JPH0642489B2 - Heat treatment method for compound semiconductor wafer - Google Patents

Heat treatment method for compound semiconductor wafer

Info

Publication number
JPH0642489B2
JPH0642489B2 JP31571390A JP31571390A JPH0642489B2 JP H0642489 B2 JPH0642489 B2 JP H0642489B2 JP 31571390 A JP31571390 A JP 31571390A JP 31571390 A JP31571390 A JP 31571390A JP H0642489 B2 JPH0642489 B2 JP H0642489B2
Authority
JP
Japan
Prior art keywords
semiconductor wafer
compound semiconductor
heat treatment
treatment method
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31571390A
Other languages
Japanese (ja)
Other versions
JPH04188626A (en
Inventor
スン パルク、ジョー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP31571390A priority Critical patent/JPH0642489B2/en
Publication of JPH04188626A publication Critical patent/JPH04188626A/en
Publication of JPH0642489B2 publication Critical patent/JPH0642489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は化合物の半導体ウェーハの熱処理方法に係わ
り、特に高い揮発性元素を含む化合物の半導体ウェーハ
の熱処理方法に関する。
The present invention relates to a heat treatment method for a compound semiconductor wafer, and more particularly to a heat treatment method for a compound semiconductor wafer containing a highly volatile element.

(従来の技術) 最近情報通信の社会へ急激に発展することにより超高速
コンピューター超高周波及び光通信に対する必要性が更
に増加している。しかし既存Siを利用した素子ではこ
のような必要性を満たすことに限界がある。従って物質
特性が優れた化合物の半導体に関する研究が活発に進行
している。
(Prior Art) With the recent rapid development of information and communication societies, the need for ultra-high-speed computers, ultra-high-frequency and optical communications is increasing. However, there is a limit in the element using the existing Si to satisfy such a need. Therefore, research on compound semiconductors having excellent material properties is actively underway.

化合物半導体の代表的なGaAsでは、インゴットが成
長すると結晶内部に転位空虚格子点、格子間原子及びA
s析出物などの欠陥が発生する。このような欠陥などは
結晶内で不均一に分布することになるので、Zochr
alski氏による一般的なLEC(カプセルに包まれ
た液体)法によって生産されたインゴットから作られた
ウェーハを利用して素子を製作すると素子特性が不均一
になって信頼性が低下する。従って上記ウェーハを所定
の熱処理を行なって欠陥などを均一に分布させ、均一の
電気的特性を有するようにする。
In GaAs, which is a typical compound semiconductor, when an ingot grows, dislocation void lattice points, interstitial atoms, and A
s Defects such as precipitates occur. Since such defects are distributed unevenly in the crystal, Zochr
When a device is manufactured using a wafer made of an ingot produced by the general LEC (Liquid Encapsulated Liquid) method by Alski, the device characteristics become non-uniform and the reliability is lowered. Therefore, the wafer is subjected to a predetermined heat treatment so that defects and the like are evenly distributed and have uniform electric characteristics.

第2図は従来の化合物半導体のウェーハの熱処理方法を
示している。先ず熱処理用ウェーハ1の両側面にこの熱
処理用ウェーハ1と同一の種類の保護用ウェーハ3など
を接触させ過剰試料5と共に石英などから作ったチュー
ブ7の中に入れる。次に、上記チューブ7の内部を真空
状態にして密封した後ヒーター9でチューブ7を加熱し
800〜900℃程度で数10分〜数時間維持した後冷
却する。上記の熱処理用ウェーハ1では、GaAs時の
GaよりAsの揮発温度が非常に低いので熱処理工程中
にAsの揮発が発生し易い。従って過剰試料5でAsを
使用して真空状態のチューブ7内部をAs雰囲気にして
熱処理用ウェーハ1からAsが揮発することを抑制す
る。また、上記保護用ウェーハ3などは熱処理用ウェー
ハ1のAsが揮発することを抑制するだけでなくこの熱
処理用ウェーハ1にAsを供給するようになる。上記に
て熱処理工程を行なう前にチューブ7を真空にする理由
は熱処理用ウェーハ1が酸化及び汚染されることを防止
するためである。
FIG. 2 shows a conventional heat treatment method for a compound semiconductor wafer. First, both sides of the heat treatment wafer 1 are contacted with a protection wafer 3 of the same type as the heat treatment wafer 1 and the like, and they are put together with an excess sample 5 into a tube 7 made of quartz or the like. Next, the inside of the tube 7 is evacuated and sealed, and then the tube 7 is heated by the heater 9 and maintained at about 800 to 900 ° C. for several tens of minutes to several hours and then cooled. In the above-mentioned heat treatment wafer 1, the volatilization temperature of As is much lower than that of Ga at the time of GaAs, so that As volatilizes easily during the heat treatment process. Therefore, in the excess sample 5, As is used and the inside of the tube 7 in a vacuum state is set to As atmosphere to suppress the volatilization of As from the heat treatment wafer 1. Further, the protection wafer 3 and the like not only suppress the volatilization of As of the heat treatment wafer 1, but also supply As to the heat treatment wafer 1. The reason why the tube 7 is evacuated before performing the heat treatment step is to prevent the heat treatment wafer 1 from being oxidized and contaminated.

上述の熱処理方法では真空状態のチューブの内部に熱が
加えられAs気体状態にしてAs気体圧力によってウェ
ーハ内のAsの組成が制御される。
In the heat treatment method described above, heat is applied to the inside of the tube in a vacuum state to bring it into an As gas state, and the composition of As in the wafer is controlled by the As gas pressure.

(発明が解決しようとする課題) しかし、熱処理工程を行なう前のウェーハにはAsの析
出物が不均一に分布している。上記不均一に分布してい
るAsの析出物によって熱処理工程を行なう時、ウェー
ハの表面にてAsの揮発及び内部拡散を均一にするには
難しい問題点があった。また、固体と気体の不均一な界
面状態に熱処理工程を行なう時表面の荒さ及び空虚格子
点などの欠陥が不均一に発生する問題点があった。
(Problems to be Solved by the Invention) However, As precipitates are unevenly distributed on the wafer before the heat treatment step. When the heat treatment process is performed by using the non-uniformly distributed As precipitates, it is difficult to uniformly vaporize and internally diffuse As on the surface of the wafer. Further, there is a problem that defects such as surface roughness and void lattice points are nonuniformly generated when a heat treatment process is performed on a nonuniform interface state of solid and gas.

従って、この発明の目的はウェーハの表面及びその内部
にAs析出物が均一に分布することのできる化合物半導
体ウェーハの熱処理方法を提供することにある。
Therefore, an object of the present invention is to provide a heat treatment method for a compound semiconductor wafer in which As precipitates can be uniformly distributed on the surface of the wafer and inside thereof.

この発明の他の目的は空虚格子点を表面荒さなどの欠陥
が均一に分布することのできる化合物半導体ウェーハの
熱処理方法を提供することにある。
Another object of the present invention is to provide a heat treatment method for a compound semiconductor wafer in which defects such as surface roughness can be evenly distributed in vacant lattice points.

[発明の構成] (課題を解決するための手段) このような目的を達成するためにこの発明は、高い揮発
性元素を含む化合物半導体ウェーハの熱処理方法におい
て、スライダーの溝に化合物半導体ウェーハを位置さ
せ、ホルダのウェルに試料を入れてウェルの入口を密封
材で密封した後第1次熱を加えて試料を溶融させる工程
と、上記スライダーを移動させ前記溝とウェルとを一致
させ溶融された試料が化合物半導体ウェーハの全表面を
覆うようにした後、第2次熱を加えて化合物半導体ウェ
ーハの表面を均質化する工程と、前記溝とウェルとを分
離して常温で急冷させた後第3次熱を加えて熱誘起応力
を除去する工程とから成ることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve such an object, the present invention provides a method for heat treating a compound semiconductor wafer containing a highly volatile element, wherein the compound semiconductor wafer is positioned in the groove of the slider. Then, a step of putting the sample in the well of the holder and sealing the inlet of the well with a sealing material and then applying primary heat to melt the sample, and moving the slider so that the groove and the well are aligned and melted After the sample is made to cover the entire surface of the compound semiconductor wafer, a second heat is applied to homogenize the surface of the compound semiconductor wafer, and the groove and well are separated and rapidly cooled at room temperature. And a step of removing thermally induced stress by applying tertiary heat.

(実施例) 以下、添付した図面を参照してこの発明を詳細に説明す
る。
(Example) Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1A図乃至第1C図はこの発明による化合物半導体ウ
ェーハの熱処理方法を示している。第1A図を参照する
に、所定の洗浄工程によって準備された半絶縁性GaA
sウェーハ11をスライダー15の溝13に位置させ、
このウェーハ11の化学量論を維持するために10gの
Ga当り300〜1000mgの多結晶GaAsを混合さ
せた試料21をホルダ17のウェル19の中に入れ、こ
のウェル19を密封材23で密封した後電気炉の反応管
25の中に押し込む。上記にて溝13にウェーハ11を
位置させる時50μm程度の空隙tを有するようにす
る。また上記電気炉は均一の温度分布を維持するように
反応管25の外部をヒーター27で覆う。
1A to 1C show a heat treatment method for a compound semiconductor wafer according to the present invention. Referring to FIG. 1A, semi-insulating GaA prepared by a predetermined cleaning process.
s Position the wafer 11 in the groove 13 of the slider 15,
To maintain the stoichiometry of the wafer 11, a sample 21 containing 300 to 1000 mg of polycrystalline GaAs per 10 g of Ga was placed in the well 19 of the holder 17, and the well 19 was sealed with the sealing material 23. It is pushed into the reaction tube 25 of the rear electric furnace. When the wafer 11 is positioned in the groove 13 as described above, a gap t of about 50 μm is provided. Further, in the electric furnace, the outside of the reaction tube 25 is covered with a heater 27 so as to maintain a uniform temperature distribution.

次に、上記ヒーター27を加熱して反応管25の温度を
600〜700℃程度で1〜5時間維持させる。この時
上記試料21などは溶融され、Gaの中に含まれるGa
23は上記密封材23でスラグされる。上記にて密封材
23は上記溶融された試料21と反応しないで揮発を発
生しない物質として通常B23がケーキ状で利用され
る。上記にてB23をH2Oの含有量が200〜400p
pm程度の超乾式状態になるようにして上記溶融された試
料21と酸素とが反応して生成されるGa23の量を減
少させる。
Next, the heater 27 is heated to maintain the temperature of the reaction tube 25 at about 600 to 700 ° C. for 1 to 5 hours. At this time, the sample 21 and the like are melted and are contained in Ga.
2 O 3 is slagged by the sealing material 23. In the above, the sealing material 23 is usually B 2 O 3 in the form of a cake that does not react with the melted sample 21 and does not generate volatilization. In the above, the content of B 2 O 3 and H 2 O is 200 to 400 p.
The amount of Ga 2 O 3 produced by the reaction of the melted sample 21 and oxygen is reduced so as to be in an ultra dry state of about pm.

第1B図を参照するに、上記スライダー15を移動させ
溝13をウェル19と一致させるウェーハ11の表面が
溶融された試料21で覆われるようになる。次に、温度
を900℃以上上昇させ2〜5時間維持するとウェーハ
11の表面に不均一に分布していたAs析出物が再固容
される。第1C図を参照するに、上記スライダー15を
所定位置へ移動させ溝13とウェル19とを分離させた
後300〜1200℃/hrの冷却速度によって常温ま
で冷却する。この時上記ウェーハ11の表面に空隙の厚
さtを有するエピタキシャル層が形成される。上記にて
エピタキシャル層29を急速に冷却するので、Asの拡
散時間は最小化されAs析出物が小さく均一な大きさで
再析出される。また、上記冷却時にウェーハ11とエピ
タキシャル層29の間に熱による残留応力が多く存在す
る。従ってヒーター27を再び加熱して600〜700
℃程度の温度で5〜30時間維持しウェーハ11とエピ
タキシャル層29との間の熱誘起残留応力を除去する。
この時、上記急冷時に再析出された小さく均一な大きさ
を持つ核を中心としてAsが拡散され均一な大きさのA
s析出物が形成される。
Referring to FIG. 1B, the slider 15 is moved to align the groove 13 with the well 19, and the surface of the wafer 11 is covered with the melted sample 21. Next, when the temperature is raised to 900 ° C. or higher and maintained for 2 to 5 hours, the As precipitates that are non-uniformly distributed on the surface of the wafer 11 are solidified again. Referring to FIG. 1C, the slider 15 is moved to a predetermined position to separate the groove 13 and the well 19 and then cooled to room temperature at a cooling rate of 300 to 1200 ° C./hr. At this time, an epitaxial layer having a void thickness t is formed on the surface of the wafer 11. Since the epitaxial layer 29 is rapidly cooled as described above, the diffusion time of As is minimized and As precipitates are re-deposited in a small and uniform size. In addition, a large amount of residual stress due to heat exists between the wafer 11 and the epitaxial layer 29 during the cooling. Therefore, the heater 27 is heated again to 600 to 700.
The temperature is kept at about 5 ° C. for 5 to 30 hours to remove the thermally induced residual stress between the wafer 11 and the epitaxial layer 29.
At this time, As is diffused around the small and uniform size nuclei re-precipitated during the rapid cooling, and
s precipitates are formed.

次に、上記ウェーハ11を冷却した後ポリシング工程を
経て表面に形成されたエピタキシャル層29を除去し良
質の鏡面を有するウェーハを形成する。また、上述した
熱処理工程の時にウェーハの表面及び内部にある空虚格
子点及びウェーハの表面の荒さなどの欠陥が除去され
る。
Next, after cooling the wafer 11, the epitaxial layer 29 formed on the surface is removed through a polishing process to form a wafer having a good mirror surface. In addition, defects such as voids on the surface and inside of the wafer and roughness of the surface of the wafer are removed during the heat treatment process described above.

以上のようにこの発明の実施例としてGaAsを説明し
たが、この発明の思想に逸脱しない限りInAs,In
P及びGaPなどに適用することもできる。
Although GaAs has been described as an embodiment of the present invention as described above, InAs, In
It can also be applied to P and GaP.

〔発明の効果〕〔The invention's effect〕

従って上述のごとく、この発明は多結晶GaAsが溶解
されたGa溶液の液状を利用してGaAsウェーハを熱
処理するのでこのGaAsウェーハの表面及び内部に分
布されるAs析出物及び欠陥などが均一になり電気的特
性が均一になる利点がある。
Therefore, as described above, according to the present invention, since the GaAs wafer is heat-treated by utilizing the liquid of Ga solution in which the polycrystalline GaAs is dissolved, As precipitates and defects distributed on the surface and inside of the GaAs wafer become uniform. There is an advantage that the electrical characteristics are uniform.

【図面の簡単な説明】[Brief description of drawings]

第1A乃至第1C図はこの発明による半絶縁性GaAs
ウェーハの熱処理方法を示す図、第2図は従来の半絶縁
性GaAsウェーハの熱処理方法を示す図である。 11…化合物半導体ウェーハ 13…溝 15…スライダー 17…ホルダ 19…ウェル 21…試料 23…密封材 25…反応管 27…ヒーター 29…エピタキシャル層
1A to 1C are semi-insulating GaAs according to the present invention.
FIG. 2 is a diagram showing a heat treatment method for a wafer, and FIG. 2 is a diagram showing a conventional heat treatment method for a semi-insulating GaAs wafer. 11 ... Compound semiconductor wafer 13 ... Groove 15 ... Slider 17 ... Holder 19 ... Well 21 ... Sample 23 ... Sealing material 25 ... Reaction tube 27 ... Heater 29 ... Epitaxial layer

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】高い揮発性物質を含む化合物半導体ウェー
ハの熱処理方法において、スライダーの溝に化合物半導
体ウェーハを位置させ、ホルダのウェルに試料を入れて
ウェルの入口を密封材で密封した後第1次熱を加えて試
料を溶融させる工程と、 前記スライダーを移動させ上記溝とウェルとを一致させ
溶融された試料が化合物半導体ウェーハの全表面を覆う
ようにした後第2次熱を加えて化合物半導体ウェーハの
表面を均質化する工程と、 前記溝とウェルとを分離して常温で急冷させた後第3次
熱を加えて熱誘起応力を除去する工程とから成る化合物
半導体ウェーハの熱処理方法。
1. A heat treatment method for a compound semiconductor wafer containing a highly volatile substance, wherein the compound semiconductor wafer is positioned in a groove of a slider, a sample is put in a well of a holder, and an inlet of the well is sealed with a sealing material. Applying a second heat to melt the sample; moving the slider to align the groove with the well so that the melted sample covers the entire surface of the compound semiconductor wafer; A heat treatment method for a compound semiconductor wafer, comprising: a step of homogenizing a surface of a semiconductor wafer; and a step of separating the groove and the well, quenching them at room temperature, and then applying a third heat to remove thermally induced stress.
【請求項2】溝は化合物半導体ウェーハと50μm程度
の空隙を有するように深さを調節されたことを特徴とす
る請求項(1)記載の化合物半導体ウェーハの熱処理方
法。
2. The heat treatment method for a compound semiconductor wafer according to claim 1, wherein the groove has a depth adjusted to have a gap of about 50 μm with the compound semiconductor wafer.
【請求項3】試料は高い揮発性物質外の物質の10g当
り化合物半導体ウェーハと同一の組成の多結晶物質の3
00〜1000mgの比率で混合された物質であることを
特徴とする請求項(1)記載の化合物半導体ウェーハの
熱処理方法。
3. The sample is 3 g of a polycrystalline material having the same composition as the compound semiconductor wafer per 10 g of the material other than the highly volatile material.
The heat treatment method for a compound semiconductor wafer according to claim 1, wherein the substances are mixed in a ratio of 0 to 1000 mg.
【請求項4】密封材がB23であることを特徴とする請
求項(1)記載の化合物半導体ウェーハの熱処理方法。
4. The heat treatment method for a compound semiconductor wafer according to claim 1, wherein the sealing material is B 2 O 3 .
【請求項5】B23は水分の含有量が200〜400pp
m程度であることを特徴とする請求項(4)記載の化合
物半導体ウェーハの熱処理方法。
5. B 2 O 3 has a water content of 200 to 400 pp
The heat treatment method for a compound semiconductor wafer according to claim 4, wherein the heat treatment is about m.
【請求項6】第1次熱は試料が600〜700℃にて1
〜5時間維持されるように加えられたことを特徴とする
請求項(1)記載の化合物半導体ウェーハの熱処理方
法。
6. The primary heat of the sample is 1 at 600 to 700.degree.
The method for heat treating a compound semiconductor wafer according to claim 1, wherein the heat treatment is performed for about 5 hours.
【請求項7】第2次熱は試料が900℃以上にて2〜5
時間維持されるように加えられたことを特徴とする請求
項(1)記載の化合物半導体ウェーハの熱処理方法。
7. The secondary heat is 2 to 5 when the sample is 900 ° C. or higher.
The heat treatment method for a compound semiconductor wafer according to claim 1, wherein the heat treatment is performed so that the time is maintained.
【請求項8】応力を除去する工程で化合物半導体ウェー
ハを常温へ急冷させる時300〜1200℃/hrの冷
却速度を持つことを特徴とする請求項(1)記載の化合
物半導体ウェーハの熱処理方法。
8. The heat treatment method for a compound semiconductor wafer according to claim 1, wherein the compound semiconductor wafer has a cooling rate of 300 to 1200 ° C./hr when the compound semiconductor wafer is rapidly cooled to room temperature in the stress removing step.
【請求項9】化合物半導体ウェーハはIII−V族化合物
半導体ウェーハであることを特徴とする請求項(1)記
載の化合物半導体ウェーハの熱処理方法。
9. The heat treatment method for a compound semiconductor wafer according to claim 1, wherein the compound semiconductor wafer is a III-V group compound semiconductor wafer.
【請求項10】上記III−V族化合物半導体ウェーハは
GaAs,InAs,GaP及びInP中の一つである
ことを特徴とする請求項(9)記載の化合物半導体ウェ
ーハの熱処理方法。
10. The heat treatment method for a compound semiconductor wafer according to claim 9, wherein the III-V compound semiconductor wafer is one of GaAs, InAs, GaP and InP.
JP31571390A 1990-11-22 1990-11-22 Heat treatment method for compound semiconductor wafer Expired - Fee Related JPH0642489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31571390A JPH0642489B2 (en) 1990-11-22 1990-11-22 Heat treatment method for compound semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31571390A JPH0642489B2 (en) 1990-11-22 1990-11-22 Heat treatment method for compound semiconductor wafer

Publications (2)

Publication Number Publication Date
JPH04188626A JPH04188626A (en) 1992-07-07
JPH0642489B2 true JPH0642489B2 (en) 1994-06-01

Family

ID=18068644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31571390A Expired - Fee Related JPH0642489B2 (en) 1990-11-22 1990-11-22 Heat treatment method for compound semiconductor wafer

Country Status (1)

Country Link
JP (1) JPH0642489B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036435B4 (en) 2003-08-07 2007-08-30 Nanophotonics Ag Holding device for disc-shaped objects

Also Published As

Publication number Publication date
JPH04188626A (en) 1992-07-07

Similar Documents

Publication Publication Date Title
KR950014610B1 (en) Procedure and apparatus for rapid thermal annealing of implantation semiconductor
GB2080780A (en) Heat treatment of silicon slices
GB2280312A (en) Method of preparing semiconductor with good intrinsic gettering
JPH0324055B2 (en)
JPH0642489B2 (en) Heat treatment method for compound semiconductor wafer
JPH05308076A (en) Oxygen deposition method of silicon wafer
EP1347508B1 (en) Method of heat treatment of silicon wafer doped with boron
JPS6046022A (en) Pretreating method of ion implanted substrate
US3666546A (en) Ion-free insulating layers
KR930004120B1 (en) Thermal treating method of compound semiconductor wafer
JPH0480880B2 (en)
KR20030021185A (en) Method and apparatus for forming a silicon wafer with a denuded zone
Vaidyanathan et al. Electrical properties and atomic distribution studies in ion implanted InP
US5098867A (en) Heat treatment for compound semiconductor wafer
Dodabalapur et al. Phosphorus-overpressure rapid thermal annealing of indium phosphide
JP2602857B2 (en) Method of improving semiconductor crystal substrate
US5093284A (en) Process for homogenizing compound semiconductor single crystal in properties
JP2737781B2 (en) Heat treatment method for compound semiconductor substrate
Pearton et al. High temperature rapid thermal annealing of InP and related materials
US3846194A (en) Process for producing lightly doped p and n-type regions of silicon on an insulating substrate
KR100329776B1 (en) Method of fabricating semiconductor device for removing crystal-originated pit on silicon wafer
JP2906120B2 (en) Method for manufacturing GaAs substrate
JPH0723275B2 (en) Gallium arsenide single crystal growth method
JPS62171117A (en) Heat treatment of semiconductor wafer
JPH0480878B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees