JPH0417990A - Adjusting device for laser beam axis - Google Patents

Adjusting device for laser beam axis

Info

Publication number
JPH0417990A
JPH0417990A JP2117726A JP11772690A JPH0417990A JP H0417990 A JPH0417990 A JP H0417990A JP 2117726 A JP2117726 A JP 2117726A JP 11772690 A JP11772690 A JP 11772690A JP H0417990 A JPH0417990 A JP H0417990A
Authority
JP
Japan
Prior art keywords
laser
laser beam
optical axis
type detector
beam axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2117726A
Other languages
Japanese (ja)
Inventor
Takashi Shigematsu
孝 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2117726A priority Critical patent/JPH0417990A/en
Publication of JPH0417990A publication Critical patent/JPH0417990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To adjust a laser beam axis with high accuracy and in a short time by providing a quartering type detector receiving laser beam converged by a condenser on the outgoing side of a condensing part and preparing a drive part to adjust a mounting posture of a condensing lens from an operated result of an output signal of this quartering type detector. CONSTITUTION:The position and angle of a beam splitter 2C and the mounting angle of the condensing lens 3 are adjusted by an arithmetic processing unit 6 in which signals in the directions of X, Y detected by the quartering type detector 5A are inputted and adjusted results of the beam axis are displayed on a position display 7, therefore, an operator confirms that the laser beam axis is adjusted at prescribed position and with prescribed accuracy.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、レーザ光軸調整装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a laser optical axis adjustment device.

(従来の技術) レーザ発振器から出射されたレーザ光を伝送してワーク
に照射するレーザ加工機では、ワークを所定の精度に加
工するために、レーザ光を所定の精度で伝送しなければ
ならない。
(Prior Art) In a laser processing machine that transmits laser light emitted from a laser oscillator to irradiate a workpiece, the laser beam must be transmitted with a predetermined precision in order to process the workpiece with a predetermined precision.

(発明が解決しようとする課題) このため、従来のレーザ光軸調整装置では、He−Ne
レーザなどの可視レーザ光をレーザ発振器から出射して
、この可視レーザ光が所定の光軸で伝送されているか否
かを目で見て確める方法が採られている。
(Problem to be solved by the invention) For this reason, in the conventional laser optical axis adjustment device, He-Ne
A method is adopted in which visible laser light such as a laser is emitted from a laser oscillator and it is visually confirmed whether the visible laser light is being transmitted along a predetermined optical axis.

また、他の方法として、出力を落として出射された、例
えばCO□ レーザ光をアクリル樹脂の板に瞬間的に照
射して、この照射で気化して残った痕跡(バーンパター
ン)から、レーザ光の光軸の位置を確める方法もある。
Another method is to instantaneously irradiate an acrylic resin plate with a CO□ laser beam emitted with a reduced output, and from the traces (burn pattern) left after being vaporized by this irradiation, the laser beam There is also a method to confirm the position of the optical axis.

ところが、このうち前者は、目視のために位置精度が出
ないだけでなく、測定者の熟練度や注意力で、測定結果
にばらつきが出る。
However, in the former case, not only is the positional accuracy not achieved due to visual inspection, but the measurement results also vary depending on the skill and attentiveness of the measurer.

また後者は、アクリル樹脂板の着脱や、バーンパターン
の測定に手間がかかり、精度も不十分である。
In addition, the latter requires time and effort to attach and detach the acrylic resin plate and measure the burn pattern, and the accuracy is insufficient.

そこで、本発明の目的は、レーザ伝送路で伝送されたレ
ーザ光の光軸を、高精度且つ短時間に調整することので
きるレーザ光軸調整装置を得ることである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to obtain a laser optical axis adjustment device that can adjust the optical axis of a laser beam transmitted through a laser transmission line with high precision and in a short time.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段および作用)本発明は、レ
ーザ伝送路で伝送され集光部の集光レンズで集束された
レーザ光の光軸を調整するレーザ光軸調整装置において
、集光部の出力側に集光レンズで集束されたレーザ光を
受光する4分割形検出器を設け、この4分割形検出器の
出力信号の演算結果から集光レンズの取付部の姿勢を調
整する駆動部を設けることで、測定者の熟練度や注意力
の如何にかかわらず、高精度且つ短時間にレーザ光の光
軸を調整することのできるレーザ光軸調整装置である。
(Means and Effects for Solving the Problems) The present invention provides a laser optical axis adjustment device for adjusting the optical axis of a laser beam transmitted through a laser transmission line and focused by a condenser lens in a condenser. A 4-segment type detector is provided on the output side of the 4-segment type detector to receive the laser beam focused by the condensing lens, and a drive unit adjusts the attitude of the mounting part of the condensing lens based on the calculation result of the output signal of this 4-segment type detector. By providing this, the laser optical axis adjustment device is capable of adjusting the optical axis of the laser beam with high precision and in a short time, regardless of the level of skill or attentiveness of the measurer.

(実施例) 以下、本発明のレーザ光軸調整装置の一実施例を図面を
参照して説明する。
(Example) Hereinafter, one example of the laser optical axis adjustment device of the present invention will be described with reference to the drawings.

第1図において、図示しないレーザ発振器から出射され
たレーザ光を伝送する図示しない伝送路には、全反射ミ
ラー2A、 2Bが順に設けられ、全反射ミラー2Bの
下流側の図示しない伝送路には、ビームスプリッタ2C
と詳細後述する光軸装置19が順に設けられている。
In FIG. 1, total reflection mirrors 2A and 2B are sequentially provided on a transmission path (not shown) that transmits laser light emitted from a laser oscillator (not shown), and a transmission path (not shown) downstream of total reflection mirror 2B is provided with , beam splitter 2C
and an optical axis device 19, which will be described in detail later, are provided in this order.

一方、ビームスプリッタ2Cの下方には、レーザ伝送端
のレーザノズル4に詳細省略した駆動機構8で取付角度
が調整自在の集光レンズ3が収納され、レーザノズル4
の下方には、レーザノズル4の下端に上部が嵌合した着
脱自在の治具の内部に、4分割の光電検出器(以下、4
分割形検出器という) 5Aが受光面5aを上にして取
付けられている。
On the other hand, below the beam splitter 2C, a condensing lens 3 whose installation angle can be adjusted freely by a drive mechanism 8 (details omitted) is housed in the laser nozzle 4 at the laser transmission end.
Below the laser nozzle 4, a photoelectric detector divided into four parts (hereinafter referred to as four
5A (referred to as a split type detector) is mounted with the light receiving surface 5a facing upward.

更に、レーザ伝送路には、別置の演算処理装置6が隣接
して設けられて、この演算処理装置6の入力側には、4
分割形検出器5Aの4本の出力信号線が図示しない切換
器を介して接続され、演算処理装置6の出力側はレーザ
ノズル4内の詳細省略した駆動機構8に接続され、更に
後述する位置表示器7が接続されている。
Furthermore, a separate arithmetic processing unit 6 is provided adjacent to the laser transmission path, and on the input side of this arithmetic processing unit 6, four
The four output signal lines of the split type detector 5A are connected via a switch (not shown), and the output side of the arithmetic processing unit 6 is connected to a drive mechanism 8 (details omitted) inside the laser nozzle 4, and further connected to a position described later. A display device 7 is connected.

第2図は、光軸調整装置9の詳細図で、ビームスプリッ
タ2Cを透過したレーザビームの光軸上には、左から順
に集光レンズ11.ビームスプリッタ12と4分割形検
出器5Bが収納され、ビームスプリッタ12で反射した
レーザ光の光路には、シリコンダイオードで受光する位
置検出器10が設けられている。
FIG. 2 is a detailed view of the optical axis adjustment device 9. On the optical axis of the laser beam transmitted through the beam splitter 2C, condenser lenses 11, . A beam splitter 12 and a four-split detector 5B are housed, and a position detector 10 that receives light with a silicon diode is provided in the optical path of the laser beam reflected by the beam splitter 12.

次に、このように構成されたレーザ光軸調整装置の作用
を説明する。
Next, the operation of the laser optical axis adjusting device configured as described above will be explained.

第1図、第2図の反射ミラー2A、2Bとビームスプリ
ッタ2Cで伝送されるレーザ光1の光軸を調整するため
に、まず、第2図で次のように光軸調整を行う。
In order to adjust the optical axis of the laser beam 1 transmitted by the reflecting mirrors 2A and 2B and the beam splitter 2C in FIGS. 1 and 2, the optical axis is first adjusted as follows in FIG.

第2図において、光軸調整用のレーザ光が、同図の一点
鎖線で示すように実線で示す所定の光軸に対して角度が
偏位して入射すると、位置検出器10で検出された位置
検出器10のX、Y方向の信号が入力された演算処理装
置で、位置検出器10に入射されたレーザ光のずれ量(
Δd)を次式で算出する。
In FIG. 2, when the laser beam for optical axis adjustment enters with an angle deviation from the predetermined optical axis shown by the solid line as shown by the dashed line in the same figure, it is detected by the position detector 10. An arithmetic processing unit to which signals in the X and Y directions of the position detector 10 are input, calculates the amount of deviation (
Δd) is calculated using the following formula.

Δd=J(x2+y2)        ・・・■x、
、 x2. y工l Y2は4分割された各受光面から
の信号すると、この演算結果が入力された反射ミラー2
A、 2Bとビームスプリッタ12の駆動機構が駆動さ
れて、レーザ光の光軸を所定の光軸と平行に調整される
Δd=J(x2+y2)...■x,
, x2. Y2 is the reflection mirror 2 to which the calculation result is input when the signal is received from each of the four divided light-receiving surfaces.
A, 2B and the drive mechanism of the beam splitter 12 are driven to adjust the optical axis of the laser beam parallel to a predetermined optical axis.

次に、4分割形検出器5Bに平行に偏心したレーザ光が
入射すると、この4分割形検出器5BのX。
Next, when the parallel decentered laser beam enters the quadrant detector 5B, the X of the quadrant detector 5B.

Y方向の信号が入力された演算処理装置で、レーザ光の
偏位量が上記■、(2)、■式の順序で算出され、上述
と同様に反射ミラー2A、2Bの駆動機構が駆動されて
、レーザ光の光軸は所定の光軸に調整される。
The arithmetic processing unit to which the signal in the Y direction is input calculates the amount of deviation of the laser beam in the order of equations (2), (2), and (3) above, and drives the drive mechanism of the reflection mirrors 2A and 2B in the same manner as described above. Thus, the optical axis of the laser beam is adjusted to a predetermined optical axis.

最後に、第1図において、4背割形検器5Aで検出され
たX、Y方向の信号が入力された演算処理装置で、ビー
ムスプリッタ2Cの位置・角度と、集光レンズ3の取付
角度が調整され、位置検出器10゜4分割形検出器5B
で調整されたときと同様に、光軸調整結果が位置表示器
7で表示されることで、作業者はレーザ光軸が所定の位
置・精度で調整されたことを確認する。
Finally, in FIG. 1, the arithmetic processing unit to which the signals in the X and Y directions detected by the 4-split type detector 5A are inputted, calculates the position and angle of the beam splitter 2C and the mounting angle of the condenser lens 3. is adjusted, position detector 10° 4-split detector 5B
As in the case of adjustment, the optical axis adjustment result is displayed on the position display 7, so that the operator can confirm that the laser optical axis has been adjusted at a predetermined position and accuracy.

なお、上記実施例では、演算処理装置6の演算結果で自
動的に反射ミラー2A、 2Bやビームスプリッタ2C
,12を調整する例で説明したが、位置検出器7の表示
を見ながら手動で駆動機構を動かすようにしてもよい。
In the above embodiment, the reflection mirrors 2A and 2B and the beam splitter 2C are automatically adjusted based on the calculation results of the calculation processing device 6.
, 12 has been described, but the drive mechanism may be manually moved while watching the display on the position detector 7.

また、位置検出器10をビームスプリッタ12の反射側
だけに用いた例で説明したが、すべてを同形の位置検出
器にしてもよく、更に、要求される精度によっては、す
べてを4分割検出器にしてもよい。
In addition, although the example in which the position detector 10 is used only on the reflection side of the beam splitter 12 has been described, all the position detectors may be of the same shape, and depending on the required accuracy, all the position detectors may be divided into four parts. You may also do so.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、レーザ伝送路で伝送され集光部
の集光レンズで集束されたレーザ光の光軸を調整するレ
ーザ光軸調整装置において、集光部の出射側に集光レン
ズで集束されたレーザ光を受光する4分割形検出器を設
け、この4分割形検出器の呂力信号の演算結果から、集
光レンズの取付姿勢を調整する駆動部を設けたので、測
定者の熟練度や注意力の如何にかかわらず、高精度且つ
短時間にレーザ光軸を調整することのできるレーザ光軸
調整装置を得ることができる。
As described above, according to the present invention, in a laser optical axis adjustment device that adjusts the optical axis of a laser beam transmitted through a laser transmission path and focused by a condenser lens of a condenser, the condenser lens is provided on the output side of the condenser. A four-segment detector is installed to receive the focused laser beam, and a drive unit is installed to adjust the installation posture of the condenser lens based on the calculation result of the power signal of this four-segment detector. It is possible to obtain a laser optical axis adjustment device that can adjust the laser optical axis with high precision and in a short time regardless of the level of skill or attentiveness of the operator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のレーザ光軸調整装置の一実施例を示す
図、第2図は本発明のレーザ光軸調整装置の部分詳細図
である。 1・・・レーザ光    3・・・集光レンズ4・・集
光部     5A 、 5B・・4分割形検出器6・
・・演算処理装置  8・・・駆動部(8733)  
代理人 弁理士 猪 股 祥 晃(ほか1名)第 2 
FIG. 1 is a diagram showing an embodiment of the laser optical axis adjusting device of the present invention, and FIG. 2 is a partially detailed view of the laser optical axis adjusting device of the present invention. 1... Laser light 3... Condensing lens 4... Condensing section 5A, 5B... Quadrant type detector 6...
... Arithmetic processing unit 8 ... Drive unit (8733)
Agent: Patent Attorney Yoshiaki Inomata (and 1 other person) 2nd
figure

Claims (1)

【特許請求の範囲】 レーザ伝送路で伝送され集光部の集光レンズで集束され
たレーザ光の光軸を調整するレーザ光軸調整装置におい
て、 前記集光部の出射側に前記集光レンズで集束された前記
レーザ光を受光する4分割形検出器を設け、この4分割
形検出器の出力信号の演算結果から前記集光レンズの取
付姿勢を調整する駆動部を設けたことを特徴とするレー
ザ光軸調整装置。
[Scope of Claims] A laser optical axis adjustment device that adjusts the optical axis of a laser beam transmitted through a laser transmission path and focused by a condensing lens of a condensing section, further comprising the condensing lens on the output side of the condensing section. A four-segment type detector is provided to receive the laser beam focused by the four-segment type detector, and a drive unit is provided for adjusting the mounting attitude of the condensing lens based on the calculation result of the output signal of the four-segment type detector. Laser optical axis adjustment device.
JP2117726A 1990-05-09 1990-05-09 Adjusting device for laser beam axis Pending JPH0417990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2117726A JPH0417990A (en) 1990-05-09 1990-05-09 Adjusting device for laser beam axis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2117726A JPH0417990A (en) 1990-05-09 1990-05-09 Adjusting device for laser beam axis

Publications (1)

Publication Number Publication Date
JPH0417990A true JPH0417990A (en) 1992-01-22

Family

ID=14718769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2117726A Pending JPH0417990A (en) 1990-05-09 1990-05-09 Adjusting device for laser beam axis

Country Status (1)

Country Link
JP (1) JPH0417990A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112568A (en) * 1992-09-30 1994-04-22 Sanyo Mach Works Ltd Device for automatically adjusting alignment of laser beam
US5536916A (en) * 1994-09-30 1996-07-16 Sanyo Machine Works, Ltd. Method for performing automatic alignment-adjustment of laser robot and the device
US6653543B2 (en) 2002-03-07 2003-11-25 Charles J. Kulas Musical instrument tuner with configurable display
US11543725B2 (en) 2006-07-18 2023-01-03 E Ink California, Llc Flexible controlled-release film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112568A (en) * 1992-09-30 1994-04-22 Sanyo Mach Works Ltd Device for automatically adjusting alignment of laser beam
US5536916A (en) * 1994-09-30 1996-07-16 Sanyo Machine Works, Ltd. Method for performing automatic alignment-adjustment of laser robot and the device
US6653543B2 (en) 2002-03-07 2003-11-25 Charles J. Kulas Musical instrument tuner with configurable display
US11543725B2 (en) 2006-07-18 2023-01-03 E Ink California, Llc Flexible controlled-release film

Similar Documents

Publication Publication Date Title
US4356392A (en) Optical imaging system provided with an opto-electronic detection system for determining a deviation between the image plane of the imaging system and a second plane on which an image is to be formed
US5463202A (en) Laser machining apparatus and method
US4468119A (en) Penta-prism module having laser alignment error detection and correction capability
US8681344B2 (en) Devices and methods for position determination and surface measurement
JP3478856B2 (en) Laser equipment
US4576480A (en) Optical alignment system
JP2004519697A (en) Optical ranging device
US4840483A (en) Alignment tool for laser beam delivery systems and method of alignment
CN212470240U (en) Light beam pointing stability monitoring and feedback device
CN116900470A (en) Laser processing apparatus
US6504611B2 (en) Two stage optical alignment device and method of aligning optical components
JPH0888170A (en) Controller of position and gradient of target
JPH0417990A (en) Adjusting device for laser beam axis
WO1992006359A1 (en) Laser autofocus apparatus and method
US4611115A (en) Laser etch monitoring system
US10520360B1 (en) Automated power-in-the-bucket measurement apparatus for large aperture laser systems
JPS63108981A (en) Distance measuring instrument
JPH07232290A (en) Focus adjusting device for laser beam machine
JPH02150399A (en) Image drawn surface control mechanism of scanning type image drawing device
JPH05312538A (en) Three-dimensional shape measuring instrument
JPS63225108A (en) Distance and inclination measuring instrument
CN102346384A (en) Method for regulating optimum focal plane for silicon chip and exposure device thereof
JPH05302825A (en) Alignment method and its device
JPH06246471A (en) Laser beam machine
JPH03152490A (en) Controlling apparatus for direction of laser beam