JPS62171117A - Heat treatment of semiconductor wafer - Google Patents

Heat treatment of semiconductor wafer

Info

Publication number
JPS62171117A
JPS62171117A JP1259486A JP1259486A JPS62171117A JP S62171117 A JPS62171117 A JP S62171117A JP 1259486 A JP1259486 A JP 1259486A JP 1259486 A JP1259486 A JP 1259486A JP S62171117 A JPS62171117 A JP S62171117A
Authority
JP
Japan
Prior art keywords
heat treatment
quartz boat
quartz
furnace
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1259486A
Other languages
Japanese (ja)
Inventor
Hideo Yamada
秀夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1259486A priority Critical patent/JPS62171117A/en
Publication of JPS62171117A publication Critical patent/JPS62171117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent the dissociation of As, to hold down the occurrence of crystal defect in the vicinity of an interface and the diffusion of implanted ions, and to obtain a steep distribution of carrier concentration, by a method wherein wafers after ion implantation are subjected to heat treatment with boron oxide used as a sealing agent and with the inside of a furnace filled with the atmosphere of hydrogen or inactive gas of a prescribed temperature, the temperature is lowered thereafter and the wafers are taken out before the boron oxide becomes hard. CONSTITUTION:GaAs wafers 5 and B2O3 6 are put in a quartz boat 7. A cap 3 and an operating rod 4 are set to a quartz reaction tube 2 and the quartz boat 7 respectively. After the atmosphere inside the quartz reaction tube 2 is replaced by an Ar atmosphere of inactive gas, the center and its vicinity of a furnace are made to be a zone of uniform heat at the temperature of 700 deg.C-900 deg.C. The quartz boat 7 is moved to the center of the furnace by the operating rod 4 and subjected to heat treatment of heating for 20min. After the heat treatment, the quartz boat 7 is drawn out by the operating rod 4 and cooled, and the GaAs wafers 5 are taken out before B2O3 becomes hard.

Description

【発明の詳細な説明】 [発明の背景と目的] 本発明は、半導体特にガリウムヒ素(Ga As )等
の化合物半導体の熱処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Background and Objects of the Invention] The present invention relates to a method for heat treating semiconductors, particularly compound semiconductors such as gallium arsenide (GaAs).

一般に、Qa 、As化合物半導体ウェハの熱処理方法
としては、Asの解離を防止するために、二酸化シリコ
ン(Si 02 )や窒化シリコン(Si 3 N4)
を保護膜としてウェハ表面に被着する方法が従来から行
なわれてきた。この方法では、GaAsの熱膨張係数が
8.7X 10−”C’に比べ、SiO2が8.5X1
0づ℃”、Si3N4が2X104℃°!と1桁前侵異
なるため、GaASウェハ表面と保護膜との界面に熱応
力が発生し、結晶欠陥を誘発すると言う欠点があった。
In general, as a heat treatment method for Qa, As compound semiconductor wafers, silicon dioxide (Si 02 ) or silicon nitride (Si 3 N4) is used to prevent the dissociation of As.
Conventionally, a method has been used in which a protective film is applied to the wafer surface. In this method, the coefficient of thermal expansion of GaAs is 8.7X 10-"C', while the coefficient of thermal expansion of SiO2 is 8.5
Since Si3N4 has a one-digit difference in penetration of 2×104°C!, thermal stress is generated at the interface between the GaAS wafer surface and the protective film, which induces crystal defects.

そして、この結晶欠陥は、イオン打込み法によって形成
した能動力の活性化率を低減する原因となっていた。
This crystal defect causes a reduction in the activation rate of the active force formed by the ion implantation method.

また、界面に発生した熱応力は、打ち込まれたイオンの
拡散を助長し急峻なキャリヤ濃度分布が1qられないた
め、デバイスの周波数特性や高速化にとって支障となっ
ていた。一方、ASの解離を補償するため、アルシン(
AS H3>ガス雰囲気中で熱処理する方法もあるが、
アルシンは非常に有毒なガスであるため、ガスの置換や
試料の取扱いに時間を要するなどの理由から実用的とは
云えない。
In addition, the thermal stress generated at the interface promotes the diffusion of implanted ions and prevents the steep carrier concentration distribution from becoming 1q, which has been an obstacle to improving the frequency characteristics and speed of the device. On the other hand, to compensate for the dissociation of AS, arsine (
AS H3> There is also a method of heat treatment in a gas atmosphere,
Since arsine is a highly toxic gas, it is not practical because it requires time to replace the gas and handle the sample.

本発明は上記の状況に鑑みなされたものであり、Asの
解離を阻止し界面付近の結晶欠陥の発生を防止し、打ち
込まれたイオンの拡散を抑え、また、急峻なキャリヤ濃
度分布を得ることができる半導体の熱処理方法も提供す
ることを目的とするものである。
The present invention was made in view of the above situation, and aims to prevent the dissociation of As, prevent the generation of crystal defects near the interface, suppress the diffusion of implanted ions, and obtain a steep carrier concentration distribution. It is also an object of the present invention to provide a method for heat treatment of semiconductors that can perform the following steps.

[発明の概要コ 本発明の半導体ウェハの熱処理方法は、イオン打込み法
を用いた半導体ウェハのデバイス製造時の熱処理の場合
に、上記イオン打込み後の上記半導体ウェハに酸化ホウ
素を封止剤として適用し、炉内が700〜900℃の水
素または不活性ガス雰囲気中で加熱処理を行ない、その
後酸化ホウ素が固化する前に上記半導体ウェハを取り出
し上記イオンの拡散を抑える方法である。即ち、熱処理
用保護剤として酸化ホウ素(B203 )を用いる方法
である。
[Summary of the Invention] The semiconductor wafer heat treatment method of the present invention includes applying boron oxide as a sealant to the semiconductor wafer after the ion implantation in the case of heat treatment during device manufacturing of the semiconductor wafer using the ion implantation method. However, in this method, heat treatment is performed in a hydrogen or inert gas atmosphere at a temperature of 700 to 900° C. in a furnace, and then the semiconductor wafer is taken out before the boron oxide solidifies to suppress the diffusion of the ions. That is, this method uses boron oxide (B203) as a protective agent for heat treatment.

B203の温度特性は、融点577℃、沸点1500℃
以上である。半導体の熱処理温度は700〜900℃の
範囲が最適条件であることから、この温度範囲において
は8203は液体となっている。即ち、GaAs半導体
ウェハはB203の液体中で熱処理を受けることになる
The temperature characteristics of B203 are melting point 577℃, boiling point 1500℃
That's all. Since the optimum heat treatment temperature for semiconductors is in the range of 700 to 900°C, 8203 is a liquid in this temperature range. That is, the GaAs semiconductor wafer is subjected to heat treatment in the B203 liquid.

また、B203の比重1.84に対しGaAsは5.3
であることから、GaASウェハは液体820s中に沈
むこととなる。そして、GaAs半導体ウェハの700
〜900℃におけるAsの・解離圧は、3 X 10 
’〜2X104atmである。
In addition, while B203 has a specific gravity of 1.84, GaAs has a specific gravity of 5.3.
Therefore, the GaAS wafer will sink into the liquid 820s. And 700 of GaAs semiconductor wafers
The dissociation pressure of As at ~900°C is 3 x 10
'~2X104 atm.

この解離圧をウェハと接する8203のみで補償すると
なれば、20〜120#圧の8203層で覆う必要があ
るが、実際の熱処理は大気圧下で行なうため20m厚前
後で十分と云える。
If this dissociation pressure were to be compensated for only by the 8203 layer in contact with the wafer, it would be necessary to cover the 8203 layer with a pressure of 20 to 120 #, but since the actual heat treatment is performed under atmospheric pressure, a thickness of around 20 m is sufficient.

そして、熱処理温度から降温し、B203が固化する前
にウェハを取り出すことにより、ウェハにSiO2及び
5i3Naの場合のような熱応力を与えることがない。
By lowering the temperature from the heat treatment temperature and removing the wafer before B203 solidifies, thermal stress is not applied to the wafer as in the case of SiO2 and 5i3Na.

[実施例] 以下本発明の半導体の熱処理方法を実施例を用い第1図
、第2図により説明する。第1図は実施装置及び熱処理
時の温度分布説明図、第2図は第1図の石英ボートの横
断面図である。図において、1は横型炉、2は石英反応
管、3は石英反応管の蓋、4は操作棒、5はGaAsウ
ェハ、6は封止剤のB2O3,7は石英ボートである。
[Example] Hereinafter, the semiconductor heat treatment method of the present invention will be explained using an example with reference to FIGS. 1 and 2. FIG. 1 is an explanatory diagram of the implementation apparatus and temperature distribution during heat treatment, and FIG. 2 is a cross-sectional view of the quartz boat of FIG. 1. In the figure, 1 is a horizontal furnace, 2 is a quartz reaction tube, 3 is a lid of the quartz reaction tube, 4 is an operating rod, 5 is a GaAs wafer, 6 is a sealant B2O3, and 7 is a quartz boat.

横型炉1及び反応石英管2により形成された熱処理装置
において、石英ボート7の中にGa Asウェハ5とB
2036を挿入する。次に、石英材からなる蓋3と操作
棒4とを、石英反応管2及び石英ボート7にセットする
。石英反応管2の内部を不活性ガスのAr雰囲気に置換
後、横軸に時間をとり縦軸に温度をとって示した曲線A
の温度分布となるように温度調節を行ない、炉の中心付
近を800°Cの均熱ゾーンとする。そして、操作棒4
にて石英ボート7を炉の中心に移動し、20分間加熱の
熱処理を行なう。
In a heat treatment apparatus formed by a horizontal furnace 1 and a reaction quartz tube 2, GaAs wafers 5 and B are placed in a quartz boat 7.
Insert 2036. Next, the lid 3 and the operating rod 4 made of quartz are set in the quartz reaction tube 2 and the quartz boat 7. Curve A shown after replacing the inside of the quartz reaction tube 2 with an inert gas Ar atmosphere, with time plotted on the horizontal axis and temperature plotted on the vertical axis.
The temperature was adjusted so that the temperature distribution was as follows, and the area near the center of the furnace was set as an 800°C soaking zone. And operation stick 4
The quartz boat 7 was moved to the center of the furnace and heat treatment was performed for 20 minutes.

このとき、820a 6は液体となりGaAsウェハ5
の周りを覆うとともに、挿入前の状態ではGa Asの
上下に8203が配置されていたが、比重の差によりG
aAsウェハ5が石英ボート7の底に沈むことになる。
At this time, 820a 6 becomes liquid and the GaAs wafer 5
8203 was placed above and below GaAs before insertion, but due to the difference in specific gravity, G
The aAs wafer 5 will sink to the bottom of the quartz boat 7.

GaAsウェハ5を最初から石英ボート7の底に位置さ
せた場合は、空気をGaAsウェハ5の裏面に抱き込む
可能性があるため第2図に示すように上下を82036
にで挾むようにすることが好ましい。即ち、底部に82
036があれば対流により空気を追い出すことができる
。20分間の熱処理後、操作棒4により石英ボート7を
引き出し冷却する。そして、B203が固化する館にG
a Asウェハ5を取り出す。しかし、若干のB203
6がGa、、A、sウェハ5に密着してしまうため、温
硫酸によりB2036を溶解する。硫酸はGa Asに
対しエツチング作用がないため、Ga Asウェハ5の
表面に何等影響を与えることはない。
If the GaAs wafer 5 is placed at the bottom of the quartz boat 7 from the beginning, there is a possibility that air will be trapped on the back side of the GaAs wafer 5. Therefore, as shown in FIG.
It is preferable to sandwich it between the two. i.e. 82 at the bottom
With 036, air can be expelled by convection. After heat treatment for 20 minutes, the quartz boat 7 is pulled out using the operating rod 4 and cooled. Then, in the building where B203 solidifies, G
a Take out the As wafer 5. However, some B203
Since B2036 adheres closely to the Ga, A, S wafer 5, B2036 is dissolved with warm sulfuric acid. Since sulfuric acid has no etching effect on GaAs, it does not affect the surface of the GaAs wafer 5 in any way.

このように本実施例の半導体の熱処理方法においては、
GaAsの熱処理用保護剤として溶融B2O3を用いか
つ、B203が固化する前にGaAsウェハを取り出す
ことによりAs解離を防止すると共に界面付近の結晶欠
陥の発生を抑制し、イオン打ち込みを行なった能動層の
活性化率を、従来の5102膜や5i3Na膜を利用し
た場合に比べ10%以上向上させることができる。
In this way, in the semiconductor heat treatment method of this example,
By using molten B2O3 as a protective agent for heat treatment of GaAs and taking out the GaAs wafer before B203 solidifies, As dissociation is prevented and the occurrence of crystal defects near the interface is suppressed. The activation rate can be improved by 10% or more compared to when conventional 5102 films or 5i3Na films are used.

また、イオン打ち込み後のキャリア濃度分布を急峻にす
ることができるため、デバイスの周波数特性向上と高速
化を図ることが可能である。更に、熱処理用保護膜(S
i○z、s!3Na)を被着するプロセスがなくなるた
めプロセスの短縮が可能である。そして、半絶縁性Ga
 As結晶の電気特性均一化を図る上で熱処理は効果が
あることが判っている。鏡面仕上を行なったウェハを従
来の熱処理方法で実施すると、ASの解離が発生し易く
表面荒れを生じるので再研磨が必要である。しかし、本
実施例においては熱処理後においても鏡面状態を保つこ
とが可能である。
Furthermore, since the carrier concentration distribution after ion implantation can be made steep, it is possible to improve the frequency characteristics and speed up the device. Furthermore, a protective film for heat treatment (S
i○z,s! Since the process of depositing 3Na) is eliminated, the process can be shortened. And semi-insulating Ga
It has been found that heat treatment is effective in making the electrical characteristics of As crystals uniform. If a conventional heat treatment method is applied to a mirror-finished wafer, AS tends to dissociate and the surface becomes rough, thus requiring repolishing. However, in this example, it is possible to maintain a mirror-like state even after heat treatment.

第3図、第4図はスライディングボートを使用した方法
を実施時の他の実施例の説明図である。
FIGS. 3 and 4 are explanatory diagrams of other embodiments of the method using a sliding boat.

図において、石英板からなる石英ボート7を第3図に示
す如く2枚重ね、下側の石英ボート7の繰り抜き凹部に
GaASウェハ5を置きこの上に82036の板を載置
し、この状態で反応炉の中央へ石英ボート7を挿入する
。B2036は加熱され液体となりGa Asウェハの
周囲に入り込む。
In the figure, two quartz boats 7 made of quartz plates are stacked as shown in FIG. Insert the quartz boat 7 into the center of the reactor. The B2036 is heated and turns into a liquid that enters around the GaAs wafer.

800℃で20分間加熱した後、重ね合せた上の石英ボ
ート7のみを第3図の矢印方向に偏位させ第4図に示す
ようにGaASウェハ5とB2036とを引き離した後
、石英ボート7全体を反応炉より引き出し冷却する。本
実施例は82036を繰り変えして使用できる他、上記
実施例とほぼ同様の作用効果を有する。
After heating at 800° C. for 20 minutes, only the stacked quartz boat 7 is deflected in the direction of the arrow in FIG. 3, and the GaAS wafer 5 and B2036 are separated as shown in FIG. The whole is taken out of the reactor and cooled. In addition to being able to use 82036 repeatedly, this embodiment has almost the same effects as the above embodiment.

なお、本発明はGa As以外の化合物半導体にも適用
可能であることはいうまでもない。
It goes without saying that the present invention is also applicable to compound semiconductors other than GaAs.

[発明の効果コ 以上記述した如く本発明の半導体の熱処理方法によれば
、Asの解離を阻止し界面付近の結晶欠陥の発生を防止
し、打ち込まれたイオンの拡散を抑え、急峻なキャリヤ
濃度分布を得ることができる効果を有するものである。
[Effects of the Invention] As described above, the semiconductor heat treatment method of the present invention prevents the dissociation of As, prevents the generation of crystal defects near the interface, suppresses the diffusion of implanted ions, and improves the carrier concentration. This has the effect of making it possible to obtain a distribution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体の熱処理方法を実施する装置及
び熱処理時温度分布の説明図、第2図は第1図の石英ボ
ートの横断面図、第3図は本発明の半導体の熱処理方法
を実施する他の装置の第1図の石英ボート部分と同部分
の説明図、第4図は第3図の状態から熱処理し冷却する
状態の説明図である。 1:横型炉、2:石英反応管、5:GaAS、6:B2
O3ニア:石英ボート。 代理人 弁理士 佐 藤 不二雄 軍4t21
FIG. 1 is an explanatory diagram of an apparatus for carrying out the semiconductor heat treatment method of the present invention and temperature distribution during heat treatment, FIG. 2 is a cross-sectional view of the quartz boat of FIG. 1, and FIG. 3 is a semiconductor heat treatment method of the present invention. FIG. 4 is an explanatory diagram of the same part as the quartz boat part in FIG. 1 of another apparatus for carrying out the process, and FIG. 4 is an explanatory diagram of a state in which heat treatment and cooling are performed from the state in FIG. 3. 1: Horizontal furnace, 2: Quartz reaction tube, 5: GaAS, 6: B2
O3 Near: Quartz boat. Agent Patent Attorney Sato Fujio Gun 4t21

Claims (2)

【特許請求の範囲】[Claims] (1)イオン打込み法を用いた半導体ウェハのデバイス
製造時の熱処理方法において、上記イオン打込み後の上
記半導体ウェハに酸化ホウ素を封止剤として適用し、炉
内が700〜900℃の水素または不活性ガス雰囲気中
で加熱処理を行ないその後降温し、酸化ホウ素が固化す
る前に前記半導体ウェハを取り出して、上記イオンの拡
散を抑えることを特徴とする半導体ウェハの熱処理方法
(1) In a heat treatment method during device manufacturing of a semiconductor wafer using the ion implantation method, boron oxide is applied as a sealant to the semiconductor wafer after the ion implantation, and the inside of the furnace is hydrogen or nitrogen at 700 to 900°C. A method for heat treatment of a semiconductor wafer, which comprises performing heat treatment in an active gas atmosphere, then lowering the temperature, and removing the semiconductor wafer before the boron oxide solidifies to suppress diffusion of the ions.
(2)上記酸化ホウ素を、石英ボート内の上記半導体ウ
ェハの上下面に接触させた状態で上記炉内に挿入し加熱
する特許請求の範囲第1項記載の半導体の熱処理方法。
(2) The semiconductor heat treatment method according to claim 1, wherein the boron oxide is inserted into the furnace and heated while being in contact with the upper and lower surfaces of the semiconductor wafer in a quartz boat.
JP1259486A 1986-01-23 1986-01-23 Heat treatment of semiconductor wafer Pending JPS62171117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1259486A JPS62171117A (en) 1986-01-23 1986-01-23 Heat treatment of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1259486A JPS62171117A (en) 1986-01-23 1986-01-23 Heat treatment of semiconductor wafer

Publications (1)

Publication Number Publication Date
JPS62171117A true JPS62171117A (en) 1987-07-28

Family

ID=11809673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1259486A Pending JPS62171117A (en) 1986-01-23 1986-01-23 Heat treatment of semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS62171117A (en)

Similar Documents

Publication Publication Date Title
US6391796B1 (en) Method for heat-treating silicon wafer and silicon wafer
KR950014610B1 (en) Procedure and apparatus for rapid thermal annealing of implantation semiconductor
Meyerson et al. Bistable conditions for low‐temperature silicon epitaxy
US6958092B2 (en) Epitaxial silicon wafer with intrinsic gettering and a method for the preparation thereof
US6566255B2 (en) SOI annealing method and SOI manufacturing method
JPS62171117A (en) Heat treatment of semiconductor wafer
US4889583A (en) Capping technique for zone-melting recrystallization of insulated semiconductor films
US3666546A (en) Ion-free insulating layers
JP2907095B2 (en) Method for manufacturing semiconductor device
KR101311003B1 (en) Thermal treatment method of silicon wafer and silicon wafer
JPH0337728B2 (en)
JPH0297015A (en) Heat treatment method
JPS60227416A (en) Annealing method of semiconductor substrate
KR100423754B1 (en) A method for high temperature heating of silicon wafer
JPS61154134A (en) Manufacture of semiconductor device
JPH0642489B2 (en) Heat treatment method for compound semiconductor wafer
US4302278A (en) GaAs Crystal surface passivation method
JP2001044206A (en) Method of heat-treating silicon wafer
KR930004120B1 (en) Thermal treating method of compound semiconductor wafer
JPH04303932A (en) Removal method of oxide film
JPS6381933A (en) Formation of single thin-film
JPS63108730A (en) Method of annealing iii-v compound semiconductor
JPS60240118A (en) Manufacture of si semiconductor
JPS5931855B2 (en) Annealing method for compound semiconductor single crystal
JPS60193332A (en) Method of annealing compound semiconductor substrate