JPH03152490A - Controlling apparatus for direction of laser beam - Google Patents

Controlling apparatus for direction of laser beam

Info

Publication number
JPH03152490A
JPH03152490A JP1292704A JP29270489A JPH03152490A JP H03152490 A JPH03152490 A JP H03152490A JP 1292704 A JP1292704 A JP 1292704A JP 29270489 A JP29270489 A JP 29270489A JP H03152490 A JPH03152490 A JP H03152490A
Authority
JP
Japan
Prior art keywords
laser beam
flying object
optical axis
receiving
tracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1292704A
Other languages
Japanese (ja)
Other versions
JP2518066B2 (en
Inventor
Takaharu Kameyama
亀山 隆治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1292704A priority Critical patent/JP2518066B2/en
Publication of JPH03152490A publication Critical patent/JPH03152490A/en
Application granted granted Critical
Publication of JP2518066B2 publication Critical patent/JP2518066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To control the direction of laser beams with high accuracy by automatically correcting the optical axis of the laser beams and automatically correcting the positional displacement of a target. CONSTITUTION:A gimbal part 11 adds scanning motion to a sending telescope 2 and a receiving telescope 1. The telescope 2 sends laser beams of a laser apparatus 13 to the scanning space, and the telescope 1 guides the receiving light to a dichroism beam splitter 3. The receiving light in the visible range is supplied to a pickup camera 5 which in turn searches for a flying object in the scanning space. After the flying object is found, the camera 5 continues to supply the positional information to a target tracing circuit 12. The circuit 12 generates and supplies a target tracing signal to the gimbal part 11. Moreover, the components of the receiving light outside the visible range are guided to a 4-quadrant photodetector 10. The detector 10 having a narrow visual field supplies the positional information of the flying object in the quadrant area to an angular error operating circuit 21. Then, the circuit 21 operates the angular error of the transmitted laser beams to the flying object. Since a driving circuit 22 and an automatic mirror gimbal 7 drives a reflecting mirror 6 so that the angular error becomes zero, the direction of the laser beams can be corrected with good accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザビーム方向制御装置に関し、特に地上装
置と飛翔体間でレーザビームを、媒体として飛翔体の位
置標定もしくは飛翔体との通信を行うために、地上装置
から送出するレーザビームの方向が飛翔体を追尾するよ
うに制御するレーザビーム方向制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a laser beam direction control device, and in particular, a device for controlling the position of a flying object or communicating with a flying object by using a laser beam as a medium between a ground device and a flying object. The present invention relates to a laser beam direction control device that controls the direction of a laser beam emitted from a ground device so as to track a flying object.

〔従来の技術〕[Conventional technology]

従来、この種のレーザビーム方向制御装置は、レーザビ
ームを送受光する高視野のカメラ装置と、送光するレー
ザビームを発生するレーザ装置と、飛翔体の追尾装置と
から成る地上装置全体が、空間的位置制御が可能なジン
バル機構に搭載され、初期状態にあっては追尾対象空間
を一定の走査パターンで捜索し、相手の飛翔体からの反
射光もしくは飛翔体から放射されるレーザ応答光を捕捉
する。捕捉後は飛翔体からの反射光もしくは応答光を追
尾するようにレーザビームを方向制御しつつ照射する。
Conventionally, in this type of laser beam direction control device, the entire ground device consists of a high-field camera device that transmits and receives the laser beam, a laser device that generates the laser beam to be transmitted, and a tracking device for the flying object. It is mounted on a gimbal mechanism that can control the spatial position, and in the initial state, it searches the tracking target space with a fixed scanning pattern and detects the reflected light from the opponent's flying object or the laser response light emitted from the flying object. Capture. After capture, the laser beam is irradiated while controlling the direction so as to track the reflected light or response light from the flying object.

かかるレーザビームの方向制御を行うには、レーザ反射
もしくは光源の位置検出器を介して得られる照射ビーム
と受光ビームの位置ずれ信号をレーザビームの位置ずれ
信号をレーザビームの指向角度に変換し、送光路に介在
し送光路を分担形成する内部反射鏡を駆動制御してレー
ザビーム方向を飛翔体に正対するように制御していた。
In order to control the direction of the laser beam, a positional deviation signal between the irradiated beam and the received beam obtained through laser reflection or a position detector of the light source is converted into a directivity angle of the laser beam. The direction of the laser beam was controlled so as to directly face the flying object by driving and controlling an internal reflecting mirror that was interposed in the light transmission path and formed a portion of the light transmission path.

上述した内部反射鏡は、通常、光路に配設した2個の反
射鏡でそれぞれX方向、Y方向に光路を変化させるよう
にし、上述した指向角度を付与していた。
The above-mentioned internal reflecting mirror usually has two reflecting mirrors disposed in the optical path to change the optical path in the X direction and the Y direction, respectively, to provide the above-mentioned directivity angle.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

飛翔体との相対速度が速い場合、あるいは距離が離れて
いる場においては、飛翔体を高精度に追尾すべくレーザ
ビームを高精度に方向制御する必要がある。
When the relative speed to the flying object is high or when the distance is far, it is necessary to control the direction of the laser beam with high precision in order to track the flying object with high precision.

上述した従来のレーザビーム方向制御装置は、飛翔体か
ら得られる追尾信号をレーザビームの方向制御信号とし
ているので、レーザ装置の出力ビーム方向の変動及びレ
ーザビーム方向制御を行う内部反射鏡の角度変動を補正
することができず、従って、検出したレーザ光源の方向
に精度良くレーザビームを方向制御することができない
という欠点がある。
The above-mentioned conventional laser beam direction control device uses a tracking signal obtained from a flying object as a laser beam direction control signal. Therefore, the output beam direction of the laser device changes and the angle of the internal reflector that controls the laser beam direction changes. Therefore, there is a drawback that it is not possible to accurately control the direction of the laser beam in the direction of the detected laser light source.

本発明の目的は上述した欠点を除去し、レーザ装置の出
力ビーム方向の変動及び内部反射鏡の角度変動を補正で
きるレーザビーム方向正装値を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a laser beam direction formal value that can compensate for variations in the output beam direction of a laser device and angular variations of an internal reflector.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の装置は、飛翔体にむけて送出する送出レーザビ
ームによる反射光もしくは応答光を受けつつ前記送出レ
ーザビームを飛翔体に指向させるレーザビーム方向制御
装置において、送受光系ならびに追尾系を搭載して飛翔
体の追尾対象空間を前記送受光系によって所定の走査パ
ターンで走査し飛翔体補捉後は前記送受光系ならびに追
尾系を捕捉飛翔体に追尾させる第1の追尾手段と、前記
送受光系による前記送出レーザビームの送光と反射光も
しくは応答光の受光間における飛翔対の位置変位を補正
するように前記送出レーザビームの指向方向を連続的に
自動制御するとともに前記送受光系における光軸変動を
自動的に補正しつつ飛翔体の追尾補正を行う第2の追尾
手段における前記送出レーザビームの光軸の変動を検出
しつつこの変動を自動的に補止ずるレーザビーム光軸維
持手段とを備えて構成される。
The device of the present invention is a laser beam direction control device that directs the transmitted laser beam toward the flying object while receiving reflected light or response light from the transmitted laser beam that is sent toward the flying object, and is equipped with a light transmitting/receiving system and a tracking system. a first tracking means that scans a space to be tracked of the flying object by the light transmitting/receiving system in a predetermined scanning pattern and, after capturing the flying object, causes the light transmitting/receiving system and the tracking system to track the captured flying object; Continuously and automatically controlling the pointing direction of the sending laser beam so as to correct the positional displacement of the flying pair between sending the sending laser beam and receiving the reflected light or response light by the light receiving system, and in the sending and receiving system. Laser beam optical axis maintenance that detects fluctuations in the optical axis of the emitted laser beam and automatically compensates for the fluctuations in the second tracking means that corrects tracking of the flying object while automatically correcting optical axis fluctuations. and means.

また発明の装置は、送信倍率と受信倍率を一致させ、か
つ隣接して平行配置した送信望遠鏡と受信望遠鏡でレー
ザビームの送受光を行なうとともに、送受光系に共通な
1個の両面反射鏡を空間位置制御可能な状態で配設し、
かつ4象限光検出器で飛翔体の変位を取得しつつ前記飛
翔体の変位を前記両面反射鏡の角度変動分を含み自動補
正するものとして構成した前記第2の追尾手段を備えて
構成される。
In addition, the device of the invention matches the transmitting magnification and the receiving magnification, transmits and receives a laser beam using a transmitting telescope and a receiving telescope that are arranged adjacently in parallel, and uses one double-sided reflecting mirror common to the transmitting and receiving system. Arranged so that spatial position can be controlled,
and the second tracking means configured to automatically correct the displacement of the flying object including the angular variation of the double-sided reflecting mirror while acquiring the displacement of the flying object with a four-quadrant photodetector. .

また、本発明の装置は、レーザビーム送光路に出射角可
変可能な偏角プリズムを配設し、レーザビームの一部を
一部透過型ミラーならびにコーナリフレクタを介して抽
出したうえその光軸変動を4象限光検出器で検出して前
記偏角プリズムを光軸変動が零となるように駆動するも
のとして構成した前記レーザビーム光軸維持手段を備え
構成される。
In addition, the device of the present invention has a deflection prism whose output angle can be changed in the laser beam transmission path, extracts a part of the laser beam through a partially transmissive mirror and a corner reflector, and changes its optical axis. The laser beam optical axis maintaining means is configured to detect the polarization prism with a four-quadrant photodetector and drive the deflection prism so that optical axis fluctuation becomes zero.

〔実施例〕〔Example〕

次に、図面を参照して本発明の説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明のレーザビーム方向制御装置の一実施例
の構成図である。
FIG. 1 is a block diagram of an embodiment of a laser beam direction control device of the present invention.

第1図に示す実施例は、第1の追尾手段を形成するもの
として、互いに平行かつ隣接して配設された受信倍率と
送信倍率の等しい受信望遠鏡1および送信望遠鏡2と、
可視領域光を通過させそれ以外の領域光を反射する2色
性ビームスプリッタ3と、結像レンズ4と、結像レンズ
4を介して入力する飛翔体を撮像しその位置情報を出力
する撮像カメラ5と、撮像カメラ5の出力する飛翔体の
位置情報にもとづいて飛翔体の位置変位を零とするよう
に送受望遠#11および受信望遠鏡2を飛翔体に指向さ
せて目標追尾を行なわせる目標追尾信号を出力する目標
追尾回路12と、制御プログラムを内蔵し、送受光系と
追尾系とを搭載して、初期状態にあっては送受光系の送
信望遠鏡2と受信望遠鏡lに追尾対象空間を所定の走査
パターンで規則的かつ連続的に走査する走査運動を与え
、この走査運動によって飛翔体を捕捉したあとは目標追
随回路12から提供される目標追尾信号による追尾運動
を与えるジンバル部11と、レーザ光ヲ発生するレーザ
装置13と、一部透過型ミラー14とを有する。
In the embodiment shown in FIG. 1, a receiving telescope 1 and a transmitting telescope 2 having the same receiving magnification and transmitting magnification, which are arranged parallel to each other and adjacent to each other, form the first tracking means.
A dichroic beam splitter 3 that passes light in the visible region and reflects light in other regions, an imaging lens 4, and an imaging camera that images a flying object that enters through the imaging lens 4 and outputs its position information. 5, and target tracking in which the transmitting/receiving telescope #11 and the receiving telescope 2 are directed toward the flying object based on the positional information of the flying object output from the imaging camera 5 so as to make the positional displacement of the flying object zero. It is equipped with a target tracking circuit 12 that outputs a signal, a control program, a light transmitting/receiving system, and a tracking system. a gimbal unit 11 that provides a scanning movement that scans regularly and continuously in a predetermined scanning pattern, and after capturing a flying object by this scanning movement, provides a tracking movement based on a target tracking signal provided from a target tracking circuit 12; It has a laser device 13 that generates laser light and a partially transmissive mirror 14.

また、第2の追尾手段を形成するものとして、受信望遠
鏡1と、送信望遠鏡2と、2色性ビームスプリッタ3と
、両面反射鏡6と、両面反射鏡6を空間的に自由度2で
停止し、かつ停止位置を外部から受ける駆動信号で制御
可能な自動ミラージンバル7と、送出レーザビーム以外
の背景光等の不要成分を遮断する干渉フィルタ8と、集
光レンズ9と、集光レンズ9を介して受光する補足飛翔
体の位置を4象限検出領域のいずれかで検出し、その位
置情報を出力する第1の4象限光検出器10と、第1の
4象限光検出器10の出力する位置情報にもとづいて、
捕捉飛翔体の送出レーザビーム方向からの移動変位すな
わち角度誤差を求める第1の角度誤差演算回路21と、
第1の角度誤差演算回路21の出力する角度誤差を零と
するように両面反射鏡6の位置設定を自動ミラージンバ
ル7に行なわせる駆動信号を出力する第1の駆動回路2
2と、レーザ装置13と、一部透過型ミラー14とを有
する。
In addition, as elements forming the second tracking means, the receiving telescope 1, the transmitting telescope 2, the dichroic beam splitter 3, the double-sided reflecting mirror 6, and the double-sided reflecting mirror 6 are stopped spatially with two degrees of freedom. and an automatic mirror gimbal 7 whose stop position can be controlled by a drive signal received from the outside, an interference filter 8 that blocks unnecessary components such as background light other than the transmitted laser beam, a condensing lens 9, and a condensing lens 9. A first four-quadrant photodetector 10 that detects the position of a supplementary flying object that receives light through one of the four-quadrant detection areas and outputs the position information, and an output of the first four-quadrant photodetector 10. Based on the location information,
a first angular error calculation circuit 21 that calculates the displacement of the captured flying object from the direction of the emitted laser beam, that is, the angular error;
A first drive circuit 2 that outputs a drive signal that causes the automatic mirror gimbal 7 to set the position of the double-sided reflector 6 so that the angular error output from the first angular error calculation circuit 21 is zero.
2, a laser device 13, and a partially transmissive mirror 14.

また、レーザビーム光軸維持手段を形成するものとして
は、レーザ装置13と、断面が楔形の2個のプリズムを
組合せ、一方のプリズムを他方のプリズムに対して回転
することにより、回転角に゛対応して出射角と可変とす
る偏角プリズム20と、一部透過型ミラー14と、コー
ナルフレクタ15と、一部透過型ミラー14を透過し、
コナーリフレクタ15で全反射したのち再度一部透過型
ミラー14で反射したレーザ光を集束する集光レンズ2
3と、集光レンズ23の出力光を受けてその位置情報を
出力する第2の象限検出器16と、第2の象限検出器1
6の出力する位置情報にもとづいて発生レーザビームの
初期状態からの角度誤差を算出する第2の角度誤差演算
回路17と、偏角プリズム駆動部19と、第2の角度誤
差演算回路17の出力角度誤差にもとづき、偏角プリズ
ム20を偏角プリズム駆動部19で駆動して角度誤差を
零として光軸を維持させる駆動信号を発生する第2の駆
動回路18とを有する。
Further, the laser beam optical axis maintaining means is formed by combining the laser device 13 and two prisms each having a wedge-shaped cross section, and by rotating one prism with respect to the other prism, the rotation angle is changed. The beam passes through a deflection prism 20 whose output angle is made variable correspondingly, a partially transmissive mirror 14, a corner reflector 15, and a partially transmissive mirror 14,
A condenser lens 2 that focuses the laser beam that is totally reflected by the conner reflector 15 and then partially reflected again by the transmissive mirror 14.
3, a second quadrant detector 16 that receives the output light of the condenser lens 23 and outputs its position information, and a second quadrant detector 1
a second angular error calculation circuit 17 that calculates the angular error from the initial state of the generated laser beam based on the position information outputted by 6; the deflection prism drive unit 19; and the output of the second angular error calculation circuit 17 The second driving circuit 18 generates a drive signal that drives the deflection prism 20 with the deflection prism drive unit 19 based on the angle error to make the angle error zero and maintain the optical axis.

次に、第1図の実施例の動作について説明する。Next, the operation of the embodiment shown in FIG. 1 will be explained.

初期状態ではジンバル部11を所定の走査パターンに従
って規則的に駆動させレーザ装置13から出力するレー
ザ光を偏角プリズム20、一部透過型ミラー14、両面
反射光6によって形成される送光路を介して送信望遠鏡
2に導いて走査空間に送出し、対象とする飛翔体からの
反射光もしくは応答光を受信望遠鏡1で捕捉し2色性ビ
ームズブリッタ3に導く。
In the initial state, the gimbal unit 11 is driven regularly according to a predetermined scanning pattern, and the laser beam output from the laser device 13 is transmitted through a light transmission path formed by the deflection prism 20, the partially transmissive mirror 14, and the double-sided reflected light 6. The reflected light or response light from the target flying object is captured by the receiving telescope 1 and guided to the dichroic beam splitter 3.

2色性ビームスプリッタ3に導かれた受光のうち、可視
光領域のものは結像レンズ4を介して撮像カメラ5に供
給される。撮像カメラ5は、目標を捕捉し易いように可
能な限り広視野に保持され、こうしてジンバル部11に
よって走査される空間からの受光を可視領域で撮像しつ
つ飛翔体を捜索しつつ、捕捉後は飛翔体の位置情報を目
標追随回路12に供給し続ける。目標追随回路1は、飛
翔体の位置情報から送出レーザビーム照射時と受光時間
の飛翔体の変位を位置情報から知り、この変位を零とす
るように補正して送出レーザビームを飛翔体に指向させ
て追尾する目標追尾信号を発生し、これをジンバル部1
1に供給し、こうして受信望遠鏡lと送信望遠鏡2を常
に捕捉飛翔体に追随で指向させる。
Of the light received by the dichroic beam splitter 3, that in the visible light range is supplied to the imaging camera 5 via the imaging lens 4. The imaging camera 5 is held to have as wide a field of view as possible to easily capture the target, and while searching for the flying object while imaging the light received from the space scanned by the gimbal unit 11 in the visible range, The position information of the flying object is continuously supplied to the target tracking circuit 12. The target tracking circuit 1 learns from the position information of the flying object the displacement of the flying object between the time of irradiation with the sending laser beam and the time of light reception, corrects this displacement to zero, and directs the sending laser beam to the flying object. The gimbal section 1 generates a target tracking signal for tracking.
1, thus causing the receiving telescope 1 and the transmitting telescope 2 to always be directed to track the captured projectile.

上述した追尾動作は、送信望遠鏡2従って受信望遠鏡1
を捕捉飛翔体に追尾させるものではあるが、しかしなが
ら尖鋭な送出レーザビームを高精度で捕捉飛翔体に指向
させるには、次のような補正追尾が必要となる。
The above-mentioned tracking operation is performed by the transmitting telescope 2 and the receiving telescope 1.
However, in order to direct the sharp emitted laser beam toward the captured flying object with high precision, the following correction tracking is required.

すなわち、2色性ビームスプリッタ3に導かれた受光の
うち可視光領域以外の波長成分のものは反射されて両面
反射鏡6に投光され、反射を受けて干渉フィルタ8に供
給される。干渉フィルタ8は、背景法、散乱光その他の
不要成分を排除し、必要な波長成分のみを集光レンズ9
を介して第1の4象限光検出器10に導く、第1の4象
限光検出器10は、4象限に分割された検出領域のいず
れの象限領域かで検出した捕捉飛翔体の位置情報を求め
、第1の角度誤差演算回路21に供給する。
That is, among the received light guided by the dichroic beam splitter 3, wavelength components other than the visible light range are reflected and projected onto the double-sided reflecting mirror 6, and then reflected and supplied to the interference filter 8. The interference filter 8 eliminates background light, scattered light, and other unnecessary components, and focuses only the necessary wavelength components through the condensing lens 9.
The first four-quadrant photodetector 10 transmits the position information of the captured flying object detected in which quadrant of the four-quadrant detection area. and supplies it to the first angular error calculation circuit 21.

上述した第1の4象限光検出器10の受光視野は、角度
誤差検出感度を高めるために可能な限り狭視野に設定さ
れ、撮像カメラ5が目標を追尾している状態で捕捉飛翔
体の検出可能な程度としている。
The light-receiving field of view of the first four-quadrant photodetector 10 described above is set to be as narrow as possible in order to increase the angular error detection sensitivity, and the captured flying object is detected while the imaging camera 5 is tracking the target. As much as possible.

第1の角度誤差演算回路21は、捕捉飛翔体に対する送
信レーザビームの角度誤差を演算し、これを第1の駆動
回路22に供給する。第1の駆動回路22は、提供され
た角度誤差を零とするように受光、送光系に共通な内部
反射鏡としての両面反射鏡6を駆動する駆動信号を発生
し自動ミラージンバル7に供給する。こうして7、送信
望遠鏡2から出射される送出レーザビームの指向方向は
、常に捕捉飛翔体を精度よく補正追尾することができる
The first angular error calculation circuit 21 calculates the angular error of the transmitted laser beam with respect to the captured flying object, and supplies this to the first drive circuit 22 . The first drive circuit 22 generates a drive signal to drive the double-sided reflector 6 as an internal reflector common to the light receiving and transmitting systems so as to make the provided angular error zero, and supplies it to the automatic mirror gimbal 7. do. In this way, the pointing direction of the sending laser beam emitted from the transmitting telescope 2 can always accurately correct and track the captured flying object.

このようにして、受信望遠鏡1の受信倍率と、送信望遠
鏡2の送信倍率を一致させ、送出レーザビームの方向制
御を飛翔体の位置変位を自動修正する自動ミラージンバ
ルと併用することにより、捕捉飛翔体に送出レーザビー
ムの指向方向を自動制御して追尾させることができる。
In this way, by matching the receiving magnification of the receiving telescope 1 and the transmitting magnification of the transmitting telescope 2, and by using the automatic mirror gimbal that automatically corrects the positional displacement of the flying object to control the direction of the transmitted laser beam, it is possible to capture the flying object. The direction of the emitted laser beam can be automatically controlled and tracked by the body.

また、両面反射鏡6の角度変動も上述した追尾補正に含
まれて自動補正されていることになる。
Further, the angle fluctuation of the double-sided reflecting mirror 6 is also included in the tracking correction described above and is automatically corrected.

さて、レーザ装置13からの出力ビームの変動制御は次
のように行う、レーザビームを1部透過型ミラー14に
より透過させ、その透過光をコーナリフレクタ15によ
り反射させ、集光レンズ28を介して第2の4象限光検
出器16に供給し、ビーム集光位置を検出する0次に、
第2の角度誤差演算回路17により角度誤差を出力し、
第2の駆動回路18、偏角プリズム駆動部19により偏
角プリズム20を制御することにより、レーザビームの
変動を自動補正する。
Now, the fluctuation control of the output beam from the laser device 13 is performed as follows. Part of the laser beam is transmitted through the transmission mirror 14, the transmitted light is reflected by the corner reflector 15, and the transmitted light is reflected through the condenser lens 28. The 0th order is supplied to the second four-quadrant photodetector 16 and detects the beam focusing position.
outputting the angular error by the second angular error calculation circuit 17;
By controlling the deflection prism 20 by the second drive circuit 18 and the deflection prism drive unit 19, fluctuations in the laser beam are automatically corrected.

このようにして、送出レーザビームの光軸変動、ならび
に内部反射鏡の角度変動を自動補正して目標の高精度な
追尾が可能となる。
In this way, highly accurate tracking of the target becomes possible by automatically correcting optical axis fluctuations of the transmitted laser beam and angular fluctuations of the internal reflection mirror.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、レーザ装置専用の
レーザビーム光軸自動補正と、受光光源の位置変位とレ
ーザビームの指向方向制御兼用の自動修正を導入して目
標の位置変位を自動修正することによって、レーザ装置
の出力ビームの光軸変動とレーザビームの方向制御を行
う内部反射鏡の角度変動を自動補正でき、高精度なレー
ザビーム方向制御が可能なレーザビーム方向制御装置が
実現できる効果がある。
As explained above, according to the present invention, the positional displacement of the target is automatically corrected by introducing the automatic correction of the laser beam optical axis dedicated to the laser device and the automatic correction that is also used to control the positional displacement of the receiving light source and the pointing direction of the laser beam. By doing this, it is possible to automatically correct the optical axis fluctuations of the output beam of the laser device and the angular fluctuations of the internal reflector that controls the direction of the laser beam, making it possible to realize a laser beam direction control device that can control the laser beam direction with high precision. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のレーザビーム方向制御装置の構成図で
ある。 1・・・受信望遠鏡、2・・・送信望遠鏡、3・・・2
色性ビームスプリッタ、4・・・結像レンズ、5・・・
撮像カメラ、6・・・両面反射鏡、7・・・自動ミラー
ジンバル、8・・・干渉フィルタ、9・・・集光レンズ
、10・・・第1の4象限光検出器、11・・・ジンバ
ル部、12・・・目標追随回路、13・・・レーザ装置
、14・・・一部透過型ミラー、15・・・コーナリフ
レクタ、16・・・第2の4象限光検出器、17・・・
第2の角度誤差演算回路、18・・・第2の駆動回路、
19・・・偏角プリズム駆動部、20・・・偏角プリズ
ム、21・・・第1の角度誤差演算回路、22・・・第
1の駆動回路、23・・・集光レンズ。
FIG. 1 is a block diagram of a laser beam direction control device according to the present invention. 1...Receiving telescope, 2...Transmitting telescope, 3...2
Chromatic beam splitter, 4...imaging lens, 5...
Imaging camera, 6... Double-sided reflector, 7... Automatic mirror gimbal, 8... Interference filter, 9... Condensing lens, 10... First four-quadrant photodetector, 11... - Gimbal section, 12... Target tracking circuit, 13... Laser device, 14... Partially transmissive mirror, 15... Corner reflector, 16... Second four-quadrant photodetector, 17 ...
Second angular error calculation circuit, 18... second drive circuit,
19... Deflection prism drive unit, 20... Deflection prism, 21... First angular error calculation circuit, 22... First drive circuit, 23... Condensing lens.

Claims (3)

【特許請求の範囲】[Claims] (1)飛翔体にむけて送出する送出レーザビームによる
反射光もしくは応答光を受けつつ前記送出レーザビーム
を飛翔体に指向させるレーザビーム方向制御装置におい
て、送受光系ならびに追尾系を搭載して飛翔体の追尾対
象空間を前記送受光系によって所定の走査パターンで走
査し飛翔体補捉後は前記送受光系ならびに追尾系を捕捉
飛翔体に追尾させる第1の追尾手段と、前記送受光系に
よる前記送出レーザビームの送光と反射光もしくは応答
光の受光間における飛翔対の位置変位を補正するように
前記送出レーザビームの指向方向を連続的に自動制御す
るとともに前記送受光系における光軸変動を自動的に補
正しつつ飛翔体の追尾補正を行う第2の追尾手段におけ
る前記送出レーザビームの光軸の変動を検出しつつこの
変動を自動的に補生するレーザビーム光軸維持手段とを
備えて成ることを特徴とするレーザビーム方向制御装置
(1) A laser beam direction control device that directs the transmitted laser beam toward the flying object while receiving reflected light or response light from the transmitted laser beam, which is equipped with a light transmitting/receiving system and a tracking system. a first tracking means for scanning a body tracking target space with a predetermined scanning pattern by the light transmitting/receiving system and, after capturing the flying object, causing the light transmitting/receiving system and the tracking system to track the captured flying object; Continuously and automatically controlling the pointing direction of the sending laser beam so as to correct the positional displacement of the flying pair between sending the sending laser beam and receiving the reflected light or response light, and changing the optical axis in the light transmitting/receiving system. laser beam optical axis maintaining means that detects fluctuations in the optical axis of the emitted laser beam in the second tracking means and automatically compensates for the fluctuations in the optical axis of the emitted laser beam in the second tracking means that performs tracking correction of the flying object while automatically correcting the A laser beam direction control device comprising:
(2)送信倍率と受信倍率を一致させ、かつ隣接して平
行配置した送信望遠鏡と受信望遠鏡でレーザビームの送
受光を行なうとともに、送受光系に共通な1個の両面反
射鏡を空間位置制御可能な状態で配設し、かつ4象限光
検出器で飛翔体の変位を取得しつつ前記飛翔体の変位を
前記両面反射鏡の角度変動分を含み自動補正するものと
して構成した前記第2の追尾手段を備えて成ることを特
徴とする請求光(1)記載のレーザビーム方向制御装置
(2) Match the transmitting magnification and receiving magnification, transmit and receive the laser beam with the transmitting and receiving telescopes arranged adjacently in parallel, and control the spatial position of one double-sided reflector common to the transmitting and receiving system. The second method is configured such that the displacement of the flying object is automatically corrected, including the angular fluctuation of the double-sided reflecting mirror, while the displacement of the flying object is acquired by a four-quadrant photodetector. A laser beam direction control device according to Claim (1), characterized in that it comprises a tracking means.
(3)レーザビーム送光路に出射角可変可能な偏角プリ
ズムを配設し、レーザビームの一部を一部透過型ミラー
ならびにコーナリフレクタを介して抽出したうえその光
軸変動を4象限光検出器で検出して前記偏角プリズムを
光軸変動が零となるように駆動するものとして構成した
前記レーザビーム光軸維持手段を備えて成ることを特徴
とする 請求項(1)記載のレーザビーム方向制御装置
(3) A deflection prism with a variable output angle is installed in the laser beam transmission path, a part of the laser beam is extracted through a partially transmissive mirror and a corner reflector, and the optical axis fluctuation is detected in four quadrants. The laser beam according to claim 1, further comprising: the laser beam optical axis maintaining means configured to detect the polarization prism with a device and drive the deflection prism so that optical axis fluctuation becomes zero. Directional control device.
JP1292704A 1989-11-09 1989-11-09 Laser beam direction control device Expired - Lifetime JP2518066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1292704A JP2518066B2 (en) 1989-11-09 1989-11-09 Laser beam direction control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1292704A JP2518066B2 (en) 1989-11-09 1989-11-09 Laser beam direction control device

Publications (2)

Publication Number Publication Date
JPH03152490A true JPH03152490A (en) 1991-06-28
JP2518066B2 JP2518066B2 (en) 1996-07-24

Family

ID=17785226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1292704A Expired - Lifetime JP2518066B2 (en) 1989-11-09 1989-11-09 Laser beam direction control device

Country Status (1)

Country Link
JP (1) JP2518066B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738499A (en) * 1993-07-23 1995-02-07 Nec Corp Space optical transmitter
WO2011007658A1 (en) 2009-07-16 2011-01-20 日本電気株式会社 Capturing device, capturing method, and capturing program
JP2020161931A (en) * 2019-03-26 2020-10-01 ソフトバンク株式会社 Communication device, communication method, charging device, control method, and program
CN113934234A (en) * 2021-10-25 2022-01-14 航天科工微电子系统研究院有限公司 Optical method of light beam tracking control equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142397A (en) * 1987-11-30 1989-06-05 Mitsubishi Electric Corp Laser irradiator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142397A (en) * 1987-11-30 1989-06-05 Mitsubishi Electric Corp Laser irradiator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738499A (en) * 1993-07-23 1995-02-07 Nec Corp Space optical transmitter
WO2011007658A1 (en) 2009-07-16 2011-01-20 日本電気株式会社 Capturing device, capturing method, and capturing program
US9407363B2 (en) 2009-07-16 2016-08-02 Nec Corporation Capturing device, capturing method, and capturing program
JP2020161931A (en) * 2019-03-26 2020-10-01 ソフトバンク株式会社 Communication device, communication method, charging device, control method, and program
JP2021166392A (en) * 2019-03-26 2021-10-14 ソフトバンク株式会社 Communication device, communication method, and program
US11870494B2 (en) 2019-03-26 2024-01-09 Softbank Corp. Device for communication, communication device, communication method, device for charging, and computer readable storage medium
CN113934234A (en) * 2021-10-25 2022-01-14 航天科工微电子系统研究院有限公司 Optical method of light beam tracking control equipment
CN113934234B (en) * 2021-10-25 2024-02-02 航天科工微电子系统研究院有限公司 Optical method of beam tracking control equipment

Also Published As

Publication number Publication date
JP2518066B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
US4385834A (en) Laser beam boresight system
US10917601B2 (en) Tracker, surveying apparatus and method for tracking a target
US3992629A (en) Telescope cluster
US3989947A (en) Telescope cluster
RU2292566C1 (en) Multifunctional optical-radar system
JP3647608B2 (en) Surveyor automatic tracking device
JP7138525B2 (en) Surveying instrument and surveying instrument system
JP2021067540A (en) Surveying device
US5410398A (en) Automatic boresight compensation device
JP2022110635A (en) Surveying device
JP2518066B2 (en) Laser beam direction control device
JP2000098027A (en) Laser radar equipment
US20220123052A1 (en) Techniques for fiber tip re-imaging in lidar systems
RU2155323C1 (en) Optoelectronic target search and tracking system
JP7344732B2 (en) Surveying equipment and surveying equipment systems
JPH0783657A (en) Surveying instrument
RU2664788C1 (en) Optical-electronic target search and tracking system
JPS6115119A (en) Laser printer
JP3192359B2 (en) Space optical communication equipment
JPH083527B2 (en) Laser beam direction controller
JP2565748B2 (en) Lightwave distance measuring device with automatic tracking
JPH11194286A (en) Multibeam scanning device
JPH08122426A (en) Laser distance measuring equipment and method
US4125847A (en) Rangefinding mechanism
JPH09251067A (en) Infrared image sensor