JPH04186729A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04186729A
JPH04186729A JP31392590A JP31392590A JPH04186729A JP H04186729 A JPH04186729 A JP H04186729A JP 31392590 A JP31392590 A JP 31392590A JP 31392590 A JP31392590 A JP 31392590A JP H04186729 A JPH04186729 A JP H04186729A
Authority
JP
Japan
Prior art keywords
film
wiring
alloy
tiw
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31392590A
Other languages
Japanese (ja)
Inventor
Masahiro Koizumi
小泉 正博
Hitoshi Suzuki
斉 鈴木
Hitoshi Onuki
仁 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31392590A priority Critical patent/JPH04186729A/en
Publication of JPH04186729A publication Critical patent/JPH04186729A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent reaction between Al alloy and high melting point metal, suppress an increase in wiring resistance and obtain a highly reliable Al wiring by forming two layers of Al, Cu and Si alloy films having different film quality on a TiW film. CONSTITUTION:A TiW film 5 is formed, by means of sputtering. Then an Al- Cu-Si allay film 6 being a first layer is formed on the TiW film under sputtering conditions with reached pressure of 8X10<-7>Torr or higher, and an Al-Cu-Si alloy film 7 being a second layer is formed further on it under sputtering conditions with reached pressure of 8X10<-7>Torr or higher. In order to form good contact with a diffusion layer 2 and the wiring, the Al-Cu-Si alloy film 6 in contact with the TiW film can suppress diffusion of W by N2 if N2 gas of 1X10<-3>mol/g or more is contained. However on the upper Al-Cu-Si alloy film 7, impurities such as N2 as little as possible improves the conditions. This is because much impurity can easily, cause disconnection due to electron migration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の配線材料、特に、高集積半導体装
置の高信頼性配線材料を用いた半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to wiring materials for semiconductor devices, and particularly to semiconductor devices using highly reliable wiring materials for highly integrated semiconductor devices.

〔従来の技術〕[Conventional technology]

半導体装置の集積度が増加することによって、Afl配
線構造も複雑、多層化になり、エレクトロマイグレーシ
ョンやストレスマイグレーションに起因する配線の断線
が問題となっている。
As the degree of integration of semiconductor devices increases, the Afl wiring structure becomes more complex and multilayered, and wire breakage due to electromigration or stress migration becomes a problem.

この問題を解決するため、特開昭63−29548号公
報に記載のように、Al−Cu−5i合金と高融点金属
であるTiWを積層した配線が考案されている。しかし
、この方法ではストレスマイグレーションによる断線は
防止できるが、エレクトロマイグレーションによる配線
の抵抗増加を防止することはできない。
In order to solve this problem, a wiring layered with Al-Cu-5i alloy and TiW, which is a high melting point metal, has been devised as described in Japanese Patent Application Laid-open No. 63-29548. However, although this method can prevent wire breakage due to stress migration, it cannot prevent an increase in wiring resistance due to electromigration.

配線の抵抗増加は、Al配線と高融点金属との界面で両
者が反応するためである。従来の配線は。
The increase in resistance of the wiring is due to the reaction between the Al wiring and the high melting point metal at the interface. Conventional wiring.

熱酸化によって形成した絶縁膜上にTiW膜をスパッタ
法で形成後、その上に、Aff−Cu−’Si合金膜を
スパッタにより堆積し、形成される。その後、450 
’C近傍の温度でアニールする。このアニール時に、A
12合金膜とT i W゛との界面で反応が起こり、高
抵抗のA、Qの化合物が形成される。
A TiW film is formed by sputtering on an insulating film formed by thermal oxidation, and then an Aff-Cu-'Si alloy film is deposited thereon by sputtering. After that, 450
Anneal at a temperature near 'C. During this annealing, A
A reaction occurs at the interface between the 12 alloy film and T i W', and a high-resistance compound of A and Q is formed.

この配線に高い電流密度を与えると、A Q −Cu−
Si合金膜がエレクトロマイグレーションにより断線す
るとA Q、の化合物が露畠する。そのため、配線の抵
抗が増加するという問題がある。
When a high current density is applied to this wiring, A Q -Cu-
When the Si alloy film is disconnected due to electromigration, compounds A and Q are exposed. Therefore, there is a problem that the resistance of the wiring increases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来例の積層配線構造は、Al金合金高融点金属との界
面反応については考慮がなされておらず、配線の抵抗増
加は必ずしも改善されないという問題がある。
The conventional laminated wiring structure does not take into consideration the interfacial reaction with the Al-gold alloy high-melting point metal, and there is a problem in that the increase in resistance of the wiring cannot necessarily be improved.

本発明の目的は、Al金合金高融点金属との反応を防止
し、配線の抵抗増加を抑制した、高信頼のAl配線を有
する半導体装置を提供することにある。
An object of the present invention is to provide a semiconductor device having highly reliable Al interconnects that prevents reactions with Al-gold alloy high-melting point metals and suppresses increases in interconnect resistance.

〔課題を解決するための手段〕[Means to solve the problem]

この発明はT i W膜上の膜質の異なる二層のA Q
 −Cu −S i合金膜を形成することにある。
This invention consists of two layers of AQ with different film quality on a TiW film.
-Cu-Si alloy film is formed.

すなわち、TiW膜上の第一層目に膜質の低いA Q 
−Cu −S i合金膜をスパッタにより形成後、その
上に通常の膜質のAl−Cu−Si合金膜をスパッタに
よって形成して成るものである。TiW膜と接している
Al2−Cu−Si合金膜は、T 、i’Jとの反応を
抑制するため、配線の抵抗増加の少ない、高信頼性のA
 Q配線を実現する技術である。
In other words, the first layer on the TiW film is AQ with poor film quality.
-Cu-Si alloy film is formed by sputtering, and then an Al-Cu-Si alloy film of normal film quality is formed thereon by sputtering. The Al2-Cu-Si alloy film in contact with the TiW film suppresses the reaction with T and i'J, resulting in a highly reliable A with little increase in wiring resistance.
This is a technology that realizes Q wiring.

〔作用〕[Effect]

Al−Cu−Si合金/ T i W界面に形成する化
合物は、AlとWとの化合物であることを確認した。T
iW膜中のWは、アニール時に界面に集中し、徐々にA
lQ金膜中に拡散し、Alと化合物を形成する。従って
、AlQ金膜中へのW′の拡散を抑制できれば化合物生
成を防止できることに着目した。
It was confirmed that the compound formed at the Al-Cu-Si alloy/T i W interface was a compound of Al and W. T
W in the iW film concentrates at the interface during annealing, and gradually A
It diffuses into the IQ gold film and forms a compound with Al. Therefore, we focused on the fact that the formation of compounds could be prevented if the diffusion of W' into the AlQ gold film could be suppressed.

そこで、本発明はTiW膜上に膜質の低いAl−Cu−
Si合金膜を設けることによって、Al合合金へのWの
拡散を抑制できることを見出した。
Therefore, in the present invention, a film of low quality Al-Cu-
It has been found that by providing a Si alloy film, it is possible to suppress the diffusion of W into the Al alloy.

膜質の低い膜は、不純物、特にN2及びArが通常の膜
質の場合より多く、このN2 がWの拡散を抑制する効
果を持つことがわかった。
It was found that a film of low quality contains more impurities, especially N2 and Ar, than a film of normal quality, and that this N2 has the effect of suppressing the diffusion of W.

第2図は、A Q −Cu −S i / T i W
積層膜におけるアニール後のAl−W化合物生成量に及
ぼすAfl−Cu−Si合金膜中のN2 ガス含有量の
影響を示したものである。N2がI X 10’−3m
ol/g以上になるとAl−W化合物の生成が抑制され
るのがわかる。
Figure 2 shows A Q -Cu -S i /T i W
This figure shows the influence of the N2 gas content in the Afl-Cu-Si alloy film on the amount of Al-W compound produced after annealing in the laminated film. N2 is I x 10'-3m
It can be seen that the production of Al-W compounds is suppressed when the concentration exceeds ol/g.

従って、TiW膜に接しているAl−Cu−Si合金膜
は、N2ガスがI X 10−’ioQ/ g以上含有
していればよい。しかし、上層のAl−Cu−Si合金
膜は、できるかぎりN2等の不純物は少ない方がよい。
Therefore, the Al-Cu-Si alloy film in contact with the TiW film only needs to contain N2 gas of I x 10-'ioQ/g or more. However, it is preferable that the upper layer Al--Cu--Si alloy film contains as few impurities as possible, such as N2.

これは、不純物が多いとエレクトロマイグレーションに
よって断線し易くなるためである。
This is because if there are a lot of impurities, it becomes easy to break the wire due to electromigration.

〔実施例〕〔Example〕

以下、本発明における積層配線を形成する場合の一実施
例を第1図の工程順断面図により詳述する。
Hereinafter, one embodiment of forming a laminated wiring according to the present invention will be described in detail with reference to step-by-step sectional views shown in FIG.

まず、第1図(a)に示すように、シリコン基板1上に
形成した拡散層2と第一の配線との分離を行うために膜
厚約8000人の絶縁膜3をウェハ全面にCVD法によ
り形成する。次に拡散WI2と第一の配線と接続するた
めの孔、つまり、コンタクトホール4を形成する。その
後、第1図(b)に示すように、まず、TiW膜5をス
パッタ法により形成する。次に、到達圧力が8 X I
 O−7Torr以上のスパッタ条件で第−層のAl−
Cu−Si合金膜6をTiW膜上に形成し、さらにその
上に到達圧力が8 X 10−7Torr以上のスパッ
タ条件で第二層目のAlCu−Si合金膜7を形成する
First, as shown in FIG. 1(a), in order to separate the first wiring from the diffusion layer 2 formed on the silicon substrate 1, an insulating film 3 with a thickness of approximately 8,000 yen is coated over the entire surface of the wafer using the CVD method. Formed by Next, a hole for connecting the diffusion WI2 and the first wiring, that is, a contact hole 4 is formed. Thereafter, as shown in FIG. 1(b), a TiW film 5 is first formed by sputtering. Next, the ultimate pressure is 8 X I
The Al-th layer is sputtered under sputtering conditions of O-7 Torr or more.
A Cu--Si alloy film 6 is formed on the TiW film, and a second layer of AlCu--Si alloy film 7 is further formed thereon under sputtering conditions such that the ultimate pressure is 8.times.10@-7 Torr or higher.

TiW膜の厚さは2000人、Al−Cu−Si合金膜
の厚さは第−及び第二層を合わせて8000人である。
The thickness of the TiW film is 2000 mm, and the thickness of the Al-Cu-Si alloy film is 8000 mm including the first and second layers.

次に、配線として必要な領域のみ残し、他の領域を選択
的にエツチング除去する。その後、拡散層2と配線と良
好なコンタクトを形成するために、アニールを行なう。
Next, only the areas necessary for wiring are left, and other areas are selectively etched away. Thereafter, annealing is performed to form good contact between the diffusion layer 2 and the wiring.

アニール温度は450 ’C程度である。次に、第一の
配線と第二の配線を電気的に分離するための絶縁膜8を
CVD法により形成する。その後、第一の配線と第二の
配線とを接続するためのコンタクトホール9を絶縁膜8
の所定の位置に形成する。次に第1図(C)に示すよう
に、第2の配線1oを第一の配線の形成方法と同じ方法
で形成する。その後、第一の配線の場合と同様に配線と
して必要な領域のみ残し、他の領域は選択的にエツチン
グ除去する。最後に、配線を保護するために、保護膜1
1をCVD法にて形成する。ここで1.11配線はA 
11− Cu −S iの他に、Aff−Cuでも、ま
た、Cuの替りに他の元素でも良い。高融点金属として
Wでも良い。さらに、本発明の配線は、第−及び第二配
線のいずれか一方でもよい。
The annealing temperature is about 450'C. Next, an insulating film 8 for electrically separating the first wiring and the second wiring is formed by CVD. After that, a contact hole 9 for connecting the first wiring and the second wiring is formed in the insulating film 8.
at a predetermined location. Next, as shown in FIG. 1C, a second wiring 1o is formed by the same method as the first wiring. Thereafter, as in the case of the first wiring, only the area necessary for the wiring is left, and other areas are selectively etched away. Finally, to protect the wiring, a protective film 1 is added.
1 is formed by CVD method. Here 1.11 wiring is A
In addition to 11-Cu-Si, Aff-Cu may be used, or other elements may be used instead of Cu. W may be used as the high melting point metal. Furthermore, the wiring of the present invention may be either the first wiring or the second wiring.

本発明は、シリコンを基板とする半導体装置すべての配
線材料として応用できることは明らかである。
It is clear that the present invention can be applied as a wiring material for all semiconductor devices using silicon as a substrate.

第3図は、本発明の詳細な説明するためのグラフである
。従来のA Q −Cu −S i / T i W積
層配線と本発明の2層A Q −Cu −S i / 
T i W積層配線に高電流を流した時の配線の抵抗増
加を測定した結果である。本発明の配線の方が、従来の
配線より抵抗の増加が少ないことがわかる。
FIG. 3 is a graph for explaining the present invention in detail. Conventional AQ-Cu-S i/T i W laminated wiring and the two-layer A Q-Cu-S i/T iW of the present invention
These are the results of measuring the increase in resistance of the wiring when a high current is passed through the TiW laminated wiring. It can be seen that the wiring of the present invention has a smaller increase in resistance than the conventional wiring.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、TiWとの反応を抑制できるAl配線
にしたため、配線の抵抗増加が少ない。
According to the present invention, since the Al wiring is used which can suppress the reaction with TiW, the increase in resistance of the wiring is small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は、本発明の一実施例における半
導体装置の製造工程を説明するための工程順の断面図、
第2図は、An−Cu−3i/TiW積層膜をアニール
した時のAl−W化合物生成量とAl−Cu−5i合金
膜中のN2ガス含有量との関係を示した説明図、第3図
は、本発明の効果を従来技術と比較して示した説明図で
ある。 1・・・シリコン基板、2・・拡散層、3・・・絶縁膜
、4・・・コンタクトホール、5・・TiW膜、6・A
l−Cu−8i合金膜、7=#kQ−Cu−5i合金膜
、8・・・絶縁膜、9・・・コンタクトホール、10・
・・Al−Cu −S i合金膜、11・・・保護膜。        ′・代理人 弁理士 小川勝馬\ごッ 第1図 第2図
FIGS. 1(a) to 1(d) are cross-sectional views in the order of steps for explaining the manufacturing process of a semiconductor device in an embodiment of the present invention;
Figure 2 is an explanatory diagram showing the relationship between the amount of Al-W compound produced when an An-Cu-3i/TiW laminated film is annealed and the N2 gas content in the Al-Cu-5i alloy film. The figure is an explanatory diagram showing the effects of the present invention in comparison with the prior art. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Diffusion layer, 3... Insulating film, 4... Contact hole, 5... TiW film, 6... A
l-Cu-8i alloy film, 7=#kQ-Cu-5i alloy film, 8... Insulating film, 9... Contact hole, 10.
...Al-Cu-Si alloy film, 11...protective film. '・Agent: Patent Attorney Katsuma Ogawa \ Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、半導体あるいは絶縁体基板上にAl合金と高融点金
属との積層配線をもつ半導体装置において、 前記高融点金属の膜上にそれぞれ異なる方法で形成され
た二層のAl合金膜よりなることを特徴とする半導体装
置。 2、請求項1において、前記高融点金属の膜に接してい
る下層のAl合金膜は、N_2ガスが1×10^−^3
mol/g以上含有する半導体装置。 3、請求項1において、上層のAl合金膜は、N_2ガ
スが1×10^−^3mol/g以下である半導体装置
。 4、請求項1において、前記高融点金属の膜はTiW及
びWである半導体装置。 5、請求項1において、前記高融点金属の膜に接してい
るAl合金膜は、8×10^−^7Torr以上の到達
圧力のスパッタ条件で形成している半導体装置。
[Claims] 1. In a semiconductor device having laminated wiring of an Al alloy and a high melting point metal on a semiconductor or insulating substrate, two layers of Al formed by different methods on the film of the high melting point metal are provided. A semiconductor device comprising an alloy film. 2. In claim 1, the lower Al alloy film in contact with the high melting point metal film contains N_2 gas of 1×10^-^3
A semiconductor device containing mol/g or more. 3. The semiconductor device according to claim 1, wherein the upper Al alloy film contains N_2 gas at 1×10^-^3 mol/g or less. 4. The semiconductor device according to claim 1, wherein the high melting point metal film is TiW and W. 5. The semiconductor device according to claim 1, wherein the Al alloy film in contact with the high melting point metal film is formed under sputtering conditions at an ultimate pressure of 8×10^-^7 Torr or more.
JP31392590A 1990-11-21 1990-11-21 Semiconductor device Pending JPH04186729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31392590A JPH04186729A (en) 1990-11-21 1990-11-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31392590A JPH04186729A (en) 1990-11-21 1990-11-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04186729A true JPH04186729A (en) 1992-07-03

Family

ID=18047176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31392590A Pending JPH04186729A (en) 1990-11-21 1990-11-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04186729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181139A (en) * 1994-12-26 1996-07-12 Nec Corp Semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181139A (en) * 1994-12-26 1996-07-12 Nec Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
EP0751567B1 (en) Copper alloys for chip interconnections and method of making
EP0843895B1 (en) Method of manufacturing a metal interconnect structure for an integrated circuit with improved electromigration reliability
US6706629B1 (en) Barrier-free copper interconnect
JP3244058B2 (en) Method for manufacturing semiconductor device
JP2001203205A (en) Semiconductor device and its manufacturing method
US20070145600A1 (en) Semiconductor device and manufacturing method thereof
JPH09186103A (en) Structure of metal interconnection and forming method thereof
JP2600593B2 (en) Semiconductor device and manufacturing method thereof
JPS6364057B2 (en)
US7888263B2 (en) Cladded silver and silver alloy metallization for improved adhesion electromigration resistance
JPH06236878A (en) Metal wiring
JPH04186729A (en) Semiconductor device
JPH06204218A (en) Manufacturing method of semiconductor device
US20050136645A1 (en) Semiconductor device and fabrication method thereof
JPH0629294A (en) Manufacture of semiconductor device
JPH11186263A (en) Semiconductor device and manufacture thereof
JPH05102148A (en) Semiconductor device
JPH11283981A (en) Semiconductor device and manufacture thereof
JP3014887B2 (en) Semiconductor device and manufacturing method thereof
JPH05102154A (en) Semiconductor device
JP2723023B2 (en) Semiconductor device and manufacturing method thereof
JPH06275725A (en) Manufacture of semiconductor device
JPH06326105A (en) Laminated interconnection structure of semiconductor device
JPH0555296A (en) Semiconductor device
JPH02206122A (en) Semiconductor device