JPH08259396A - Gaas substrate and its production - Google Patents

Gaas substrate and its production

Info

Publication number
JPH08259396A
JPH08259396A JP5764195A JP5764195A JPH08259396A JP H08259396 A JPH08259396 A JP H08259396A JP 5764195 A JP5764195 A JP 5764195A JP 5764195 A JP5764195 A JP 5764195A JP H08259396 A JPH08259396 A JP H08259396A
Authority
JP
Japan
Prior art keywords
concentration
substrate
gaas
arsenic
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5764195A
Other languages
Japanese (ja)
Inventor
Haruto Shimakura
春人 島倉
Hiromasa Yamamoto
裕正 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP5764195A priority Critical patent/JPH08259396A/en
Publication of JPH08259396A publication Critical patent/JPH08259396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To obtain a GaAs substrate wherein the concentration of EL2, an inherent defect placed at a deep position, is higher at a place near the surface of a thin substrate than at its inner place, by annealing a GaAs wafer at two stages whose conditions are different from each other. CONSTITUTION: In the first annealing stage, a wafer cut out from a GaAs single crystal is vacuum-sealed in a quartz ampule together with a suitable amount of arsenic and subsequently held in the atmosphere of an arsenic pressure of 0.8 times or higher a stoichiometric equilibrium steam pressure at a temperature of 1000-1100 deg.C for a prescribed time (e.g. 2hr). In the second annealing stage, the treated wafer is cooled to 400 deg.C, held in the atmosphere of an arsenic pressure of 2 times or higher the stoichiometric equilibrium stream pressure at 800-1000 deg.C for a prescribed time (e.g. 3hr), and subsequently cooled to room temperature. In the obtained GaAs substrate, the concentration of EL2 is higher at a place near the surface than at an inside place, and the EL2 concentration at a place deep by at least 60μm from the surface of the substrate is >=1.6×10<16> cm<-3> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、GaAs基板及びその
製造方法に関し、特に基板表面近傍部分のEL2濃度が
高いGaAs基板及びそれを製造するためのウェーハア
ニール技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a GaAs substrate and a method for manufacturing the same, and more particularly to a GaAs substrate having a high EL2 concentration near the surface of the substrate and a wafer annealing technique for manufacturing the same.

【0002】[0002]

【従来の技術】GaAs等の化合物半導体の単結晶を製
造する方法として、液体封止チョクラルスキー(LE
C)法、グラジェントフリージング(GF)法、垂直ブ
リッジマン(VB)法、水平ブリッジマン(HB)法な
どがあるが、いずれの方法も結晶と融液の間に温度勾配
を設けて融液を固化させることにより結晶の育成を行う
ものであるため、育成した結晶内の特性が不均一となる
のを避けることはできない。そのため、そのような育成
結晶から切り出した薄板状のウェーハを基板として用い
て電子デバイスを作製しても、ウェーハ面内でのデバイ
ス特性のばらつきが大きく、歩留りが低下してしまうと
いう問題がある。例えば、アンドープまたはCrドープ
のGaAs単結晶よりなるウェーハに作製した数多くの
イオン注入型のFET(Field-Effect Transistor )に
おいては、上述した不均一特性のために、FETの各し
きい値電圧Vthがばらついてしまうという問題がある。
2. Description of the Related Art Liquid-encapsulated Czochralski (LE) is used as a method for producing a single crystal of a compound semiconductor such as GaAs.
There are C) method, gradient freezing (GF) method, vertical Bridgman (VB) method, horizontal Bridgman (HB) method, etc., and all of them have a temperature gradient between the crystal and the melt. Since the crystal is grown by solidifying, it is unavoidable that the characteristics in the grown crystal become non-uniform. Therefore, even if an electronic device is manufactured by using a thin plate-shaped wafer cut out from such a grown crystal as a substrate, there is a problem that the device characteristics greatly vary within the wafer surface and the yield decreases. For example, in many ion-implanted FETs (Field-Effect Transistors) manufactured on a wafer made of undoped or Cr-doped GaAs single crystal, the threshold voltage Vth of each FET is There is a problem of variation.

【0003】そこで、本出願人は、育成結晶から切り出
したウェーハを、真空の石英アンプル中で、1100℃
を超え融点未満の温度で30分以上保持して第1段階ア
ニールを行い、次に1〜30℃/minの降温速度で室温
まで冷却し、該ウェーハをエッチングし、その後非酸化
性雰囲気中で、750℃以上1100℃以下の温度で2
0分以上保持して第2段階アニールを行った後、室温ま
で冷却を行うようにした熱処理方法を提案している(特
開平2−192500号公報に記載されている)。この
提案によれば、カソードルミネッセンス像が均一であ
る、すなわちウェーハの面内特性が均一であり、かつA
Bエッチングにより出現する微小欠陥(卵状ピット)の
少ないウェーハを得ることができ、かかるウェーハを基
板として用いることにより非常に安定した特性を有する
電子デバイスを歩留まりよく製造できるという効果が得
られる。
Therefore, the applicant of the present invention cuts a wafer cut from a grown crystal at 1100 ° C. in a vacuum quartz ampoule.
The first stage annealing is performed by holding the temperature above the melting point and below the melting point for 30 minutes or more, then cooling to room temperature at a temperature decreasing rate of 1 to 30 ° C./min, etching the wafer, and then in a non-oxidizing atmosphere. , 2 at temperatures above 750 ° C and below 1100 ° C
A heat treatment method has been proposed in which the second stage annealing is performed for 0 minutes or more and then cooled to room temperature (described in JP-A-2-192500). According to this proposal, the cathode luminescence image is uniform, that is, the in-plane characteristics of the wafer are uniform, and A
It is possible to obtain a wafer with few microdefects (oval pits) that appear by B etching, and by using such a wafer as a substrate, it is possible to produce an electronic device having very stable characteristics with a high yield.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、その後
の我々の研究により、上記2段階アニール法では、デバ
イス製造プロセスにおいてイオン注入を行うと、製造プ
ロセスの条件によってはGaAsウェーハに注入したシ
リコン等のイオンの活性化率が期待した程には高くなら
ない場合があることがわかった。
However, according to our research after that, in the above two-step annealing method, when ion implantation is performed in the device manufacturing process, ions such as silicon implanted in the GaAs wafer may be formed depending on the manufacturing process conditions. It was found that the activation rate of P. does not increase as expected.

【0005】注入イオンの活性化を阻害する要因の一つ
として、ヒ素サイトの空孔が多く、そこに注入イオンが
入ってしまうことが挙げられる。すなわち、ガリウムサ
イトに入ることによってドナーとなるシリコンを注入し
た場合、その多くがヒ素サイトに入ってアクセプタとな
ってしまい、ガリウムサイトに入ってドナーとなったシ
リコンを補償してしまうために、活性化率が下がってし
まうのである。
One of the factors that hinder the activation of implanted ions is that many arsenic site holes are filled with implanted ions. In other words, when silicon that serves as a donor is injected by entering the gallium site, most of it enters the arsenic site and becomes an acceptor, which compensates the silicon that entered the gallium site and became a donor. The rate of conversion will decrease.

【0006】ところで、深い準位を形成するEL2は、
ヒ素のアンチサイトやガリウムサイトの空孔などのよう
に過剰なヒ素に関係した固有欠陥であると考えられてい
る。従って、EL2濃度が高ければヒ素サイトの空孔は
少ないと考えられ、またデバイス製造プロセスなどにお
いてヒ素サイトに空孔が生じたとしても、過剰なヒ素が
補充されることとなって空孔のままで存在し難いと考え
られる。従って、注入イオンの活性化率を高めるには、
デバイスの製造に供される基板表面近傍部分のEL2濃
度を高めることが重要であると考えられる。
By the way, EL2 which forms a deep level is
It is considered to be an intrinsic defect related to excess arsenic such as arsenic antisite and gallium site vacancies. Therefore, if the EL2 concentration is high, it is considered that there are few vacancies in the arsenic site, and even if vacancies are generated in the arsenic site in the device manufacturing process, etc., excess arsenic will be replenished and the vacancies will remain. It is thought that it is hard to exist in. Therefore, to increase the activation rate of implanted ions,
It is considered important to increase the EL2 concentration in the vicinity of the surface of the substrate used for manufacturing the device.

【0007】しかし、真空雰囲気中でウェーハを熱処理
するとその表面近傍部分の深い準位の濃度が低くなると
いう報告があり、一方、表面近傍部分の深い準位、特に
EL2の濃度が高くなるという報告は見当たらず、従っ
て表面近傍部分のEL2濃度を高めることは困難である
と考えられる。また、育成したGaAs結晶をインゴッ
トのままアニールすると、そのアニール温度により育成
結晶中のEL2濃度が一定の値に決まってしまうことが
知られており、ウェーハにしたときの表面近傍部分のE
L2濃度を内部よりも高めることはやはり困難であると
考えられる。
However, it has been reported that when a wafer is heat-treated in a vacuum atmosphere, the concentration of deep levels near the surface thereof becomes low, while the concentration of deep levels near the surface thereof, especially the concentration of EL2, becomes high. Therefore, it is considered difficult to increase the EL2 concentration in the vicinity of the surface. Further, it is known that if a grown GaAs crystal is annealed as an ingot, the EL2 concentration in the grown crystal is determined to be a constant value depending on the annealing temperature.
It seems that it is still difficult to raise the L2 concentration higher than the inside.

【0008】本発明は、上記問題点を解決するためにな
されたもので、その目的は、注入イオンの活性化率を改
善するために、基板表面に近い部分のEL2濃度が内部
よりも高いGaAs基板を提供することにある。
The present invention has been made to solve the above problems, and its purpose is to improve the activation rate of implanted ions by increasing the concentration of EL2 in the portion close to the substrate surface than in the inside. To provide a substrate.

【0009】また、本発明の他の目的は、熱処理により
基板表面に近い部分のEL2濃度を内部よりも高くでき
るようなGaAs基板の製造方法を提供することであ
る。
Another object of the present invention is to provide a method for manufacturing a GaAs substrate in which the EL2 concentration in the portion close to the substrate surface can be made higher than that in the interior by heat treatment.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明者は、LEC法等により育成したGaAsウ
ェーハのアニールを2段階に分けて行い、先ず最初の第
1段階アニールによりウェーハの表面からある深さ(通
常の表面研磨量以上の深さ、例えば数十〜百数十μm)
までの範囲に過剰なヒ素を拡散させ、続く第2段階アニ
ールによりEL2を生成させるようにすれば、基板表面
に近い部分のEL2濃度が内部よりも高いGaAs基板
を得ることができると考えた。そして、その考えを実現
すべく実験を重ね、各段階のアニール条件を見つけて本
発明を完成した。
In order to achieve the above object, the inventor of the present invention performs annealing of a GaAs wafer grown by the LEC method or the like in two steps, and first of all, anneals the wafer by the first first step annealing. Depth from the surface (depth greater than the normal amount of surface polishing, for example, tens to hundreds of tens μm)
It was thought that it is possible to obtain a GaAs substrate in which the concentration of EL2 in the portion close to the substrate surface is higher than that in the interior by diffusing the excess arsenic in the range up to and producing EL2 by the subsequent second-stage annealing. Then, experiments were repeated to realize the idea, and the annealing conditions at each stage were found to complete the present invention.

【0011】請求項1記載の発明は、GaAs基板にお
いて、GaAsよりなる薄板状の基板の内部よりも表面
に近い部分の方が、深い準位をなす固有欠陥であるEL
2の濃度が高くなっていることを特徴とする。
According to the first aspect of the present invention, in the GaAs substrate, the portion nearer to the surface than the inside of the thin plate substrate made of GaAs is an intrinsic defect that forms a deep level.
It is characterized in that the concentration of 2 is high.

【0012】具体的には、例えば請求項2記載の発明の
ように、少なくとも基板表面からの深さが60μmの部
分のEL2濃度は1.6×1016cm-3以上である。
Specifically, for example, as in the second aspect of the invention, the EL2 concentration is at least 1.6 × 10 16 cm -3 at least in the portion having a depth of 60 μm from the substrate surface.

【0013】また、請求項3記載の発明は、薄板状の基
板の内部よりも表面に近い部分の方が、深い準位をなす
固有欠陥であるEL2の濃度が高くなるようなGaAs
基板を製造するにあたって、育成されたGaAs単結晶
より切り出したウェーハを、化学量論平衡蒸気圧の0.
8倍以上のヒ素圧雰囲気中で1000℃以上1110℃
以下の温度で所定時間保持する第1段階アニールを行
い、次いで400℃以下まで冷却し、続いて化学量論平
衡蒸気圧の2倍以上のヒ素圧雰囲気中で800℃以上1
000℃以下の温度で所定時間保持する第2段階アニー
ルを行った後、室温まで冷却するようにしたことを特徴
とする。
According to the third aspect of the present invention, the concentration of EL2, which is an intrinsic defect forming a deep level, is higher in the portion closer to the surface than inside the thin plate-shaped substrate.
In manufacturing the substrate, a wafer cut out from the grown GaAs single crystal was processed to a stoichiometric equilibrium vapor pressure of 0.
1000 ° C to 1110 ° C in an arsenic pressure atmosphere of 8 times or more
First-stage annealing is performed at the following temperature for a predetermined time, then cooled to 400 ° C or lower, and then 800 ° C or higher in an arsenic pressure atmosphere at twice the stoichiometric equilibrium vapor pressure or higher.
It is characterized in that after performing the second stage annealing in which the temperature is kept at 000 ° C. or lower for a predetermined time, it is cooled to room temperature.

【0014】ここで、本明細書中において、化学量論平
衡蒸気圧とは、「Journal of Crystal Growth 99 (199
0) 1-8 “STOICHIOMETRY CONTROL FOR GROWTH OF III-V
CRYSTALS”) 」の第3頁の右欄の第11行目〜第12
行目に記載されている式: PGaAs,opt=2.6×106 exp[−1.05(eV)/(kT)]Torr で定義されるPGaAs,optTorrのことである。
In this specification, the stoichiometric equilibrium vapor pressure means "Journal of Crystal Growth 99 (199
0) 1-8 “STOICHIOMETRY CONTROL FOR GROWTH OF III-V
CRYSTALS ”)”, page 3, right column, lines 11-12
The formula described in the line: P GaAs, opt = 2.6 × 10 6 exp [−1.05 (eV) / (kT)] Torr is defined as P GaAs, opt Torr.

【0015】[0015]

【作用】請求項1及び2記載の発明によれば、基板の内
部よりも表面に近い部分の方がEL2濃度が高いため、
基板表面に近い部分におけるEL2濃度が従来よりも高
くなり、イオン注入型のFETなどの電子デバイスの製
造に供される基板表面近傍部分における注入イオンの活
性化率が改善される。
According to the invention described in claims 1 and 2, since the EL2 concentration is higher in the portion closer to the surface than in the inside of the substrate,
The EL2 concentration in the portion close to the substrate surface is higher than in the conventional case, and the activation rate of implanted ions in the portion near the substrate surface used for manufacturing an electronic device such as an ion-implanted FET is improved.

【0016】請求項3記載の発明によれば、第1段階ア
ニールによりウェーハの表面から通常の表面研磨量以上
の深さまでの領域に過剰なヒ素が拡散し、第2段階アニ
ールによりヒ素が拡散した深さ領域においてEL2が生
成し、基板表面に近い部分のEL2濃度が内部よりも高
くなる。基板内部のEL2濃度は従来の基板におけるE
L2濃度と同じであるため、本発明によるGaAs基板
の表面近傍部分のEL2濃度は従来よりも高くなる。
According to the third aspect of the invention, excess arsenic diffuses into the region from the surface of the wafer to a depth equal to or larger than the normal surface polishing amount by the first step annealing, and arsenic diffuses by the second step annealing. EL2 is generated in the depth region, and the EL2 concentration in the portion close to the substrate surface becomes higher than that in the inside. The EL2 concentration inside the substrate is E in the conventional substrate.
Since the L2 concentration is the same as the L2 concentration, the EL2 concentration in the vicinity of the surface of the GaAs substrate according to the present invention is higher than the conventional one.

【0017】[0017]

【実施例】以下に、実施例及び比較例を挙げて本発明の
特徴とするところを明らかとする。なお、本発明は以下
の各実施例により何等制限されるものではないのはいう
までもない。
EXAMPLES The features of the present invention will be clarified below with reference to Examples and Comparative Examples. Needless to say, the present invention is not limited to the following examples.

【0018】(実施例1)先ず、LEC法により直径8
4mm、直胴部長さ120mmの導電性のシリコンドープG
aAs単結晶(ドープ量:6×1016cm-3)を育成し
た。そして、その単結晶の上下端を切断し、円筒研削を
施してオリエンテーションフラットを形成した後、ウェ
ーハリングを行った。得られた各ウェーハについて、N
aOH系のエッチャントにより片面当たり約30μmず
つのエッチングを行った後、洗浄を行った。その後、そ
れらのウェーハ12枚ずつをダミーのGaAsウェーハ
88枚と一緒に計100枚を複数個の石英アンプル内に
真空封入した。
(Example 1) First, a diameter of 8 was obtained by the LEC method.
Conductive silicon dope G with a length of 4 mm and a straight body length of 120 mm
An aAs single crystal (doping amount: 6 × 10 16 cm −3 ) was grown. Then, the upper and lower ends of the single crystal were cut, cylindrical grinding was performed to form an orientation flat, and then a wafer ring was performed. For each obtained wafer, N
After etching with an aOH-based etchant in an amount of about 30 μm per side, cleaning was performed. Then, 12 wafers each, together with 88 dummy GaAs wafers, were vacuum sealed in a plurality of 100 quartz ampules.

【0019】続いて、各石英アンプルを熱処理炉内にセ
ットして1000〜1110℃の温度で第1段階アニー
ルを行った。その後、各石英アンプルを一旦室温付近ま
で冷却した後、そのままの状態で再度昇温して800〜
1000℃の一定温度で第2段階アニールを行った。そ
の後、各石英アンプルを室温まで冷却し、熱処理炉から
取り出した。なお、各石英アンプル内にはウェーハとと
もに予め適量のヒ素を封入しておき、各石英アンプル内
のヒ素圧Pが、上記第1段階アニール時に化学量論平衡
蒸気圧の0.8倍以上になる(すなわち、次の(1)式
を満たす。)とともに、上記第2段階アニール時に化学
量論平衡蒸気圧の2倍以上になる(すなわち、次の
(2)式を満たす。)ようにした。
Subsequently, each quartz ampoule was set in a heat treatment furnace and first-stage annealing was performed at a temperature of 1000 to 1110.degree. Then, after cooling each quartz ampoule to near room temperature, the temperature is raised again to 800-
The second stage annealing was performed at a constant temperature of 1000 ° C. Then, each quartz ampoule was cooled to room temperature and taken out from the heat treatment furnace. In addition, an appropriate amount of arsenic is enclosed in advance in each quartz ampoule together with the wafer, and the arsenic pressure P in each quartz ampoule becomes 0.8 times or more of the stoichiometric equilibrium vapor pressure during the first-stage annealing. (That is, the following formula (1) is satisfied), and the stoichiometric equilibrium vapor pressure is doubled or more during the second stage annealing (that is, the following formula (2) is satisfied).

【0020】 P≧0.8Aexp(B/kT) ‥‥(1) P≧2Aexp(B/kT) ‥‥(2) ただし、kはボルツマン定数、Tは絶対温度で表された
熱処理温度、A=2.6×106 Torr、B=−1.05
eVである。
P ≧ 0.8 Aexp (B / kT) (1) P ≧ 2A exp (B / kT) (2) where k is the Boltzmann constant, T is the heat treatment temperature expressed in absolute temperature, A = 2.6 × 10 6 Torr, B = −1.05
eV.

【0021】具体的には、各石英アンプルの熱処理条件
は表1に示す通りであった。
Specifically, the heat treatment conditions for each quartz ampoule were as shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】得られた各試料のウェーハの表面を、45
μm、60μm、75μm、90μm、120μm及び
150μmの研磨量で鏡面研磨し、その研磨面上にフォ
トリソグラフィ技術によりショットキー電極とオーミッ
ク電極を形成し、DLTS(Deep Level Transient Spe
ctroscopy )法により深い準位の濃度を測定した。その
結果、いずれの試料についてもEL2濃度の深さ方向の
分布は、図1に例を示すように、熱処理直後の基板表面
からの深さが60μmまで、すなわち鏡面研磨の研磨量
が60μmまでの領域のEL2濃度が、それよりもさら
に基板内部におけるEL2濃度よりも高いような分布で
あった。特に、研磨量60μmのEL2濃度が最も高
く、1.6×1016cm-3以上であり、研磨量150μm
のEL2濃度(通常知られている値に一致)よりも20
%程度高かった。
The surface of the wafer of each obtained sample was
Mirror-polishing with a polishing amount of μm, 60 μm, 75 μm, 90 μm, 120 μm and 150 μm, a Schottky electrode and an ohmic electrode are formed on the polished surface by photolithography, and DLTS (Deep Level Transient Spe
The deep level concentration was measured by the ctroscopy method. As a result, the distribution of the EL2 concentration in the depth direction of all the samples was as shown in FIG. 1 when the depth from the substrate surface immediately after heat treatment was up to 60 μm, that is, the polishing amount of mirror polishing was up to 60 μm. The distribution was such that the EL2 concentration in the region was higher than the EL2 concentration inside the substrate. In particular, the EL2 concentration of the polishing amount of 60 μm is the highest, 1.6 × 10 16 cm −3 or more, and the polishing amount of 150 μm.
20% higher than the EL2 concentration of (corresponding to the commonly known value)
% Was high.

【0024】なお、第1段階アニールの温度は1000
〜1110℃、好ましくは1010〜1100℃である
のが適当である。その理由は、下限値未満では、電子デ
バイス等の特性劣化を招くヒ素析出物が生じてしまう、
基板の表面に近い部分のEL2濃度が高くならない、抵
抗率の均一性が悪くなるなどの不都合が生じ、一方、上
限値を超えると、Asの解離圧が指数関数的に高くな
り、Asの飛散が防止できず表面に近い部分のEL2濃
度が高くならないからである。
The temperature of the first stage annealing is 1000
Suitably, it is -1110 ° C, preferably 1010-1100 ° C. The reason is that if the amount is less than the lower limit, arsenic precipitates that cause deterioration of characteristics of electronic devices and the like are generated.
The EL2 concentration near the surface of the substrate does not increase, and the uniformity of the resistivity deteriorates. On the other hand, when the upper limit is exceeded, the dissociation pressure of As increases exponentially, and As scatters. This is because the EL2 concentration cannot be prevented and the EL2 concentration in the portion near the surface does not increase.

【0025】また、第1段階アニールのヒ素圧Pが上記
(1)式を満たす必要があるのは、満たさないとAsの
飛散防止及びAsの基板への拡散が不十分となり、EL
2濃度が高くならないからである。
Further, the arsenic pressure P of the first-stage annealing must satisfy the above expression (1) because if it is not satisfied, the scattering of As and the diffusion of As into the substrate will be insufficient.
2 This is because the concentration does not increase.

【0026】さらに、第2段階アニールの温度が800
〜1000℃、好ましくは900〜950℃であるの
は、第2段階アニールによりEL2を発生させるために
EL2の生成温度(800〜1000℃)に保持する必
要があるからである。
Further, the temperature of the second stage annealing is 800
The reason why the temperature is ˜1000 ° C., preferably 900 to 950 ° C. is that it is necessary to maintain the EL2 generation temperature (800 to 1000 ° C.) in order to generate EL2 by the second stage annealing.

【0027】さらにまた、第2段階アニールのヒ素圧P
が上記(2)式を満たす必要があるのは、表面からのA
sの飛散を防止し、EL2濃度の減少を防止できるから
である。
Furthermore, the arsenic pressure P of the second stage annealing
Must satisfy the above formula (2) because A from the surface
This is because scattering of s can be prevented and a decrease in EL2 concentration can be prevented.

【0028】また、第1段階アニールと第2段階アニー
ルとの間で室温付近の温度まで冷却するが、この時の温
度は、エネルギー準位が0.40〜0.45eVのミドル
ドナーが生成しない400℃以下の温度であればよい。
Further, between the first-stage annealing and the second-stage annealing, the temperature is cooled to a temperature near room temperature, but at this temperature, a middle donor having an energy level of 0.40 to 0.45 eV is not generated. The temperature may be 400 ° C. or lower.

【0029】(実施例2)先ず、LEC法により直径8
4mm、直胴部長さ200mmの半絶縁性のアンドープGa
As単結晶を育成し、上記実施例1と同様にしてウェー
ハリング、エッチング及び洗浄を行った後、得られたウ
ェーハをダミーウェーハを含め100枚ずつ複数個の石
英アンプル内に真空封入した。そして、各石英アンプル
について、上記実施例1と同様に、1000〜1110
℃の温度での第1段階アニール、室温付近までの一旦冷
却、800〜1000℃の一定温度での第2段階アニー
ル及び室温までの冷却を連続して行った。この実施例2
でも、上記実施例1と同様に、第1段階及び第2段階の
アニール時に各石英アンプル内のヒ素圧Pが上記(1)
式及び上記(2)式をそれぞれ満たすように、各石英ア
ンプル内に適量のヒ素を封入しておいた。
(Embodiment 2) First, a diameter of 8 is obtained by the LEC method.
Semi-insulating undoped Ga with a length of 4 mm and a straight body length of 200 mm
After growing an As single crystal and performing wafer ring, etching and cleaning in the same manner as in Example 1, 100 wafers including dummy wafers were vacuum-sealed in each of the obtained wafers. Then, for each quartz ampoule, in the same manner as in Example 1 above, 1000 to 1110
First-stage annealing at a temperature of ℃, once cooling to near room temperature, second-stage annealing at a constant temperature of 800 to 1000 ° C., and cooling to room temperature were continuously performed. Example 2
However, as in the case of Example 1, the arsenic pressure P in each quartz ampoule during the annealing in the first step and the second step was the same as in the above (1).
An appropriate amount of arsenic was enclosed in each quartz ampule so as to satisfy the formula and the formula (2).

【0030】具体的には、各石英アンプルの熱処理条件
は表2に示す通りであった。
Specifically, the heat treatment conditions for each quartz ampoule were as shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】上記実施例1より求められたEL2濃度の
深さ方向の分布結果に基づいて、この実施例2で得られ
た各試料のウェーハの表面を60μmだけ鏡面研磨し、
その研磨面からシリコンイオンを注入して活性化熱処理
を行った後、Van derPauw法によりシートキ
ャリア濃度を測定して活性化率を調べた。
Based on the distribution result of the EL2 concentration in the depth direction obtained in the above-mentioned Example 1, the wafer surface of each sample obtained in this Example 2 was mirror-polished by 60 μm,
After activating the heat treatment for activation by implanting silicon ions from the polished surface, the concentration of the sheet carrier was measured by the Van der Pauw method to examine the activation rate.

【0033】(比較例1)比較として、上記実施例1と
同様にして作製したシリコンドープGaAs単結晶(ド
ープ量:6×1016cm-3)よりなる12枚のウェーハを
ダミーのGaAsウェーハ88枚と一緒に計100枚を
複適量のヒ素とともに石英アンプル内に真空封入し、熱
処理炉により1100℃で上記(1)式を満たさない比
較的低いヒ素圧雰囲気(ヒ素圧P=0.42atm )でも
ってアニールを行い、一旦室温付近まで冷却して石英ア
ンプル内からウェーハを取り出した後、窒素雰囲気中で
950℃の一定温度で再びアニールを行った。
Comparative Example 1 For comparison, 12 wafers made of silicon-doped GaAs single crystal (doping amount: 6 × 10 16 cm −3 ) manufactured in the same manner as in Example 1 were used as dummy GaAs wafers 88. A total of 100 sheets together with a proper amount of arsenic were vacuum-sealed in a quartz ampoule, and a relatively low arsenic pressure atmosphere (arsenic pressure P = 0.42 atm) that did not satisfy the above formula (1) at 1100 ° C. in a heat treatment furnace. Annealing was carried out, the wafer was taken out from the quartz ampoule once cooled to around room temperature, and then annealed again at a constant temperature of 950 ° C. in a nitrogen atmosphere.

【0034】このようにして得られた比較試料のウェー
ハの表面を、上記実施例1と同様に種々の研磨量で鏡面
研磨し、ショットキー電極及びオーミック電極を形成し
てDLTSにより深い準位の濃度を測定したところ、E
L2濃度の深さ方向の分布は、熱処理直後の基板表面か
らの深さが比較的浅い領域でのEL2濃度が、基板内部
におけるEL2濃度よりも低く、かつ基板内部において
飽和傾向を示すような分布であった。
The surface of the wafer of the comparative sample thus obtained was mirror-polished with various polishing amounts in the same manner as in Example 1 above, Schottky electrodes and ohmic electrodes were formed, and a deep level was obtained by DLTS. When the concentration was measured, E
The distribution of the L2 concentration in the depth direction is such that the EL2 concentration in a region where the depth from the substrate surface immediately after the heat treatment is relatively shallow is lower than the EL2 concentration inside the substrate and shows a saturation tendency inside the substrate. Met.

【0035】(比較例2)比較として、上記実施例2と
同様にして作製したアンドープGaAs単結晶とダミー
ウェハよりなる100枚のウェーハをAs圧が1 .65
atm となる量のヒ素とともに石英アンプル内に真空封入
し、熱処理炉により950℃でアニールを行い、冷却後
石英アンプル内からウェーハを取り出した。DLTS法
によるEL2濃度は、深さ方向による分布はなく、ほぼ
一定値(約1.5×1016cm-3)であった。
(Comparative Example 2) As a comparison, 100 wafers made of undoped GaAs single crystal and dummy wafers produced in the same manner as in Example 2 had an As pressure of 1. 65
A quartz ampoule was vacuum-sealed together with arsenic in an amount of atm, annealed at 950 ° C. in a heat treatment furnace, and after cooling, the wafer was taken out from the quartz ampoule. The EL2 concentration according to the DLTS method had an almost constant value (about 1.5 × 10 16 cm −3 ) without any distribution in the depth direction.

【0036】(比較例3)比較として、上記実施例2と
同様にして作製したアンドープGaAs単結晶とダミー
ウェーハよりなる100枚のウェーハを適量のヒ素とと
もに石英アンプル内に真空封入し、熱処理炉により11
00℃で上記(1)式を満たさない比較的低いヒ素圧雰
囲気(ヒ素圧P=0.42atm )でもってアニールを行
い、一旦室温付近まで冷却して石英アンプル内からウェ
ーハを取り出した後、窒素雰囲気中で950℃の一定温
度で再びアニールを行った。
(Comparative Example 3) For comparison, 100 wafers made of undoped GaAs single crystal and dummy wafers produced in the same manner as in Example 2 above were vacuum-sealed together with an appropriate amount of arsenic in a quartz ampoule and heated in a heat treatment furnace. 11
Annealing is performed in a relatively low arsenic pressure atmosphere (arsenic pressure P = 0.42 atm) that does not satisfy the above formula (1) at 00 ° C., and once cooled to around room temperature, the wafer is taken out from the quartz ampoule, and then nitrogen is removed. Annealing was performed again at a constant temperature of 950 ° C. in the atmosphere.

【0037】このようにして得られた比較試料のウェー
ハの表面を、上記実施例2と同様に60μmだけ鏡面研
磨し、その研磨面からシリコンイオンを注入して活性化
熱処理を行った後、Van der Pauw法により
シートキャリア濃度を測定して活性化率を調べた。この
比較例3と上記実施例2とを比べると、実施例2の活性
化率は比較例3の活性化率の103〜109%であり、
改善されていた。
The surface of the wafer of the comparative sample thus obtained was mirror-polished by 60 μm in the same manner as in Example 2, and silicon ions were implanted from the polished surface to carry out activation heat treatment, and then Van. The activation rate was investigated by measuring the sheet carrier concentration by the der Pauw method. Comparing this Comparative Example 3 with the above Example 2, the activation rate of Example 2 is 103 to 109% of the activation rate of Comparative Example 3,
Had been improved.

【0038】ただし、本発明を適用して得られたGaA
s基板においては、本出願人の先願に係る特開平2−1
92500号の発明により得られるGaAs基板よりも
カソードルミネッセンス像の均一性やABエッチングに
よるピット密度の点でやや劣るが、実用上は何等問題が
ない程度である。また、本発明によれば抵抗率のばらつ
きが4〜6%、移動度のばらつきが3%と先願と同等
で、FETのσVthが6〜8mVと先願より良好な特性を
有しており、しかも活性化率が改善されるという効果が
ある。
However, GaA obtained by applying the present invention
In the case of the s substrate, Japanese Patent Application Laid-Open No. 2-1
Although it is slightly inferior to the GaAs substrate obtained by the invention of No. 92500 in terms of the uniformity of the cathode luminescence image and the pit density by AB etching, there is no problem in practical use. Further, according to the present invention, the variation in resistivity is 4 to 6%, the variation in mobility is 3%, which is equivalent to that of the previous application, and the σVth of the FET is 6 to 8 mV, which is better than that of the previous application. Moreover, there is an effect that the activation rate is improved.

【0039】[0039]

【発明の効果】本発明に係るGaAs基板によれば、G
aAsよりなる薄板状の基板の内部よりも表面に近い部
分の方が、深い準位をなす固有欠陥であるEL2の濃度
が高くなっているため、例えば少なくとも基板表面から
の深さが60μmの部分のEL2濃度は1.6×1016
cm-3以上と従来よりも高くなり、イオン注入型のFET
などの電子デバイスの製造に供される基板表面近傍部分
における注入イオンの活性化率が改善されるという効果
が得られる。
According to the GaAs substrate of the present invention, G
Since the concentration of EL2, which is an intrinsic defect forming a deep level, is higher in a portion closer to the surface than in the inside of the thin plate substrate made of aAs, for example, at least a portion having a depth of 60 μm from the substrate surface. EL2 concentration of 1.6 × 10 16
cm -3 or higher, higher than before, and ion implantation type FET
It is possible to obtain an effect that the activation rate of implanted ions is improved in the vicinity of the surface of the substrate used for manufacturing electronic devices such as.

【0040】また、本発明に係るGaAs基板の製造方
法によれば、第1段階アニールによりウェーハの表面か
ら通常の表面研磨量以上の深さまでの領域に過剰なヒ素
が拡散し、第2段階アニールによりヒ素が拡散した深さ
領域においてEL2が生成し、基板表面に近い部分のE
L2濃度が内部よりも高くなる。基板内部のEL2濃度
は従来の基板におけるEL2濃度と同じであるので、電
子デバイスの製造に供される基板表面近傍部分における
EL2濃度が従来よりも高く、注入イオンの活性化率が
高いGaAs基板が得られる。
Further, according to the GaAs substrate manufacturing method of the present invention, excess arsenic is diffused into the region from the surface of the wafer to the depth equal to or more than the normal surface polishing amount by the first step annealing, and the second step annealing is performed. Causes EL2 to be generated in the depth region where arsenic is diffused, and E2 in a portion near the substrate surface
The L2 concentration becomes higher than the inside. Since the EL2 concentration inside the substrate is the same as the EL2 concentration in the conventional substrate, a GaAs substrate in which the EL2 concentration in the vicinity of the surface of the substrate used for the manufacture of electronic devices is higher than in the conventional case and the activation rate of implanted ions is high. can get.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用して作製したシリコンドープGa
As基板のEL2濃度の深さ方向分布を示す概略図であ
る。
FIG. 1 is a silicon-doped Ga produced by applying the present invention.
It is a schematic diagram showing distribution of EL2 density of an As substrate in the depth direction.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年5月12日[Submission date] May 12, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0035[Correction target item name] 0035

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0035】(比較例2)比較として、上記実施例
同様にして作製したシリコンドープGaAs単結晶(ド
ープ量:6×1016cm-3とダミーウェハよりなる10
0枚のウェーハをAs圧が1 .65atm となる量のヒ素
とともに石英アンプル内に真空封入し、熱処理炉により
950℃でアニールを行い、冷却後石英アンプル内から
ウェーハを取り出した。DLTS法によるEL2濃度
は、深さ方向による分布はなく、ほぼ一定値(約1.5
×1016cm-3)であった。
(Comparative Example 2) For comparison, a silicon-doped GaAs single crystal ( d) prepared in the same manner as in Example 1 was used.
Amount: 6 × 10 16 cm -3 ) and 10 consisting of dummy wafers
As wafer pressure of 1. A quartz ampoule was vacuum-sealed together with arsenic in an amount of 65 atm, annealed at 950 ° C. in a heat treatment furnace, and after cooling, the wafer was taken out from the quartz ampoule. The EL2 concentration according to the DLTS method does not have a distribution in the depth direction and has a substantially constant value (about 1.5).
× 10 16 cm -3 ).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 25/18 C30B 25/18 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C30B 25/18 C30B 25/18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 GaAsよりなる薄板状の基板の内部よ
りも表面に近い部分の方が、深い準位をなす固有欠陥で
あるEL2の濃度が高くなっていることを特徴とするG
aAs基板。
1. The concentration of EL2 which is an intrinsic defect forming a deep level is higher in a portion closer to the surface than in the inside of a thin plate substrate made of GaAs.
aAs substrate.
【請求項2】 少なくとも基板表面からの深さが60μ
mの部分のEL2濃度は1.6×1016cm-3以上である
ことを特徴とする請求項1記載のGaAs基板。
2. A depth of at least 60 μm from the substrate surface.
2. The GaAs substrate according to claim 1, wherein the EL2 concentration in the portion m is 1.6 × 10 16 cm −3 or more.
【請求項3】 薄板状の基板の内部よりも表面に近い部
分の方が、深い準位をなす固有欠陥であるEL2の濃度
が高くなるようなGaAs基板を製造するにあたって、
育成されたGaAs単結晶より切り出したウェーハを、
化学量論平衡蒸気圧の0.8倍以上のヒ素圧雰囲気中で
1000℃以上1110℃以下の温度で所定時間保持す
る第1段階アニールを行い、次いで400℃以下まで冷
却し、続いて化学量論平衡蒸気圧の2倍以上のヒ素圧雰
囲気中で800℃以上1000℃以下の温度で所定時間
保持する第2段階アニールを行った後、室温まで冷却す
るようにしたことを特徴とするGaAs基板の製造方
法。
3. In manufacturing a GaAs substrate in which the concentration of EL2, which is an intrinsic defect forming a deep level, is higher in a portion closer to the surface than in the inside of a thin plate-shaped substrate,
A wafer cut from the grown GaAs single crystal,
First-stage annealing is carried out in an arsenic pressure atmosphere of 0.8 times the stoichiometric equilibrium vapor pressure or more at a temperature of 1000 ° C. or more and 1110 ° C. or less, then cooled to 400 ° C. or less, and then stoichiometrically. A GaAs substrate characterized by being cooled to room temperature after performing a second-stage annealing in which the temperature is kept at 800 ° C. or higher and 1000 ° C. or lower for a predetermined time in an arsenic pressure atmosphere that is at least twice the equilibrium vapor pressure. Manufacturing method.
JP5764195A 1995-03-16 1995-03-16 Gaas substrate and its production Pending JPH08259396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5764195A JPH08259396A (en) 1995-03-16 1995-03-16 Gaas substrate and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5764195A JPH08259396A (en) 1995-03-16 1995-03-16 Gaas substrate and its production

Publications (1)

Publication Number Publication Date
JPH08259396A true JPH08259396A (en) 1996-10-08

Family

ID=13061525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5764195A Pending JPH08259396A (en) 1995-03-16 1995-03-16 Gaas substrate and its production

Country Status (1)

Country Link
JP (1) JPH08259396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8025729B2 (en) 2005-07-01 2011-09-27 Freiberger Compound Materials Gmbh Device and process for heating III-V wafers, and annealed III-V semiconductor single crystal wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8025729B2 (en) 2005-07-01 2011-09-27 Freiberger Compound Materials Gmbh Device and process for heating III-V wafers, and annealed III-V semiconductor single crystal wafer
US9181633B2 (en) 2005-07-01 2015-11-10 Freiberger Compound Materials Gmbh Device and process for heating III-V wafers, and annealed III-V semiconductor single crystal wafer

Similar Documents

Publication Publication Date Title
US4617066A (en) Process of making semiconductors having shallow, hyperabrupt doped regions by implantation and two step annealing
US4544418A (en) Process for high temperature surface reactions in semiconductor material
US6325848B1 (en) Method of making a silicon substrate with controlled impurity concentration
US4472206A (en) Method of activating implanted impurities in broad area compound semiconductors by short time contact annealing
JPH06112146A (en) Manufacture of diffusion type silicon element substrate
EP0148555A1 (en) A method for the pretreatment of a substrate for ion implantation
JPH02192500A (en) Production of compound semiconductor single crystal
JPH08259396A (en) Gaas substrate and its production
JPH0750692B2 (en) &lt;III&gt;-&lt;V&gt; Group compound semiconductor heat treatment method
US4929564A (en) Method for producing compound semiconductor single crystals and method for producing compound semiconductor devices
JP2906120B2 (en) Method for manufacturing GaAs substrate
JPS62265717A (en) Heat treating method for substrate for gallium arsenide integrated circuit
JPH02253622A (en) Manufacture of silicon carbide semiconductor device
JPH09194300A (en) Production of gaas substrate
JPS6130030A (en) Method of annealing multi-element semiconductor
JP2505222B2 (en) Method for manufacturing semi-insulating GaAs substrate
JPH02239199A (en) Production of semiinsulating inp single crystal
JP3793934B2 (en) Method for producing semi-insulating InP single crystal
RU2344210C1 (en) Method of hardening dislocation-free silicon plates
JPS60171300A (en) Homogenizing method of compound semiconductor crystal
JP3106197B2 (en) Method for manufacturing high resistance compound semiconductor
JPH02192722A (en) Manufacture of semiconductor device material
JP2545477B2 (en) Compound semiconductor single crystal, manufacturing method thereof, and semiconductor device using the same
JPH06295865A (en) Production of high resistance compound semiconductor
JPH0597596A (en) Gaas crystal and gaas device using the same