS/Pi )
はF(T) に等しい。
Specifically, the heat treatment conditions for each quartz ampoule are as shown in Table 1 for sample No. 1 to 4. In addition,
When the stoichiometric equilibrium vapor pressure is expressed as Pi, Pi is the same as PGaAs , opt described above, and Pi = PGaAs , opt = 2.6 × 10 6 exp [−1.05
(EV) / (kT)] Torr, and the arsenic pressure ratio (PAS / Pi) during the first stage annealing
Is equal to F (T).

【0017】[0017]

【表1】 [Table 1]

【0018】得られた各試料のウェーハの表面を60μ
mだけ鏡面研磨し、その研磨面からシリコンイオンを注
入して活性化熱処理を行った後、Van der Pa
uw法によりシートキャリア濃度を測定して活性化率を
調べた。
The wafer surface of each of the obtained samples was 60 μm.
m, and after performing an activation heat treatment by implanting silicon ions from the polished surface, the Van der Pa
The activation rate was determined by measuring the sheet carrier concentration by the uu method.

【0019】なお、第1段階アニールの温度は1000
〜1080℃、好ましくは1030〜1070℃である
のが適当である。その理由は、下限値未満では、電子デ
バイス等の特性劣化を招くヒ素析出物が生じてしまう、
EL2濃度が高くならない、抵抗率の均一性が悪くなる
などの不都合が生じ、一方、上限値を超えると、Asの
解離圧が指数関数的に高くなり、Asの飛散が防止でき
ず、結晶性が悪くなり、活性化率が低下するからであ
る。
The temperature of the first annealing is 1000
It is suitably from -10 to 80 ° C, preferably from 1030 to 1070 ° C. The reason is that if it is less than the lower limit value, arsenic precipitates that cause deterioration of characteristics of electronic devices and the like will occur,
However, when the EL2 concentration does not increase and the uniformity of the resistivity deteriorates, the dissociation pressure of As increases exponentially when the upper limit is exceeded, and the scattering of As cannot be prevented. Is worse, and the activation rate is lower.

【0020】また、第1段階アニールのヒ素圧PASが上
記(1)式及び(2)式を満たす必要があるのは、満た
さないとAsの飛散防止及びAsの基板への拡散が不十
分となり、活性化率が低下するからである。
Further, the arsenic pressure PAS of the first stage annealing needs to satisfy the above formulas (1) and (2), otherwise, scattering of As and diffusion of As to the substrate become insufficient. This is because the activation rate decreases.

【0021】さらに、第2段階アニールの温度が800
℃から1000℃未満、好ましくは900〜950℃で
あるのは、第2段階アニールによりEL2を発生させる
ためにEL2の生成温度(800〜1000℃)に保持
する必要があるからである。
Further, the temperature of the second stage annealing is 800
C. to less than 1000 C., preferably 900 to 950 C. because it is necessary to maintain the EL2 generation temperature (800 to 1000 C.) in order to generate EL2 by the second-stage annealing.

【0022】また、第1段階アニールと第2段階アニー
ルとの間で室温付近の温度まで冷却するが、この時の温
度は、エネルギー準位が0.40〜0.45eVのミドル
ドナーが生成しない400℃以下の温度であればよい。
Further, cooling is performed to a temperature near room temperature between the first-stage annealing and the second-stage annealing. At this time, a middle donor having an energy level of 0.40 to 0.45 eV is not generated. The temperature may be 400 ° C. or less.

【0023】(比較例)第1比較例として、上記実施例
と同様にして作製したアンドープGaAs単結晶よりな
る12枚のウェーハをダミーのGaAsウェーハ88枚
と一緒に計100枚を適量のヒ素とともに複数個の石英
アンプル内に真空封入し、表1の試料No.5〜10に
示す通り、1030℃若しくは1070℃で上記(1)
式のF(T)の値が1.0若しくは1.5、または110
0℃でF(T) の値が2.0若しくは3.0となる条件で
もってそれぞれ第1段階アニールを行い、一旦室温付近
まで冷却した後、続けてヒ素圧雰囲気のまま900〜9
50℃の一定温度で第2段階アニールを行った。
COMPARATIVE EXAMPLE As a first comparative example, a total of 100 wafers together with 88 dummy GaAs wafers and an appropriate amount of arsenic were prepared from 12 undoped GaAs single crystals produced in the same manner as in the above embodiment. Vacuum sealed in a plurality of quartz ampoules. As shown in 5 to 10, at 1030 ° C or 1070 ° C, the above (1)
The value of F (T) in the formula is 1.0 or 1.5, or 110
First-stage annealing was performed under the condition that the value of F (T) was 2.0 or 3.0 at 0 ° C., and once cooled to around room temperature.
The second stage annealing was performed at a constant temperature of 50 ° C.

【0024】また、第2比較例として、上記実施例と同
様にして作製したアンドープGaAs単結晶よりなる1
2枚のウェーハをダミーのGaAsウェーハ88枚と一
緒に計100枚を適量のヒ素とともに石英アンプル内に
真空封入し、1100℃で上記(1)式及び(2)式を
満たさない比較的低いヒ素圧雰囲気(ヒ素圧PAS=0.
42atm )でもってアニールを行い、一旦室温付近まで
冷却して石英アンプル内からウェーハを取り出した後、
窒素雰囲気中で950℃の一定温度で再びアニールを行
った。
As a second comparative example, an undoped GaAs single crystal made in the same manner as in the above embodiment was used.
A total of 100 wafers together with 88 dummy GaAs wafers together with 88 dummy GaAs wafers are vacuum-sealed in a quartz ampoule together with an appropriate amount of arsenic. Pressure atmosphere (arsenic pressure PAS = 0.
42atm), and then cooled to near room temperature and taken out of the quartz ampule.
Annealing was performed again at a constant temperature of 950 ° C. in a nitrogen atmosphere.

【0025】このようにして得られた第1及び第2の各
比較試料のウェーハについても上記実施例と同様にして
活性化率を調べた。
The activation rates of the wafers of the first and second comparative samples thus obtained were examined in the same manner as in the above-described embodiment.

【0026】上記実施例及び第1比較例の各試料より得
られた活性化率と第1段階アニール時のヒ素圧比(PAS
/Pi =F(T) )との関係を図1に示す。同図より、第
1段階アニール時の温度が1030℃または1070℃
で、かつヒ素圧比が2.0以上のアニール条件の時に活
性化率が高くなることがわかった。また、その高い時の
活性化率の値は、第2比較例の試料より得られた活性化
率の103〜109%に相当し、本発明の適用により注
入イオンの活性化率が改善されたことが確認された。
The activation ratio obtained from each of the samples of the above embodiment and the first comparative example and the arsenic pressure ratio (PAS
/ Pi = F (T)) is shown in FIG. From the figure, the temperature at the time of the first stage annealing is 1030 ° C. or 1070 ° C.
It was also found that the activation rate was high when the arsenic pressure ratio was 2.0 or more. Further, the value of the activation rate at the time of being high corresponds to 103 to 109% of the activation rate obtained from the sample of the second comparative example, and the activation rate of the implanted ions was improved by applying the present invention. It was confirmed that.

【0027】ただし、本発明を適用して得られたGaA
s基板においては、本出願人の先願に係る特開平2−1
92500号の発明により得られるGaAs基板よりも
カソードルミネッセンス像の均一性やABエッチングに
よるピット密度の点でやや劣るが、実用上は何等問題が
ない程度である。また、本発明によれば抵抗率のばらつ
きが4〜6%、移動度のばらつきが3%と先願と同等
で、FETのσVthが6〜8mVと先願より良好な特性を
有しており、しかも活性化率が改善されるという効果が
ある。
However, GaAs obtained by applying the present invention
For the s substrate, Japanese Patent Application Laid-Open No.
Although it is slightly inferior to the GaAs substrate obtained by the invention of No. 92500 in terms of the uniformity of the cathode luminescence image and the pit density by AB etching, there is no practical problem. According to the present invention, the variation in resistivity is 4 to 6%, the variation in mobility is 3%, which is equivalent to that of the prior application, and the σVth of the FET is 6 to 8 mV, which is better than that of the previous application. In addition, there is an effect that the activation rate is improved.

【0028】[0028]

【発明の効果】本発明に係るGaAs基板の製造方法に
よれば、育成されたGaAs単結晶より切り出したウェ
ーハを、化学量論平衡蒸気圧の2倍以上のヒ素圧雰囲気
中で1000℃以上1080℃以下の温度で所定時間保
持する第1段階アニールを行い、次いで400℃以下ま
で冷却し、続いてヒ素圧雰囲気中で800℃以上100
0℃未満の温度で所定時間保持する第2段階アニールを
行った後、室温まで冷却するようにしたため、第1段階
アニールによりウェーハの表面から通常の表面研磨量以
上の深さまでの領域に過剰なヒ素が拡散し、或はウェー
ハからのヒ素の飛散が防止され、第2段階アニールによ
りEL2が生成するので、少なくともイオン注入型FE
T等の電子デバイスの製造に供される基板表面に近い部
分がヒ素過剰状態となり、シリコン等をイオン注入した
際の注入イオンの活性化率が高い基板が得られる。
According to the method of manufacturing a GaAs substrate according to the present invention, a wafer cut from a grown GaAs single crystal is subjected to a temperature of 1000 ° C. to 1080 in an arsenic pressure atmosphere at least twice the stoichiometric equilibrium vapor pressure. First annealing at a temperature of not more than 400 ° C. for a predetermined time, then cooling to 400 ° C. or less, and subsequently in an arsenic pressure atmosphere at 800 ° C. to 100 ° C.
After performing the second-stage annealing at a temperature lower than 0 ° C. for a predetermined time, the substrate is cooled to room temperature, so that the first-stage annealing causes an excessive area from the surface of the wafer to a depth equal to or more than the normal surface polishing amount. Since arsenic is diffused or arsenic is prevented from being scattered from the wafer and EL2 is generated by the second-stage annealing, at least the ion-implanted FE
A portion near the substrate surface used for manufacturing an electronic device such as T is in an arsenic excess state, and a substrate having a high activation rate of implanted ions when silicon or the like is implanted can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した実施例とその比較例の各試料
の活性化率と第1段階アニール時のヒ素圧比との関係を
表す特性図である。
FIG. 1 is a characteristic diagram showing a relationship between an activation rate of each sample of an example to which the present invention is applied and a comparative example thereof and an arsenic pressure ratio at the time of first-stage annealing.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 育成されたGaAs単結晶より切り出し
たウェーハを、化学量論平衡蒸気圧の2倍以上のヒ素圧
雰囲気中で1000℃以上1080℃以下の温度で所定
時間保持する第1段階アニールを行い、次いで400℃
以下まで冷却し、続いてヒ素圧雰囲気中で800℃以上
1000℃未満の温度で所定時間保持する第2段階アニ
ールを行った後、室温まで冷却するようにしたことを特
徴とするGaAs基板の製造方法。
1. First-stage annealing in which a wafer cut from a grown GaAs single crystal is kept at a temperature of 1,000 ° C. to 1080 ° C. for a predetermined time in an arsenic pressure atmosphere at least twice the stoichiometric equilibrium vapor pressure. And then at 400 ° C.
Manufacturing a GaAs substrate, wherein the GaAs substrate is cooled down to a temperature below 800 ° C. and then maintained at a temperature of 800 ° C. or more and less than 1000 ° C. for a predetermined time, and then cooled to room temperature. Method.
【請求項2】 前記第2段階アニールの終了後室温まで
冷却した前記GaAs基板の表面を所定量だけ鏡面研磨
し、該研磨面から不純物のイオン注入を行うことを特徴
とする請求項1記載のGaAs基板の製造方法。
2. The method according to claim 1, wherein the surface of the GaAs substrate cooled to room temperature after completion of the second-step annealing is mirror-polished by a predetermined amount, and ion implantation of impurities is performed from the polished surface. A method for manufacturing a GaAs substrate.
JP5764295A 1995-03-16 1995-03-16 Method for manufacturing GaAs substrate Expired - Fee Related JP2906120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5764295A JP2906120B2 (en) 1995-03-16 1995-03-16 Method for manufacturing GaAs substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5764295A JP2906120B2 (en) 1995-03-16 1995-03-16 Method for manufacturing GaAs substrate

Publications (2)

Publication Number Publication Date
JPH08255799A JPH08255799A (en) 1996-10-01
JP2906120B2 true JP2906120B2 (en) 1999-06-14

Family

ID=13061553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5764295A Expired - Fee Related JP2906120B2 (en) 1995-03-16 1995-03-16 Method for manufacturing GaAs substrate

Country Status (1)

Country Link
JP (1) JP2906120B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1739213B1 (en) 2005-07-01 2011-04-13 Freiberger Compound Materials GmbH Apparatus and method for annealing of III-V wafers and annealed III-V semiconductor single crystal wafers

Also Published As

Publication number Publication date
JPH08255799A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
US4617066A (en) Process of making semiconductors having shallow, hyperabrupt doped regions by implantation and two step annealing
US20080044669A1 (en) Method for Manufacturing Simox Substrate and Simox Substrate Obtained by the Method
US5219632A (en) Compound semiconductor single crystals and the method for making the crystals, and semiconductor devices employing the crystals
JPH04215439A (en) Manufacture of gaas single crystal substrate
JP2906120B2 (en) Method for manufacturing GaAs substrate
EP0148555B1 (en) A method for the pretreatment of a substrate for ion implantation
US5047370A (en) Method for producing compound semiconductor single crystal substrates
US7754585B2 (en) Method of heat treatment of silicon wafer doped with boron
JPH0750692B2 (en) <III>-<V> Group compound semiconductor heat treatment method
JPS62265717A (en) Heat treating method for substrate for gallium arsenide integrated circuit
JPH02253622A (en) Manufacture of silicon carbide semiconductor device
US4578126A (en) Liquid phase epitaxial growth process
JPH08259396A (en) Gaas substrate and its production
EP0139435A2 (en) Improving compound semiconductor crystal by heat treatment and crystals improved thereby
JPH09194300A (en) Production of gaas substrate
JP2505222B2 (en) Method for manufacturing semi-insulating GaAs substrate
JPS6130030A (en) Method of annealing multi-element semiconductor
JP3793934B2 (en) Method for producing semi-insulating InP single crystal
RU2344210C1 (en) Method of hardening dislocation-free silicon plates
JP2645418B2 (en) GaAs compound semiconductor single crystal
JP2545477B2 (en) Compound semiconductor single crystal, manufacturing method thereof, and semiconductor device using the same
JP4414012B2 (en) Heat treatment method for silicon single crystal wafer
JP2673194B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0231424A (en) Manufacture of compound semiconductor wafer
JPH0364027A (en) Manufacture of compound semiconductor single-crystal substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees