JP2001044206A - Method of heat-treating silicon wafer - Google Patents

Method of heat-treating silicon wafer

Info

Publication number
JP2001044206A
JP2001044206A JP11216843A JP21684399A JP2001044206A JP 2001044206 A JP2001044206 A JP 2001044206A JP 11216843 A JP11216843 A JP 11216843A JP 21684399 A JP21684399 A JP 21684399A JP 2001044206 A JP2001044206 A JP 2001044206A
Authority
JP
Japan
Prior art keywords
temperature
wafer
furnace
hours
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11216843A
Other languages
Japanese (ja)
Other versions
JP3890819B2 (en
Inventor
B Shabany Mohammad
モハマッド.ビー.シャバニー
Shigeru Okuuchi
茂 奥内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP21684399A priority Critical patent/JP3890819B2/en
Publication of JP2001044206A publication Critical patent/JP2001044206A/en
Application granted granted Critical
Publication of JP3890819B2 publication Critical patent/JP3890819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent deterioration in the device performance of a semiconductor device due to metal impurities and hence prevent reduction in its product yield by increasing gettering effect, independently of the concentration and kinds of the metal impurities and surely and sufficiently capturing the metal impurities in a polysilicon layer. SOLUTION: A PBS(polysilicon back side) wafer is placed in a furnace having an atmosphere of nitrogen, hydrogen or argon gas and held therein for 0.5-2 hours at a first temperature of 950-1,100 deg.C. Successively, the wafer is cooled to a second temperature of 700-800 deg.C at a rate of 2-4 deg.C/minute. After being held in the furnace for 1-5 hours at the second temperature, the wafer is taken out of the furnace for cooling down to the room temperature. Alternatively, the wafer is held for 0.5-2 hours at the first temperature and successively cooled to the second temperature of 700-800 deg.C at a rate of 5-2 deg.C/minute, after which the wafer is removed from the furnace for cooling to the room temperature, without being held at the second temperature or while being held for 5 hours at the second temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、裏面にポリシリコ
ン層を有するシリコンウェーハの熱処理方法に関する。
更に詳しくはウェーハ表面のデバイス形成領域から金属
不純物を取り除くことができるシリコンウェーハの熱処
理方法に関するものである。
The present invention relates to a method for heat-treating a silicon wafer having a polysilicon layer on the back surface.
More specifically, the present invention relates to a method for heat-treating a silicon wafer capable of removing metal impurities from a device formation region on a wafer surface.

【0002】[0002]

【従来の技術】一般に、半導体デバイス素子の製造に
は、その基板としてチョクラルスキー法(以下、CZ法
という。)によって育成されたシリコン単結晶インゴッ
トから所定の板厚で切出されたシリコンウェーハが用い
られている。近年の半導体デバイス素子においては、デ
バイスの集積度の増大が著しく、これに伴い、より一層
の高品質なシリコンウェーハが要求されている。このた
めデバイス製造プロセスにおいて製造工程のクリーン化
が進められたり、デバイスの電気的な活性領域であるシ
リコンウェーハの表面近傍の完全性を高める努力、即ち
ウェーハ表面近傍を無欠陥にする努力が図られている。
このシリコンウェーハの表面近傍を無欠陥にするには、
シリコンウェーハの表面近傍の酸素析出物(Bulk Micro
Defect、以下、BMDという。)の密度を極力低減さ
せることが重要となる。このBMDは熱処理によってシ
リコンウェーハ中に顕在化する。このBMDがウェーハ
表面近傍に存在すると、デバイスの信頼性や歩留まりに
悪影響を及ぼす。
2. Description of the Related Art Generally, in the manufacture of semiconductor device elements, a silicon wafer cut at a predetermined thickness from a silicon single crystal ingot grown by the Czochralski method (hereinafter referred to as CZ method) as a substrate. Is used. 2. Description of the Related Art In recent years, in semiconductor device elements, the degree of integration of devices has been remarkably increased, and accordingly, higher quality silicon wafers have been required. For this reason, in the device manufacturing process, efforts are being made to clean the manufacturing process, and efforts are being made to increase the integrity of the vicinity of the surface of the silicon wafer, which is an electrically active region of the device, that is, to make the vicinity of the wafer surface defect-free. ing.
To make the vicinity of the surface of this silicon wafer defect-free,
Oxygen precipitates near the surface of silicon wafers (Bulk Micro
Defect, hereinafter referred to as BMD. It is important to reduce the density of ()) as much as possible. This BMD becomes apparent in the silicon wafer by the heat treatment. If this BMD exists near the wafer surface, it adversely affects device reliability and yield.

【0003】また、デバイス製造工程では、Fe、C
u、Ni等の金属不純物が混入する製造工程がいくつか
ある。これらの金属不純物がウェーハ表面近傍に存在す
るとデバイス特性が劣化したり、製品の歩留まりを低下
させたりする原因となるため、金属不純物が電気的な活
性領域であるウェーハ表面に取り込まれないように防止
する必要がある。そのため、BMD密度を制御し、か
つ、金属不純物汚染をデバイス形成領域から取り除く技
術(ゲッタリング技術)の重要性が高められている。通
常、このゲッタリング技術としては内部ゲッタリング法
(Intrinsic Gettering、以下、IG法という。)や、
外部ゲッタリング法(Extrinsic Gettering、以下、E
G法という。)などに分類される。
In the device manufacturing process, Fe, C
There are several manufacturing steps in which metal impurities such as u and Ni are mixed. If these metal impurities are present near the wafer surface, device characteristics will be degraded or the product yield will be reduced. There is a need to. For this reason, the importance of a technique (a gettering technique) for controlling the BMD density and removing metal impurity contamination from the device formation region is increasing. Usually, the gettering technique includes an internal gettering method (hereinafter, referred to as an IG method),
Extrinsic Gettering (hereinafter E)
It is called the G method. ).

【0004】IG法は高温熱処理によりウェーハ表面近
傍の酸素濃度を低下させてウェーハ表面近傍にBMDの
ない層(Denuded Zone、以下、DZ層という。)を作る
とともに、このDZ層より深い位置に高密度のBMDを
生成し、このBMD欠陥を金属不純物の捕獲源とする方
法である。EG法には、人工的にSiO2の砥粒をジェ
ットノズルから空気圧によりウェーハ裏面に噴射させ、
ウェーハ裏面側に機械的損傷を付けてやり、この機械的
損傷から発生した結晶欠陥を金属不純物の捕獲源とする
方法(Back Side Damage、以下、BSD法という。)
や、シリコンウェーハの裏面側に0.5〜1.5μm程
度のポリシリコン層を成長させ、このポリシリコン層を
金属不純物の捕獲源とする方法(PolySilicon Back Sid
e、以下、PBS法という。)などがある。
The IG method reduces the oxygen concentration near the wafer surface by high-temperature heat treatment to form a layer without BMD (hereinafter, referred to as a DZ layer) near the wafer surface, and a high-density layer deeper than the DZ layer. In this method, BMD having a high density is generated, and the BMD defect is used as a trapping source of metal impurities. In the EG method, abrasive grains of SiO 2 are artificially jetted from the jet nozzle to the back surface of the wafer by air pressure,
A method in which mechanical damage is applied to the rear surface of the wafer, and crystal defects generated from the mechanical damage are used as a source for capturing metal impurities (Back Side Damage, hereinafter referred to as BSD method).
Alternatively, a method of growing a polysilicon layer of about 0.5 to 1.5 μm on the back side of a silicon wafer and using this polysilicon layer as a source for capturing metal impurities (PolySilicon Back Sid)
e, hereinafter referred to as PBS method. )and so on.

【0005】上記ゲッタリング技術の中でIG法は、ゲ
ッタリング源を作り出すために複雑で長時間の熱処理を
要し、しかもNiのようなシリコン中で拡散の速い金属
元素のゲッタリングには必ずしも効果的でなかった。ま
たBSD法は、機械的損傷を与える過程で生じるシリコ
ンダストをウェーハから完全に除去することが難しく、
新たな欠陥の発生源になり得る不具合があり、また裏面
の損傷を定量的に再現性よく制御することが困難な問題
点もあった。このため、これらの欠点のないPBS法が
見直されている。半導体デバイスメーカーは、このPB
S法でポリシリコン層を裏面に形成したシリコンウェー
ハ(以下、PBSウェーハという。)を熱処理すること
によって、デバイス製造工程で生じた金属不純物をポリ
シリコン層に捕獲することができる。この熱処理は、熱
処理コストを低くし、かつ高温度における製造過程(熱
処理)から生じる汚染の危険性を減らすために、PBS
ウェーハを炉内に入れ、最高温度を1000℃未満の低
温にして1〜2時間保持した後、4℃/分以上の速度で
800℃程度まで冷却した後、直ちに炉から取出して室
温まで放冷して行われている。
Among the above gettering techniques, the IG method requires a complicated and long-time heat treatment in order to create a gettering source, and is not necessarily required for gettering of a metal element such as Ni that is rapidly diffused in silicon. Not effective. Also, in the BSD method, it is difficult to completely remove silicon dust generated in the process of causing mechanical damage from a wafer,
There is a problem that can be a source of a new defect, and there is also a problem that it is difficult to quantitatively control back surface damage with good reproducibility. For this reason, the PBS method without these drawbacks has been reviewed. Semiconductor device manufacturers use this PB
By heat-treating a silicon wafer (hereinafter referred to as a PBS wafer) having a polysilicon layer formed on the back surface by the S method, metal impurities generated in the device manufacturing process can be captured by the polysilicon layer. This heat treatment reduces the cost of the heat treatment and reduces the risk of contamination resulting from the manufacturing process (heat treatment) at high temperatures.
The wafer is placed in a furnace, the maximum temperature is kept at a low temperature of less than 1000 ° C., kept for 1 to 2 hours, cooled down to about 800 ° C. at a rate of 4 ° C./min or more, immediately taken out of the furnace and allowed to cool to room temperature It has been done.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、PBS
ウェーハの上記従来の熱処理方法では、不純物である金
属が高濃度にウェーハ表面を汚染した場合や、高濃度で
なくてもウェーハ中での拡散係数が小さい、Feのよう
な金属元素を捕獲しようとする場合には、この金属不純
物をポリシリコン層に確実かつ十分に捕獲することが困
難な不具合があった。本発明の目的は、デバイス製造工
程において金属不純物の濃度や種類によらずにゲッタリ
ング効果を高め、この金属不純物を確実かつ十分にポリ
シリコン層に捕獲するシリコンウェーハの熱処理方法を
提供することにある。本発明の別の目的は、金属不純物
によるデバイス特性劣化を防ぎ、半導体装置の製品歩留
まりを低下させないシリコンウェーハの熱処理方法を提
供することにある。
SUMMARY OF THE INVENTION However, PBS
In the above-described conventional heat treatment method of a wafer, when a metal which is an impurity contaminates the wafer surface at a high concentration or a diffusion coefficient in a wafer is small even if the concentration is not high, an attempt is made to capture a metal element such as Fe. In this case, there is a problem that it is difficult to reliably and sufficiently capture this metal impurity in the polysilicon layer. An object of the present invention is to provide a heat treatment method for a silicon wafer that enhances the gettering effect irrespective of the concentration and type of metal impurities in a device manufacturing process, and reliably and sufficiently captures the metal impurities in a polysilicon layer. is there. Another object of the present invention is to provide a heat treatment method for a silicon wafer that prevents device characteristics deterioration due to metal impurities and does not reduce the product yield of semiconductor devices.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
裏面にポリシリコン層を有するシリコンウェーハを熱処
理する方法において、上記シリコンウェーハを窒素、水
素又はアルゴンガス雰囲気中の炉内に入れて、950〜
1100℃の第1温度で0.5〜2時間保持し、引続い
てこのウェーハを2〜4℃/分の速度で700〜800
℃の第2温度まで降温し、第2温度で1〜5時間保持し
た後、炉から取出して室温まで放冷することを特徴とす
るシリコンウェーハの熱処理方法である。請求項3に係
る発明は、裏面にポリシリコン層を有するシリコンウェ
ーハを熱処理する方法において、上記シリコンウェーハ
を窒素、水素又はアルゴンガス雰囲気中の炉内に入れ
て、950〜1100℃の第1温度で0.5〜2時間保
持し、引続いてこのウェーハを0.5〜2℃/分の速度
で700〜800℃の第2温度まで降温した後、第2温
度で保持することなく、又は5時間未満保持した後、炉
から取出して室温まで放冷することを特徴とするシリコ
ンウェーハの熱処理方法である。
The invention according to claim 1 is
In the method for heat-treating a silicon wafer having a polysilicon layer on the back surface, the silicon wafer is placed in a furnace in a nitrogen, hydrogen, or argon gas atmosphere, and is subjected to 950 to 950.
Hold at a first temperature of 1100 ° C. for 0.5 to 2 hours and subsequently cool the wafer at a rate of 2 to 4 ° C./min for 700 to 800
This is a method for heat-treating a silicon wafer, wherein the temperature is lowered to a second temperature of 1 ° C., the temperature is maintained at the second temperature for 1 to 5 hours, and then taken out of the furnace and allowed to cool to room temperature. The invention according to claim 3 is a method for heat-treating a silicon wafer having a polysilicon layer on the back surface, wherein the silicon wafer is placed in a furnace in a nitrogen, hydrogen or argon gas atmosphere, and the first temperature is 950 to 1100 ° C. And then the wafer is cooled at a rate of 0.5 to 2 ° C./min to a second temperature of 700 to 800 ° C., without holding at the second temperature, or This is a method for heat treating a silicon wafer, wherein the silicon wafer is taken out of a furnace and allowed to cool to room temperature after holding for less than 5 hours.

【0008】請求項1及び請求項3に係る発明では、従
来よりも熱処理の最高温度(第1温度)を高く、保持時
間を長く設定する。これにより、不純物の金属がウェー
ハ中での拡散係数が小さい、Feであって、1012〜1
13atoms/cm2の高濃度でウェーハを汚染して
も、不純物の金属がウェーハ表面近傍でシリサイドを作
ることなくウェーハバルク中に十分に拡散する。請求項
1に係る発明では第1温度で保持した後、従来と同等の
速度で冷却し、700〜800℃の第2温度で所定時間
保持する。これによりウェーハバルク中に拡散していた
金属がウェーハバルク中に残存することなく、ポリシリ
コン層に捕獲される。一方、請求項3に係る発明では第
1温度で保持した後、従来より遅い速度で冷却される。
この徐冷の間に、ウェーハバルク中に拡散していた金属
がウェーハバルク中に残存することなく、ポリシリコン
層に捕獲される。
According to the first and third aspects of the present invention, the maximum temperature (first temperature) of the heat treatment is set higher and the holding time is set longer than before. Accordingly, the impurity metal is Fe, which has a small diffusion coefficient in the wafer, and is 10 12 to 1
Even if the wafer is contaminated at a high concentration of 0 13 atoms / cm 2 , the impurity metal sufficiently diffuses into the wafer bulk without forming silicide near the wafer surface. In the invention according to the first aspect, after maintaining at the first temperature, it is cooled at the same speed as that of the related art, and is maintained at the second temperature of 700 to 800 ° C. for a predetermined time. This allows the metal diffused in the wafer bulk to be captured in the polysilicon layer without remaining in the wafer bulk. On the other hand, in the invention according to the third aspect, after the temperature is maintained at the first temperature, the cooling is performed at a lower speed than the conventional one.
During this slow cooling, the metal diffused in the wafer bulk is captured in the polysilicon layer without remaining in the wafer bulk.

【0009】請求項2及び請求項4に係る発明は、裏面
にポリシリコン層を有するシリコンウェーハの炉内にお
ける第1温度が1050〜1100℃である熱処理方法
である。請求項2及び請求項4に係る発明では、最高温
度の第1温度を1050℃にすることにより、不純物の
金属がFeであって、1013atoms/cm2以上の
更に高濃度でウェーハを汚染してもこの金属不純物をウ
ェーハ裏面のポリシリコン層に捕獲することができる。
The invention according to claims 2 and 4 is a heat treatment method in which a first temperature in a furnace of a silicon wafer having a polysilicon layer on a back surface is in a range of 1050 to 1100 ° C. According to the second and fourth aspects of the present invention, by setting the first temperature of the highest temperature to 1050 ° C., the impurity metal is Fe and the wafer is contaminated at a higher concentration of 10 13 atoms / cm 2 or more. Even so, the metal impurities can be captured in the polysilicon layer on the back surface of the wafer.

【0010】[0010]

【発明の実施の形態】本発明のPBSウェーハは、CZ
法によって育成された単結晶シリコンから所定の板厚で
切出されたシリコンウェーハをラッピングし、面取り加
工を施し、化学エッチング処理によりウェーハ表面のダ
メージを除去して鏡面シリコンウェーハにした後、この
ウェーハの裏面に、CVD(Chemical Vapor Depositio
n)法により例えばSiH4を用いて600〜700℃の
温度で厚さ0.5〜1.5μmのポリシリコン層を形成
して作製される。ポリシリコン層の厚さが0.5μm未
満ではゲッタリング効果に乏しく、1.5μmを越える
と生産性が低下する不具合を生じる。本発明のシリコン
ウェーハ中の酸素濃度は、1×1018〜1.4×1018
atoms/cm3(旧ASTM)に調整される。
BEST MODE FOR CARRYING OUT THE INVENTION The PBS wafer of the present invention is CZ
After lapping a silicon wafer cut to a predetermined thickness from single crystal silicon grown by the method, chamfering it, removing the damage on the wafer surface by chemical etching and turning it into a mirror-finished silicon wafer, On the back side of the CVD (Chemical Vapor Depositio)
Fabricated by forming a polysilicon layer having a thickness of 0.5 to 1.5 μm at a temperature of 600 to 700 ° C. using, for example, SiH 4 by the method n). If the thickness of the polysilicon layer is less than 0.5 μm, the gettering effect is poor, and if it exceeds 1.5 μm, the productivity is reduced. The oxygen concentration in the silicon wafer of the present invention is 1 × 10 18 to 1.4 × 10 18
Adjusted to atoms / cm 3 (former ASTM).

【0011】このPBSウェーハの役割は、活性領域の
ウェーハ表面に到来する金属不純物をPBSウェーハを
熱処理することにより、ウェーハバルク中へ拡散させた
後、ウェーハバルク中に残存させることなく、ウェーハ
裏面のポリシリコン層に金属不純物を捕獲することであ
る。この金属不純物のウェーハバルク中への拡散及びポ
リシリコン層への捕獲の程度は、金属不純物の濃度及び
不純物である金属のウェーハバルク中での拡散係数と、
PBSウェーハの熱処理条件によって決定される。即
ち、ウェーハ表面が高濃度で金属不純物により汚染され
た場合には、低温で熱処理すると、ウェーハバルク中に
金属が十分に拡散せず、一部がウェーハ表面にケイ化物
であるシリサイドを作る。またウェーハ表面が拡散係数
の小さい金属の不純物により汚染された場合には、最高
温度の第1温度で保持したPBSウェーハの冷却速度を
速めると、この金属はウェーハバルク中でのウェーハ裏
面に向う拡散速度が低下し、一部の金属はウェーハバル
ク中に残存しやすい。従ってこれらの場合には、ポリシ
リコン層による高いゲッタリング効果は期待できない。
ウェーハバルク中での拡散係数の小さい金属としては、
Feが挙げられる。
The role of the PBS wafer is to diffuse the metal impurities arriving at the wafer surface in the active region into the bulk of the wafer by heat-treating the PBS wafer, and to leave the metal impurities on the back surface of the wafer without remaining in the bulk of the wafer. Capturing metal impurities in the polysilicon layer. The degree of diffusion of this metal impurity into the wafer bulk and capture in the polysilicon layer is determined by the concentration of the metal impurity and the diffusion coefficient of the metal as the impurity in the wafer bulk,
It is determined by the heat treatment conditions of the PBS wafer. That is, when the wafer surface is contaminated with metal impurities at a high concentration, when heat treatment is performed at a low temperature, the metal is not sufficiently diffused into the wafer bulk, and a part of the wafer surface forms silicide which is a silicide. If the surface of the wafer is contaminated with impurities of a metal having a low diffusion coefficient, the cooling rate of the PBS wafer held at the first temperature, which is the highest temperature, is increased, and the metal diffuses toward the rear surface of the wafer in the wafer bulk. The speed is reduced and some metals tend to remain in the wafer bulk. Therefore, in these cases, a high gettering effect by the polysilicon layer cannot be expected.
As a metal with a small diffusion coefficient in the wafer bulk,
Fe.

【0012】金属不純物としてこのFeを例に挙げて説
明すると、ウェーハ表面でのFeの濃度が1010〜10
11atoms/cm2程度であれば、PBSウェーハを
950℃で1時間熱処理することによりFe元素をウェ
ーハバルク中に十分に拡散させることができる。しかし
ながら、このFeの濃度が更に高い1011〜1012at
oms/cm2になると、950℃の熱処理ではウェー
ハバルク中に十分に拡散することができず、シリコン表
面にFeシリサイドを形成してしまう。この濃度で、全
てのFe元素をシリコン表面からウェーハバルク中に拡
散するためには950℃以上の温度で熱処理する必要が
ある。更により高い1013atoms/cm2以上の濃
度では全てのFe元素をウェーハバルク中に拡散するた
めには1050℃で熱処理する必要がある。
[0012] Explaining this Fe as an example of a metal impurity, the concentration of Fe on the wafer surface is 10 10 to 10.
If it is about 11 atoms / cm 2 , heat treatment of the PBS wafer at 950 ° C. for 1 hour allows the Fe element to sufficiently diffuse into the wafer bulk. However, when the concentration of Fe is higher, 10 11 to 10 12 at
At oms / cm 2 , the heat treatment at 950 ° C. cannot sufficiently diffuse into the wafer bulk, and forms Fe silicide on the silicon surface. At this concentration, it is necessary to perform a heat treatment at a temperature of 950 ° C. or more in order to diffuse all the Fe elements from the silicon surface into the wafer bulk. At a higher concentration of 10 13 atoms / cm 2 or more, it is necessary to perform a heat treatment at 1050 ° C. in order to diffuse all Fe elements into the wafer bulk.

【0013】本発明では、以上の理由から、PBSウェ
ーハの熱処理は、汚染する金属不純物濃度に応じてその
最高温度と保持時間が決められる。PBSウェーハの第
1の熱処理方法(請求項1に係る方法)では、PBSウ
ェーハを窒素、水素又はアルゴンガス雰囲気中の炉内に
入れて、950〜1100℃の第1温度で0.5〜2時
間保持し、引続いてこのウェーハを2〜4℃/分の速度
で700〜800℃の第2温度まで降温し、第2温度で
1〜5時間保持した後、炉から取出して室温まで放冷す
る。また第2の熱処理方法(請求項3に係る方法)で
は、PBSウェーハを窒素、水素又はアルゴンガス雰囲
気中の炉内に入れて、950〜1100℃の第1温度で
0.5〜2時間保持し、引続いてこのウェーハを0.5
〜2℃/分の速度で700〜800℃の第2温度まで降
温した後、第2温度で保持することなく、又は5時間未
満保持した後、炉から取出して室温まで放冷する。
In the present invention, for the above reasons, in the heat treatment of the PBS wafer, the maximum temperature and the holding time are determined according to the concentration of contaminating metal impurities. In the first heat treatment method for the PBS wafer (the method according to claim 1), the PBS wafer is placed in a furnace in an atmosphere of nitrogen, hydrogen, or argon gas, and is heated at a first temperature of 950 to 1100 ° C. for 0.5 to 2 hours. The wafer is then cooled at a rate of 2 to 4 ° C./min to a second temperature of 700 to 800 ° C., kept at the second temperature for 1 to 5 hours, taken out of the furnace and released to room temperature. Let cool. In the second heat treatment method (the method according to claim 3), the PBS wafer is placed in a furnace in an atmosphere of nitrogen, hydrogen, or argon gas and held at a first temperature of 950 to 1100 ° C. for 0.5 to 2 hours. Then, the wafer is
After lowering the temperature to a second temperature of 700 to 800 ° C. at a rate of 22 ° C./min, without holding at the second temperature or after holding for less than 5 hours, it is taken out of the furnace and allowed to cool to room temperature.

【0014】この熱処理における好ましい最高温度(第
1温度)は1050〜1100℃である。この最高温度
が950℃未満であると金属不純物がウェーハバルク中
に十分に拡散できず、1100℃を越えると拡散効果は
良好となるが、装置の安全性と信頼性に問題を生じるお
それがある。また、最高温度の好ましい保持時間は1〜
2時間である。この保持時間が0.5時間未満であると
金属不純物の十分な拡散が得られず、2時間を越えて熱
処理を行っても拡散効果の向上は見込めない。更に、最
高温度で保持した後の好ましい冷却速度は第1の熱処理
方法では2〜3℃/分、第2の熱処理方法では0.5〜
1℃/分である。それぞれ冷却速度が下限値未満では十
分なゲッタリング効果は得られるが工業的に適さない。
上限値を越えると金属不純物はウェーハバルク中に残存
し、十分なゲッタリング効果が得られない。
A preferred maximum temperature (first temperature) in this heat treatment is 1050 to 1100 ° C. If the maximum temperature is lower than 950 ° C., metal impurities cannot be sufficiently diffused into the wafer bulk. If the maximum temperature exceeds 1100 ° C., the diffusion effect is good, but there is a concern that the safety and reliability of the device may be deteriorated. . The preferred holding time of the maximum temperature is 1 to
2 hours. If the holding time is less than 0.5 hour, sufficient diffusion of metal impurities cannot be obtained, and improvement in the diffusion effect cannot be expected even if heat treatment is performed for more than 2 hours. Further, the preferable cooling rate after holding at the highest temperature is 2-3 ° C./min in the first heat treatment method, and 0.5 to 3 ° C./min in the second heat treatment method.
1 ° C./min. If the cooling rate is less than the lower limit, a sufficient gettering effect can be obtained, but it is not industrially suitable.
If the upper limit is exceeded, metal impurities remain in the wafer bulk, and a sufficient gettering effect cannot be obtained.

【0015】[0015]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例1>先ず、CZ法によりボロン(B)をドープ
して育成されたシリコン単結晶インゴットから切出され
たシリコンウェーハをラッピングし、面取り加工を施
し、化学エッチング処理によりウェーハ表面のダメージ
を除去して厚さ625μm、直径150mm、酸素濃度
1.3×1018atoms/cm3(旧ASTM)の鏡面
シリコンウェーハを得た。このウェーハの裏面に、CV
D法によりSiH4を用いて650℃の温度で厚さ1.
5μmのポリシリコン層を形成してPBSウェーハを得
た。次いで、このウェーハ表面にスピンコート法を用い
てFe濃度が5×1011〜5×1012atoms/cm
2程度になるように強制汚染させた。このFeのゲッタ
リング前のウェーハ裏面をDE(one Drop Etching)法
によって5%HFと5%H22の混合液を用いて清浄化
した。このDE法はPBSウェーハの裏面のオリエンテ
ーションフラットが形成された端部に上記混合液を一滴
たらし、この液滴が表面張力によりウェーハ裏面全体に
広がった後、オリエンテーションフラットに相対向する
端部に再び液滴の形態で集めることにより、ウェーハ裏
面を清浄化する方法である。この例では、表面をFeで
強制汚染して裏面を清浄化したPBSウェーハを炉内に
入れ、窒素ガス雰囲気中で5℃/分の速度で第1温度
(T1)の1000℃まで昇温し、そこで2時間保持し
た後、5℃/分の速度で第2温度(T2)の700℃ま
で降温し、そこで5時間保持した後、ウェーハを炉から
取出して室温まで放冷した。
Next, examples of the present invention will be described together with comparative examples. <Example 1> First, a silicon wafer cut from a silicon single crystal ingot grown by doping with boron (B) by the CZ method was wrapped, chamfered, and the wafer surface was damaged by chemical etching. After removal, a mirror-finished silicon wafer having a thickness of 625 μm, a diameter of 150 mm, and an oxygen concentration of 1.3 × 10 18 atoms / cm 3 (former ASTM) was obtained. On the back side of this wafer, CV
D. Method 1. Using SiH 4 at a temperature of 650 ° C. and a thickness of 1.
A 5 μm polysilicon layer was formed to obtain a PBS wafer. Next, the wafer surface is fed with a Fe concentration of 5 × 10 11 to 5 × 10 12 atoms / cm by spin coating.
It was forcibly contaminated so that it was about 2 . The back surface of the wafer before gettering of Fe was cleaned by a one-drop etching (DE) method using a mixed solution of 5% HF and 5% H 2 O 2 . In this DE method, one droplet of the mixed liquid is dropped on the end of the PBS wafer on which the orientation flat is formed, and after the droplet spreads over the entire back surface of the wafer by surface tension, the droplet is applied to the end opposed to the orientation flat. This is a method of cleaning the back surface of the wafer by collecting again in the form of droplets. In this example, a PBS wafer whose front surface was forcibly contaminated with Fe and whose back surface was cleaned was placed in a furnace, and the temperature was raised to 1000 ° C. of the first temperature (T 1 ) at a rate of 5 ° C./min in a nitrogen gas atmosphere. Then, after holding for 2 hours, the temperature was lowered to 700 ° C. of the second temperature (T 2 ) at a rate of 5 ° C./min. After holding for 5 hours, the wafer was taken out of the furnace and allowed to cool to room temperature.

【0016】<実施例2>実施例1と同様に表面をFe
で強制汚染して裏面を清浄化したPBSウェーハを用意
し、このPBSウェーハを炉内に入れ、窒素ガス雰囲気
中で5℃/分の速度で第1温度(T1)の1000℃ま
で昇温し、そこで2時間保持した後、0.5℃/分の速
度で第2温度(T2)の700℃まで降温し、直ちに炉
から取出して室温まで放冷した。
<Embodiment 2> Similar to Embodiment 1, the surface was made of Fe.
Prepare a PBS wafer whose back surface has been cleaned by forcibly contaminating it, put this PBS wafer into a furnace, and raise the temperature to 1000 ° C. of the first temperature (T 1 ) at a rate of 5 ° C./min in a nitrogen gas atmosphere. Then, after holding for 2 hours, the temperature was lowered to the second temperature (T 2 ) of 700 ° C. at a rate of 0.5 ° C./min, immediately taken out of the furnace and allowed to cool to room temperature.

【0017】<比較例1>実施例1と同様に表面をFe
で強制汚染して裏面を清浄化したPBSウェーハを用意
し、このPBSウェーハを炉内に入れ、窒素ガス雰囲気
中で5℃/分の速度で第1温度(T1)の1000℃ま
で昇温し、そこで2時間保持した後、5℃/分の速度で
第2温度(T2)の700℃まで降温し、直ちに炉から
取出して室温まで放冷した。
<Comparative Example 1> As in Example 1, the surface was made of Fe.
Prepare a PBS wafer whose back surface has been cleaned by forcibly contaminating it, put this PBS wafer into a furnace, and raise the temperature to 1000 ° C. of the first temperature (T 1 ) at a rate of 5 ° C./min in a nitrogen gas atmosphere. Then, after holding for 2 hours, the temperature was lowered to the second temperature (T 2 ) of 700 ° C. at a rate of 5 ° C./min, immediately taken out of the furnace and allowed to cool to room temperature.

【0018】<比較例2>実施例1と同様に表面をFe
で強制汚染して裏面を清浄化したPBSウェーハを用意
し、このPBSウェーハを炉内に入れ、窒素ガス雰囲気
中で5℃/分の速度で第1温度(T1)の1000℃ま
で昇温し、そこで2時間保持した後、5℃/分の速度で
第2温度(T2)の700℃まで降温し、そこで5時間
保持した後、ウェーハを炉から取出して室温まで放冷し
た。その後、再度このPBSウェーハを炉内に入れ、8
00℃まで昇温して2時間保持し、直ちに炉から取り出
して室温まで冷却する再熱処理を行った。
<Comparative Example 2> The surface was made of Fe as in Example 1.
Prepare a PBS wafer whose back surface has been cleaned by forcibly contaminating it, put this PBS wafer into a furnace, and raise the temperature to 1000 ° C. of the first temperature (T 1 ) at a rate of 5 ° C./min in a nitrogen gas atmosphere. Then, after holding for 2 hours, the temperature was lowered to 700 ° C. of the second temperature (T 2 ) at a rate of 5 ° C./min. After holding for 5 hours, the wafer was taken out of the furnace and allowed to cool to room temperature. Then, the PBS wafer is put into the furnace again, and
The temperature was raised to 00 ° C., maintained for 2 hours, immediately taken out of the furnace, and reheated to cool to room temperature.

【0019】<比較例3>実施例1と同様に表面をFe
で強制汚染して裏面を清浄化したPBSウェーハを用意
し、このPBSウェーハを炉内に入れ、窒素ガス雰囲気
中で5℃/分の速度で第1温度(T1)の900℃まで
昇温し、そこで2時間保持した後、5℃/分の速度で第
2温度(T2)の700℃まで降温し、直ちに炉から取
出して室温まで放冷した。その後、再度このPBSウェ
ーハを炉内に入れ、800℃まで昇温して2時間保持
し、直ちに炉から取り出して室温まで冷却する再熱処理
を行った。
<Comparative Example 3> As in Example 1, the surface was made of Fe.
Prepare a PBS wafer whose back surface has been cleaned by forcibly contaminating it, put this PBS wafer into a furnace, and raise the temperature to 900 ° C. of the first temperature (T 1 ) at a rate of 5 ° C./min in a nitrogen gas atmosphere. Then, after holding for 2 hours, the temperature was lowered to the second temperature (T 2 ) of 700 ° C. at a rate of 5 ° C./min, immediately taken out of the furnace and allowed to cool to room temperature. Thereafter, the PBS wafer was placed again in the furnace, heated to 800 ° C. and maintained for 2 hours, immediately taken out of the furnace, and subjected to a reheat treatment for cooling to room temperature.

【0020】<比較例4>実施例1と同様に表面をFe
で強制汚染して裏面を清浄化したPBSウェーハを用意
し、このPBSウェーハを炉内に入れ、窒素ガス雰囲気
中で5℃/分の速度で第1温度(T1)の900℃まで
昇温し、そこで2時間保持した後、5℃/分の速度で第
2温度(T2)の700℃まで降温し、そこで5時間保
持した後、ウェーハを炉から取出して室温まで放冷し
た。その後、再度このPBSウェーハを炉内に入れ、8
00℃まで昇温して2時間保持し、直ちに炉から取り出
して室温まで冷却する再熱処理を行った。
<Comparative Example 4> As in Example 1, the surface was made of Fe.
Prepare a PBS wafer whose back surface has been cleaned by forcibly contaminating it, put this PBS wafer into a furnace, and raise the temperature to 900 ° C. of the first temperature (T 1 ) at a rate of 5 ° C./min in a nitrogen gas atmosphere. Then, after holding for 2 hours, the temperature was lowered to 700 ° C. of the second temperature (T 2 ) at a rate of 5 ° C./min. After holding for 5 hours, the wafer was taken out of the furnace and allowed to cool to room temperature. Then, the PBS wafer is put into the furnace again, and
The temperature was raised to 00 ° C., maintained for 2 hours, immediately taken out of the furnace, and reheated to cool to room temperature.

【0021】<比較例5>実施例1と同様に表面をFe
で強制汚染して裏面を清浄化したPBSウェーハを用意
し、このPBSウェーハを炉内に入れ、窒素ガス雰囲気
中で5℃/分の速度で第1温度(T1)の900℃まで
昇温し、そこで2時間保持した後、5℃/分の速度で第
2温度(T2)の700℃まで降温し、そこで5時間保
持した後、ウェーハを炉から取出して室温まで放冷し
た。
<Comparative Example 5> As in Example 1, the surface was made of Fe.
Prepare a PBS wafer whose back surface has been cleaned by forcibly contaminating it, put this PBS wafer into a furnace, and raise the temperature to 900 ° C. of the first temperature (T 1 ) at a rate of 5 ° C./min in a nitrogen gas atmosphere. Then, after holding for 2 hours, the temperature was lowered to 700 ° C. of the second temperature (T 2 ) at a rate of 5 ° C./min. After holding for 5 hours, the wafer was taken out of the furnace and allowed to cool to room temperature.

【0022】<比較例6>実施例1と同様に表面をFe
で強制汚染して裏面を清浄化したPBSウェーハを用意
し、このPBSウェーハを炉内に入れ、窒素ガス雰囲気
中で5℃/分の速度で第1温度(T1)の900℃まで
昇温し、そこで2時間保持した後、0.5℃/分の速度
で第2温度(T2)の700℃まで降温し、直ちに炉か
ら取出して室温まで放冷した。
<Comparative Example 6> As in Example 1, the surface was made of Fe.
Prepare a PBS wafer whose back surface has been cleaned by forcibly contaminating it, put this PBS wafer into a furnace, and raise the temperature to 900 ° C. of the first temperature (T 1 ) at a rate of 5 ° C./min in a nitrogen gas atmosphere. Then, after holding for 2 hours, the temperature was lowered to the second temperature (T 2 ) of 700 ° C. at a rate of 0.5 ° C./min, immediately taken out of the furnace and allowed to cool to room temperature.

【0023】<実施例3>実施例1と同様にして得られ
たPBSウェーハのウェーハ表面にスピンコート法を用
いてFe濃度が2×1012〜2×1013atoms/c
2程度になるように強制汚染させた。その後実施例1
と同様にゲッタリング前のウェーハ裏面を清浄化した
後、裏面を清浄化したPBSウェーハを炉内に入れ、窒
素ガス雰囲気中で5℃/分の速度で第1温度(T1)の
1050℃まで昇温し、そこで2時間保持した後、5℃
/分の速度で第2温度(T2)の800℃まで降温し、
そこで5時間保持した後、ウェーハを炉から取出して室
温まで放冷した。
<Embodiment 3> An Fe concentration of 2 × 10 12 to 2 × 10 13 atoms / c was applied to the surface of a PBS wafer obtained in the same manner as in Embodiment 1 by spin coating.
is forcibly contaminated so that the order of m 2. Then Example 1
After cleaning the back surface of the wafer before gettering in the same manner as described above, the PBS wafer whose back surface has been cleaned is placed in a furnace, and the first temperature (T 1 ) is 1050 ° C. at a rate of 5 ° C./min in a nitrogen gas atmosphere. Temperature, and hold it there for 2 hours.
At a rate of / min to a second temperature (T 2 ) of 800 ° C.,
Then, after holding for 5 hours, the wafer was taken out of the furnace and allowed to cool to room temperature.

【0024】<実施例4>実施例3と同様に表面をFe
で強制汚染して裏面を清浄化したPBSウェーハを用意
し、このPBSウェーハを炉内に入れ、窒素ガス雰囲気
中で5℃/分の速度で第1温度(T1)の1050℃ま
で昇温し、そこで2時間保持した後、0.5℃/分の速
度で第2温度(T2)の800℃まで降温し、直ちに炉
から取出して室温まで放冷した。
<Embodiment 4> Similar to Embodiment 3, the surface was made of Fe.
Prepare a PBS wafer whose back surface has been cleaned by forcibly contaminating it, put this PBS wafer into a furnace, and raise the temperature to 1050 ° C. of the first temperature (T 1 ) at a rate of 5 ° C./min in a nitrogen gas atmosphere. Then, after holding for 2 hours, the temperature was decreased to a second temperature (T 2 ) of 800 ° C. at a rate of 0.5 ° C./min, immediately taken out of the furnace and allowed to cool to room temperature.

【0025】<比較例7>実施例3と同様に表面をFe
で強制汚染して裏面を清浄化したPBSウェーハを用意
し、このPBSウェーハを炉内に入れ、窒素ガス雰囲気
中で5℃/分の速度で第1温度(T1)の1050℃ま
で昇温し、そこで2時間保持した後、5℃/分の速度で
第2温度(T2)の800℃まで降温し、直ちに炉から
取出して室温まで放冷した。その後、再度このPBSウ
ェーハを炉内に入れ、800℃まで昇温して2時間保持
し、直ちに炉から取り出して室温まで冷却する再熱処理
を行った。
<Comparative Example 7> As in Example 3, the surface was made of Fe.
Prepare a PBS wafer whose back surface has been cleaned by forcibly contaminating it, put this PBS wafer into a furnace, and raise the temperature to 1050 ° C. of the first temperature (T 1 ) at a rate of 5 ° C./min in a nitrogen gas atmosphere. Then, after holding for 2 hours, the temperature was lowered at a rate of 5 ° C./min to a second temperature (T 2 ) of 800 ° C., immediately taken out of the furnace and allowed to cool to room temperature. Thereafter, the PBS wafer was placed again in the furnace, heated to 800 ° C. and maintained for 2 hours, immediately taken out of the furnace, and subjected to a reheat treatment for cooling to room temperature.

【0026】<比較例8>実施例3と同様に表面をFe
で強制汚染して裏面を清浄化したPBSウェーハを用意
し、このPBSウェーハを炉内に入れ、窒素ガス雰囲気
中で5℃/分の速度で第1温度(T1)の1050℃ま
で昇温し、そこで2時間保持した後、5℃/分の速度で
第2温度(T2)の800℃まで降温し、そこで5時間
保持した後、ウェーハを炉から取出して室温まで放冷し
た。その後、再度このPBSウェーハを炉内に入れ、8
00℃まで昇温して2時間保持し、直ちに炉から取り出
して室温まで冷却する再熱処理を行った。
<Comparative Example 8> The surface was made of Fe as in Example 3.
Prepare a PBS wafer whose back surface has been cleaned by forcibly contaminating it, put this PBS wafer into a furnace, and raise the temperature to 1050 ° C. of the first temperature (T 1 ) at a rate of 5 ° C./min in a nitrogen gas atmosphere. Then, after holding for 2 hours, the temperature was lowered to 800 ° C. of the second temperature (T 2 ) at a rate of 5 ° C./min. After holding for 5 hours, the wafer was taken out of the furnace and allowed to cool to room temperature. Then, the PBS wafer is put into the furnace again, and
The temperature was raised to 00 ° C., maintained for 2 hours, immediately taken out of the furnace, and reheated to cool to room temperature.

【0027】<比較評価>実施例1〜4及び比較例1〜
8のPBSウェーハの熱処理前後のFeの濃度をウェー
ハ表面近傍(表面から深さ6μmの範囲)と、ウェーハ
裏面と、これらの両面に挟まれるウェーハバルクとにお
いて測定した。ウェーハの表面近傍と裏面のFeの濃度
はDSE法(Drop Sandwich Ething method)により、
またバルク中はBD法(Bulk Decomposition method)
を用いてグラファイトファーネス原子吸光分析計で測定
した。この測定値のシリコンウェーハ中に混入している
全Fe濃度に対する割合を残存%として示した。その結
果を表1に示す。
<Comparative Evaluation> Examples 1 to 4 and Comparative Examples 1 to
The Fe concentration before and after the heat treatment of the PBS wafer No. 8 was measured in the vicinity of the wafer surface (in a range of 6 μm in depth from the surface), the back surface of the wafer, and the wafer bulk sandwiched between these two surfaces. The concentration of Fe near the front surface and the back surface of the wafer is determined by the DSE method (Drop Sandwich Ething method).
BD method (Bulk Decomposition method) during bulk
Was measured with a graphite furnace atomic absorption spectrometer. The ratio of the measured value to the total Fe concentration mixed in the silicon wafer was shown as a residual%. Table 1 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から明らかなように、比較例1〜8で
は熱処理後にデバイス形成領域であるウェーハ表面及び
ウェーハバルク中にFeが高い割合で残存しており、F
eがウェーハ裏面のポリシリコン層に十分に捕獲されて
いないことが判る。これに対して、実施例1〜4ではデ
バイス形成領域であるウェーハ表面のFe残存率は低い
数値を示しており、またウェーハバルク中でもFe残存
率は低く、ウェーハ裏面のポリシリコン層にはFeが高
い割合を示していることから、効果的にポリシリコン層
にFeが捕獲されていることが判る。また、比較例2〜
4、7及び8では再熱処理を行っているが室温まで冷却
するとFeはポリシリコン層に十分に捕獲されないこと
が判る。
As is clear from Table 1, in Comparative Examples 1 to 8, Fe remained at a high ratio on the wafer surface and the wafer bulk as the device formation region after the heat treatment.
It can be seen that e is not sufficiently captured by the polysilicon layer on the back surface of the wafer. On the other hand, in Examples 1 to 4, the residual ratio of Fe on the wafer surface, which is the device formation region, shows a low value, and the residual ratio of Fe is low even in the wafer bulk, and Fe is contained in the polysilicon layer on the back surface of the wafer. The high ratio indicates that Fe is effectively captured in the polysilicon layer. Comparative Examples 2 to
In 4, 7, and 8, the re-heat treatment was performed, but it was found that Fe was not sufficiently captured by the polysilicon layer when cooled to room temperature.

【0030】[0030]

【発明の効果】以上述べたように、本発明によれば、P
BSウェーハを窒素、水素又はアルゴンガス雰囲気中の
炉内に入れて、1000〜1100℃の第1温度で0.
5〜2時間保持し、引続いてこのウェーハを2〜4℃/
分の速度で700〜800℃の第2温度まで降温し、第
2温度で1〜5時間保持した後、炉から取出して室温ま
で放冷するか、或いは900〜1100℃の第1温度で
0.5〜2時間保持し、引続いてこのウェーハを0.5
〜2℃/分の速度で700〜800℃の第2温度まで降
温した後、第2温度で保持することなく、又は5時間未
満保持した後、炉から取出して室温まで放冷することに
より、拡散速度の遅いFeなどの金属不純物をシリコン
ウェーハバルク中に十分に拡散させた後、ウェーハバル
ク中に残存させることなく、確実にポリシリコン層中に
捕獲することができる。
As described above, according to the present invention, P
The BS wafer is placed in a furnace in an atmosphere of nitrogen, hydrogen, or argon gas, and at a first temperature of 1000 to 1100 ° C.
Hold for 5 to 2 hours, then keep the wafer at 2-4 ° C /
The temperature is lowered to a second temperature of 700 to 800 ° C. at a rate of 1 minute and kept at the second temperature for 1 to 5 hours, and then taken out of the furnace and allowed to cool to room temperature, or 0 to 900 ° C. Hold for 0.5 to 2 hours, then remove the wafer for 0.5
After cooling down to a second temperature of 700 to 800 ° C. at a rate of 22 ° C./min, without holding at the second temperature or after holding for less than 5 hours, it is taken out of the furnace and allowed to cool to room temperature, After sufficiently diffusing metal impurities such as Fe having a low diffusion rate into the silicon wafer bulk, the metal impurities can be reliably captured in the polysilicon layer without remaining in the wafer bulk.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥内 茂 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社シリコン研究センター 内 Fターム(参考) 4G077 AA02 BA04 CF10 DB01 FE05 FE12  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shigeru Okuchi 1-297 Kitabukurocho, Omiya-shi, Saitama Mitsubishi Materials Silicon Research Center F-term (reference) 4G077 AA02 BA04 CF10 DB01 FE05 FE12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 裏面にポリシリコン層を有するシリコン
ウェーハを熱処理する方法において、 前記シリコンウェーハを窒素、水素又はアルゴンガス雰
囲気中の炉内に入れて、950〜1100℃の第1温度
で0.5〜2時間保持し、引続いて前記ウェーハを2〜
4℃/分の速度で700〜800℃の第2温度まで降温
し、前記第2温度で1〜5時間保持した後、前記炉から
取出して室温まで放冷することを特徴とするシリコンウ
ェーハの熱処理方法。
1. A method for heat-treating a silicon wafer having a polysilicon layer on its back surface, comprising: placing the silicon wafer in a furnace in a nitrogen, hydrogen or argon gas atmosphere at a first temperature of 950 to 1100 ° C. Hold for 5 to 2 hours, and then remove the wafer for 2 to 2 hours.
Cooling the silicon wafer at a rate of 4 ° C./min to a second temperature of 700 to 800 ° C., maintaining the temperature at the second temperature for 1 to 5 hours, and taking out from the furnace and allowing it to cool to room temperature; Heat treatment method.
【請求項2】 裏面にポリシリコン層を有するシリコン
ウェーハの炉内における第1温度が1050〜1100
℃である請求項1記載の熱処理方法。
2. The method according to claim 1, wherein the first temperature of the silicon wafer having the polysilicon layer on the back surface is in the range of 1050 to 1100 in the furnace.
2. The heat treatment method according to claim 1, wherein the temperature is ° C.
【請求項3】 裏面にポリシリコン層を有するシリコン
ウェーハを熱処理する方法において、 前記シリコンウェーハを窒素、水素又はアルゴンガス雰
囲気中の炉内に入れて、950〜1100℃の第1温度
で0.5〜2時間保持し、引続いて前記ウェーハを0.
5〜2℃/分の速度で700〜800℃の第2温度まで
降温した後、前記第2温度で保持することなく、又は5
時間未満保持した後、前記炉から取出して室温まで放冷
することを特徴とするシリコンウェーハの熱処理方法。
3. A method for heat-treating a silicon wafer having a polysilicon layer on the back side, comprising: placing the silicon wafer in a furnace in an atmosphere of nitrogen, hydrogen or argon gas at a first temperature of 950 to 1100 ° C. Hold for 5 to 2 hours and then place the wafers in 0.
After cooling to a second temperature of 700 to 800 ° C. at a rate of 5 to 2 ° C./min, without holding at the second temperature, or
A method for heat-treating a silicon wafer, comprising taking out the furnace from the furnace and allowing it to cool to room temperature after holding for less than an hour.
【請求項4】 裏面にポリシリコン層を有するシリコン
ウェーハの炉内における第1温度が1050〜1100
℃である請求項3記載の熱処理方法。
4. A first temperature of a silicon wafer having a polysilicon layer on a back surface in a furnace is from 1050 to 1100.
The heat treatment method according to claim 3, wherein the temperature is ° C.
JP21684399A 1999-07-30 1999-07-30 Heat treatment method for silicon wafer Expired - Lifetime JP3890819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21684399A JP3890819B2 (en) 1999-07-30 1999-07-30 Heat treatment method for silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21684399A JP3890819B2 (en) 1999-07-30 1999-07-30 Heat treatment method for silicon wafer

Publications (2)

Publication Number Publication Date
JP2001044206A true JP2001044206A (en) 2001-02-16
JP3890819B2 JP3890819B2 (en) 2007-03-07

Family

ID=16694784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21684399A Expired - Lifetime JP3890819B2 (en) 1999-07-30 1999-07-30 Heat treatment method for silicon wafer

Country Status (1)

Country Link
JP (1) JP3890819B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040638A (en) * 2008-08-01 2010-02-18 Sumco Corp Method of manufacturing soi substrate
US10475663B2 (en) 2012-10-02 2019-11-12 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing semiconductor device
CN115224155A (en) * 2022-06-09 2022-10-21 东莞南玻光伏科技有限公司 Method and system for removing impurities in silicon wafer
CN115233311A (en) * 2022-08-08 2022-10-25 兰州大学 Method for reducing dislocation density of monocrystalline silicon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040638A (en) * 2008-08-01 2010-02-18 Sumco Corp Method of manufacturing soi substrate
US10475663B2 (en) 2012-10-02 2019-11-12 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing semiconductor device
US10950461B2 (en) 2012-10-02 2021-03-16 Mitsubishi Electric Corporation Method for manufacturing semiconductor device
CN115224155A (en) * 2022-06-09 2022-10-21 东莞南玻光伏科技有限公司 Method and system for removing impurities in silicon wafer
CN115224155B (en) * 2022-06-09 2024-02-23 东莞南玻光伏科技有限公司 Method and system for removing impurities in silicon wafer
CN115233311A (en) * 2022-08-08 2022-10-25 兰州大学 Method for reducing dislocation density of monocrystalline silicon

Also Published As

Publication number Publication date
JP3890819B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
US6284384B1 (en) Epitaxial silicon wafer with intrinsic gettering
US8026145B2 (en) Arsenic and phosphorus doped silicon wafer substrates having intrinsic gettering
US7939441B2 (en) P-type silicon wafer and method for heat-treating the same
JP3381816B2 (en) Semiconductor substrate manufacturing method
JP2003502836A (en) Manufacturing method of epitaxial silicon wafer having intrinsic gettering
JPH0845944A (en) Manufacture of silicon wafer
JP2874618B2 (en) Silicon semiconductor substrate and method of manufacturing the same
WO2010131412A1 (en) Silicon wafer and method for producing the same
EP0973190A2 (en) Silicon wafer and method for producing it
JP5097332B2 (en) Method for producing single crystal silicon wafer, silicon wafer of this kind and use thereof
JP3890819B2 (en) Heat treatment method for silicon wafer
JP3080501B2 (en) Silicon wafer manufacturing method
US11761118B2 (en) Carbon-doped silicon single crystal wafer and method for manufacturing the same
KR100432496B1 (en) Manufacturing method for annealed wafer
JP2907095B2 (en) Method for manufacturing semiconductor device
JP7207204B2 (en) Method for producing carbon-doped silicon single crystal wafer
JP4259881B2 (en) Cleaning method of silicon wafer
JP2012049397A (en) Method of manufacturing silicon wafer
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JPH0555233A (en) Manufacture of semiconductor device
JP2018113320A (en) Method for heat treatment on silicon wafer and silicon wafer
JP2002076005A (en) Single crystal silicon wafer
CN115135816A (en) Method for manufacturing semiconductor silicon wafer
JP2021090067A (en) Silicon wafer
JP2003100759A (en) Method for manufacturing epitaxial silicon wafer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3890819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term