JPH05312538A - Three-dimensional shape measuring instrument - Google Patents
Three-dimensional shape measuring instrumentInfo
- Publication number
- JPH05312538A JPH05312538A JP12330192A JP12330192A JPH05312538A JP H05312538 A JPH05312538 A JP H05312538A JP 12330192 A JP12330192 A JP 12330192A JP 12330192 A JP12330192 A JP 12330192A JP H05312538 A JPH05312538 A JP H05312538A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- mirror
- measured
- reference plane
- plane mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、レ−ザ光の干渉を利用
して、物体の表面形状などを測定する3次元形状測定装
置に関し、特に被測定物または光プローブを掃引して測
定する際の掃引手段の真直度に起因する誤差を検出し
て、高精度な形状測定を可能とした装置に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape measuring apparatus for measuring the surface shape of an object by utilizing the interference of laser light, and particularly, for measuring by measuring an object to be measured or an optical probe. The present invention relates to an apparatus capable of highly accurately measuring a shape by detecting an error caused by the straightness of a sweeping means at that time.
【0002】[0002]
【従来の技術】図2(a)は従来の3次元形状測定装置
の一例を示す概略構成図であり、ステージ上に被測定
物を載せて、その表面の一点を光プローブによっ
て、高さとして測定し、ステージを動かして、被測定
物を掃引することによって表面形状を求めていた。2. Description of the Related Art FIG. 2A is a schematic diagram showing an example of a conventional three-dimensional shape measuring apparatus. An object to be measured is placed on a stage, and one point on the surface is measured by an optical probe as a height. The surface shape was obtained by measuring, moving the stage, and sweeping the measured object.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来技術に示す3次元形状測定装置においては、ステージ
が、図2(a)の状態から、次の測定点に動いた際、
図2(b)に示すように、高さ方向に被測定物が平行
移動するように動いたり、図2(c)に示すように、傾
いて動いたりした場合には、光プローブは被測定物
の表面形状とステージの真直度とを合わせた値として
測定してしまい、正確な形状を測定することができなか
った。However, in the three-dimensional shape measuring apparatus shown in the above prior art, when the stage moves from the state of FIG. 2A to the next measuring point,
When the object to be measured moves in parallel in the height direction as shown in FIG. 2B, or when the object moves in a tilted manner as shown in FIG. 2C, the optical probe is measured. The surface shape of the object and the straightness of the stage were measured as a value, and an accurate shape could not be measured.
【0004】本発明は、上記従来技術の課題を踏まえて
成されたものであり、被測定物と参照平面とを同一ステ
ージ上に載せて、測定点を掃引し、高さの差と参照平面
の傾きを同時に測定することで、ステージの真直度を補
正して、高精度な形状測定を行うことができる3次元形
状測定装置を提供することを目的としたものである。The present invention has been made in view of the above problems of the prior art. The object to be measured and the reference plane are placed on the same stage, the measurement points are swept, and the difference in height and the reference plane are set. The object of the present invention is to provide a three-dimensional shape measuring apparatus capable of correcting the straightness of the stage and measuring the shape with high accuracy by simultaneously measuring the inclination of the.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、被測定物を載せて形状測定点を掃引
するためのステージと、このステージ上に載って前記被
測定物と同一の動きをする参照面となる平面ミラーと、
前記被測定物と参照用平面ミラーとの高さの差を検出す
る光プローブと、前記ステージの動きに対して前記参照
用平面ミラーの傾きを検出する角度検出器と、前記ステ
ージの動きを検出する位置検出器と、前記光プローブと
角度検出器と位置検出器の各出力から前記被測定物の3
次元形状を求める制御装置とを備え、前記角度検出器で
検出した前記参照用平面ミラーの傾きの角度と前記被測
定物と参照用平面ミラーとの高さの差を検出する2点間
の距離との積を前記ステージの掃引における傾きの影響
による値として、前記光プローブの出力から減算するこ
とにより、前記ステージの真直度を補正するようにした
ことを特徴とするものである。The structure of the present invention for solving the above-mentioned problems is a stage for placing an object to be measured and sweeping a shape measuring point, and an object to be measured placed on this stage. A plane mirror serving as a reference plane that moves in the same way,
An optical probe for detecting the height difference between the DUT and the reference plane mirror, an angle detector for detecting the inclination of the reference plane mirror with respect to the movement of the stage, and a movement of the stage. From the output of the position detector, the optical probe, the angle detector, and the position detector.
A distance between two points for detecting a difference between the angle of inclination of the reference plane mirror detected by the angle detector and the height between the DUT and the reference plane mirror. The straightness of the stage is corrected by subtracting from the output of the optical probe as a value of the product of and the value due to the influence of the inclination in the sweep of the stage.
【0006】[0006]
【作用】本発明によると、ステージが送り方向に対して
垂直または傾いて動いたとしても、参照用平面ミラーと
被測定物の高さの差を測定することで、ステージの垂直
方向の動きの影響を受けず、また、参照用平面ミラーの
傾きを測定して高さの差から、その影響を除くことで、
ステージの傾いて動いた影響を除くことができ、正確な
表面形状を測定できる。According to the present invention, even if the stage moves vertically or inclined with respect to the feed direction, by measuring the difference in height between the reference plane mirror and the object to be measured, the vertical movement of the stage can be reduced. Not affected, and by measuring the tilt of the reference plane mirror and removing the effect from the height difference,
The effect of tilting and moving the stage can be eliminated, and accurate surface shape can be measured.
【0007】[0007]
【実施例】以下、本発明を図面に基づいて説明する。図
1は本発明の3次元形状測定装置の一実施例を示す構成
図である。図1において、1はステージ、2はステージ
1の可動部であり、可動部2上には参照用平面ミラー3
と被測定物4が載っている。5は可動部2の動きを測定
する位置検出器としてのレーザ測長器である。6は被測
定物と参照用平面ミラーとの高さの差を検出する光プロ
ーブであり、61は干渉測定用のレーザ光源、62a,
62bはハーフミラー、63a,63bはミラー、64
a,64b,64cはそれぞれレンズ,シリンドリカル
レンズ,4分割フォトダイオードから成る焦点誤差検出
光学系であり、後述の対物レンズ67bの焦点誤差を検
出する。65a,65bは偏光ビームスプリッタ(以
下、単にPBSという)、66a,66bは偏光状態の
変換を行う1/4波長板、67a,67bは対物レン
ズ、68はレンズアクチュエータ、69は焦点誤差検出
光学系からの信号をレンズアクチュエータに帰還して焦
点位置を合わせるためのアクチュエータ駆動回路、70
はステージ1の動きに対して参照用平面ミラー3の傾き
を検出する角度検出器としての光の位置を検出するため
の位置検出器(Position Sensitive Device:以下、単
にPSDという)、71は干渉信号を検出するフォトダ
イオードである。7はステージ1の動きを指示すると共
に、光プローブ6(フォトダイオード71)の干渉信号
による高さデータとPSD70によるステージ可動部2
の傾きとレーザ測長器5によるステージ可動部2の位置
から被測定物4の形状を求める制御装置である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a three-dimensional shape measuring apparatus of the present invention. In FIG. 1, 1 is a stage, 2 is a movable part of the stage 1, and a reference plane mirror 3 is provided on the movable part 2.
And the object to be measured 4 is mounted. Reference numeral 5 is a laser length measuring device as a position detector for measuring the movement of the movable part 2. 6 is an optical probe for detecting the difference in height between the object to be measured and the reference plane mirror, 61 is a laser light source for interference measurement, 62a,
62b is a half mirror, 63a and 63b are mirrors, 64
Reference numerals a, 64b, and 64c are focus error detection optical systems each including a lens, a cylindrical lens, and a four-division photodiode, and detect a focus error of an objective lens 67b described later. Reference numerals 65a and 65b are polarization beam splitters (hereinafter simply referred to as PBS), 66a and 66b are quarter-wave plates for converting the polarization state, 67a and 67b are objective lenses, 68 is a lens actuator, and 69 is a focus error detection optical system. Actuator drive circuit for returning the signal from the lens to the lens actuator to adjust the focal position,
Is a position detector (Position Sensitive Device: hereinafter referred to as PSD) for detecting the position of light as an angle detector for detecting the inclination of the reference plane mirror 3 with respect to the movement of the stage 1, and 71 is an interference signal. Is a photodiode for detecting. Reference numeral 7 indicates the movement of the stage 1, and the height data by the interference signal of the optical probe 6 (photodiode 71) and the stage movable portion 2 by the PSD 70.
Is a control device for obtaining the shape of the DUT 4 from the tilt of the laser measuring device 5 and the position of the movable stage 2 by the laser length measuring device 5.
【0008】このような構成において、レーザ光源61
から出射した光は、ハーフミラー62aで2方向に分岐
される。反射光は、測定用光路に入射され、ミラー63
aを介して一部がハーフミラー62bを透過し、PBS
65b→1/4波長板66b→対物レンズ67bを通っ
て、被測定物4に照射され、反射される。反射光は、対
物レンズ67b→1/4波長板66bを通って、PBS
65bで反射され、ミラー63b→PBS65b→1/
4波長板66b→対物レンズ67bを通って、再び被測
定物4に照射され、反射される。反射光は、対物レンズ
67b→1/4波長板66b→PBS65bを通って、
一部がハーフミラー62bを透過して、ミラー63aで
反射され、ハーフミラー62aを一部が透過して、フォ
トダイオード71に入射する。なお、PBS65bに入
射してから出射するまでのダブルパスにおいて、被測定
物4が傾いていたとしても入射光と出射光は同一光路と
なる。In such a structure, the laser light source 61
The light emitted from is split into two directions by the half mirror 62a. The reflected light enters the measuring optical path and is reflected by the mirror 63.
Part of the light passes through the half mirror 62b via a, and the PBS
The object to be measured 4 is irradiated with and reflected by the object 65 through the objective lens 67b. The reflected light passes through the objective lens 67b and the quarter wave plate 66b, and is reflected by the PBS.
Reflected by 65b, mirror 63b → PBS 65b → 1 /
After passing through the four-wave plate 66b and the objective lens 67b, the DUT 4 is irradiated again and reflected. The reflected light passes through the objective lens 67b → a quarter wave plate 66b → PBS 65b,
Part of the light passes through the half mirror 62b and is reflected by the mirror 63a. Part of the light passes through the half mirror 62a and enters the photodiode 71. In addition, in the double path from the incidence to the exit of the PBS 65b, the incident light and the outgoing light have the same optical path even if the DUT 4 is tilted.
【0009】ハーフミラー62bでの反射光は、レンズ
64a,シリンドリカルレンズ64b,4分割フォトダ
イオード64cから成る焦点誤差検出光学系に入射さ
れ、アクチュエータ駆動回路69によって、レンズアク
チュエータ68に帰還をかけ、常に対物レンズ67bが
合焦状態となるようにしている。The light reflected by the half mirror 62b is incident on a focus error detection optical system including a lens 64a, a cylindrical lens 64b, and a four-divided photodiode 64c, and is fed back to a lens actuator 68 by an actuator drive circuit 69, so that it is constantly reflected. The objective lens 67b is brought into a focused state.
【0010】ハーフミラー62aを透過したレーザ光源
61の出射光は、参照用光路に入射され、PBS65a
→1/4波長板66a→対物レンズ67aを通って、参
照用平面ミラー3へ入射され、反射される。反射光は、
対物レンズ67a→1/4波長板66a→PBS65a
→ハーフミラー62c→PBS65a→1/4波長板6
6a→対物レンズ67aを通って、再び参照用平面ミラ
ー67aに入射され、反射される。反射光は対物レンズ
67a→1/4波長板66a→PBS65aを通って一
部がハーフミラー62cを透過し、PSD70に入射す
る。なお、ダブルパスの光学系の構成は測定用光路と同
じであるが、参照用平面ミラー3が傾くと、ハーフミラ
ー62cを透過する光の位置が変化するので、PSD7
0で検出されるビームの位置から傾き(方向および角
度)を求めることができる。The light emitted from the laser light source 61 that has passed through the half mirror 62a is incident on the reference optical path, and is reflected by the PBS 65a.
-> 1/4 wavelength plate 66a-> It passes through the objective lens 67a and is incident on the reference plane mirror 3 and reflected. The reflected light is
Objective lens 67a → quarter wave plate 66a → PBS 65a
→ half mirror 62c → PBS 65a → quarter wave plate 6
6a → Passes through the objective lens 67a and is incident again on the reference plane mirror 67a and is reflected. A part of the reflected light passes through the objective lens 67a, the quarter-wave plate 66a, and the PBS 65a, and partially passes through the half mirror 62c to enter the PSD 70. Although the configuration of the double-pass optical system is the same as that of the measurement optical path, when the reference plane mirror 3 is tilted, the position of the light passing through the half mirror 62c changes, so the PSD 7
The tilt (direction and angle) can be determined from the position of the beam detected at zero.
【0011】ハーフミラー62cで一部反射された光
は、PBS65a→ハーフミラー62a→フォトダイオ
ード71の光路をとって、測定用光路からの光と干渉す
る。フォトダイオード71は、対物レンズ67bおよび
67aで焦点が合わせられている被測定物および参照用
平面の高さの差の変化を干渉信号として出力するので、
積分して高さの差とする。The light partially reflected by the half mirror 62c takes the optical path of the PBS 65a → half mirror 62a → photodiode 71 and interferes with the light from the measurement optical path. The photodiode 71 outputs, as an interference signal, a change in height difference between the DUT and the reference plane focused by the objective lenses 67b and 67a.
The height difference is integrated.
【0012】ここで、ステージ可動部2がステージ1の
送りに対して垂直方向にずれて動いたとしても、光プロ
ーブ6は被測定物4と参照用平面ミラー3の高さの差と
して測定しているので影響を受けない。また、ステージ
可動部2がステージ1の送りに対して傾いて動いた場合
には、制御装置8にて、PSD70で検出した傾き角と
対物レンズ67aと67b間の距離とを乗算した積を、
光プローブ6で得られる高さの差から減算することによ
って、傾いて動いた影響を除くことができる。Even if the movable stage 2 moves in a direction perpendicular to the feed of the stage 1, the optical probe 6 measures it as a difference in height between the DUT 4 and the reference plane mirror 3. Therefore, it is not affected. When the movable stage 2 tilts with respect to the feed of the stage 1, the controller 8 multiplies the product of the tilt angle detected by the PSD 70 and the distance between the objective lenses 67a and 67b by
By subtracting from the height difference obtained by the optical probe 6, the influence of tilting movement can be removed.
【0013】ステージ可動部2の動きは、レーザ測長器
5で測定されているので、その位置と光プローブ6で得
られる高さの差を合わせて被測定物4の表面形状が制御
装置8にて求められる。Since the movement of the movable stage 2 is measured by the laser length measuring device 5, the surface shape of the DUT 4 is controlled by the controller 8 by matching the difference between the position and the height obtained by the optical probe 6. Required at.
【0014】このようにして求められた表面形状結果
は、ステージ1が送り方向に対して垂直または傾いて動
いたとしても、参照用平面ミラー3と被測定物4の高さ
の差を測定することで、ステージ1の垂直方向の動きの
影響を受けず、また、参照用平面ミラー3の傾きを測定
して高さの差から、その影響を除くことで、ステージ1
の傾いて動いた影響も除くことができ、高精度である。The surface shape result thus obtained measures the height difference between the reference flat mirror 3 and the DUT 4 even if the stage 1 moves vertically or inclined with respect to the feed direction. Therefore, the influence of the movement of the stage 1 in the vertical direction is not influenced, and the influence is removed from the difference in height by measuring the inclination of the reference plane mirror 3 to remove the influence of the stage 1.
The effect of tilting and moving can be eliminated, and the accuracy is high.
【0015】なお、上記実施例において、ステージ1の
動きに対して参照用平面ミラー3の傾きを検出するPS
D70の代わりに、光プローブ6と光電オートコリメー
タを一体化して、光電オートコリメータで参照用平面ミ
ラー3の傾きを測定してステージ1の送りの傾きの影響
を除去するような構成としても良い。この場合、PSD
70に参照光のパワーを割かずにすむので、干渉信号と
してはS/Nの高いものが得られる。また、光電オート
コリメータの光学系によって、PSDの性能によらず、
高感度で傾きを検出できる。In the above embodiment, PS for detecting the inclination of the reference plane mirror 3 with respect to the movement of the stage 1
Instead of D70, the optical probe 6 and the photoelectric autocollimator may be integrated, and the photoelectric autocollimator may measure the inclination of the reference plane mirror 3 to eliminate the influence of the inclination of the feed of the stage 1. In this case, PSD
Since it is not necessary to allocate the power of the reference light to 70, an interference signal having a high S / N can be obtained. Also, due to the optical system of the photoelectric autocollimator, regardless of the performance of PSD,
The tilt can be detected with high sensitivity.
【0016】[0016]
【発明の効果】以上、実施例と共に具体的に説明したよ
うに、本発明によれば、ステージが送り方向に対して垂
直または傾いて動いたとしても、参照用平面と被測定物
の高さの差を測定することで、ステージの垂直方向の動
きの影響を受けず、また、参照用平面の傾きを測定して
高さの差から、その影響を除くことで、ステージの傾い
て動いた影響を除くことができ、高精度な表面形状を測
定できる3次元形状測定装置を実現できる。As described above in detail with reference to the embodiments, according to the present invention, even if the stage moves vertically or inclined with respect to the feed direction, the height of the reference plane and the height of the object to be measured can be increased. By measuring the difference in the vertical direction of the stage, and by measuring the inclination of the reference plane and removing the effect from the difference in height, the stage moved tilted. It is possible to realize a three-dimensional shape measuring apparatus capable of removing the influence and measuring the surface shape with high accuracy.
【図1】本発明の3次元形状測定装置の一実施例を示す
構成図である。FIG. 1 is a configuration diagram showing an embodiment of a three-dimensional shape measuring apparatus of the present invention.
【図2】従来の3次元形状測定装置の一例を示す概略構
成図である。FIG. 2 is a schematic configuration diagram showing an example of a conventional three-dimensional shape measuring apparatus.
1 ステージ 2 ステージ可動部 3 参照用平面ミラー 4 被測定物 5 レーザ測長器 6 光プローブ 8 制御装置 61 レーザ光源 62a、62b、62c ハーフミラー 63a、63b ミラー 64a レンズ 64b シリンドリカルレンズ 64c 4分割フォトダイオード 65a、65b 偏光ビームスプリッタ(PBS) 66a、66b 1/4波長板 67a、67b 対物レンズ 68 レンズアクチュエータ 69 アクチュエータ駆動回路 70 位置検出器(PSD) 71 フォトダイオード DESCRIPTION OF SYMBOLS 1 stage 2 stage movable part 3 reference plane mirror 4 object to be measured 5 laser length measuring device 6 optical probe 8 control device 61 laser light source 62a, 62b, 62c half mirror 63a, 63b mirror 64a lens 64b cylindrical lens 64c four-division photodiode 65a, 65b Polarization beam splitter (PBS) 66a, 66b 1/4 wavelength plate 67a, 67b Objective lens 68 Lens actuator 69 Actuator drive circuit 70 Position detector (PSD) 71 Photodiode
Claims (1)
ためのステージと、 このステージ上に載って前記被測定物と同一の動きをす
る参照面となる平面ミラーと、 前記被測定物と参照用平面ミラーとの高さの差を検出す
る光プローブと、 前記ステージの動きに対して前記参照用平面ミラーの傾
きを検出する角度検出器と、 前記ステージの動きを検出する位置検出器と、 前記光プローブと角度検出器と位置検出器の各出力から
前記被測定物の3次元形状を求める制御装置とを備え、 前記角度検出器で検出した前記参照用平面ミラーの傾き
の角度と前記被測定物と参照用平面ミラーとの高さの差
を検出する2点間の距離との積を前記ステージの掃引に
おける傾きの影響による値として、前記光プローブの出
力から減算することにより、前記ステージの真直度を補
正するようにしたことを特徴とする3次元形状測定装
置。1. A stage for mounting an object to be measured and sweeping a shape measuring point, a flat mirror serving as a reference surface which is mounted on the stage and moves in the same manner as the object to be measured, and the object to be measured. And an optical probe for detecting a height difference between the reference plane mirror, an angle detector for detecting the inclination of the reference plane mirror with respect to the movement of the stage, and a position detector for detecting the movement of the stage. And a control device that obtains the three-dimensional shape of the object to be measured from the outputs of the optical probe, the angle detector, and the position detector, and the angle of inclination of the reference plane mirror detected by the angle detector. By subtracting the product of the distance between two points for detecting the difference in height between the object to be measured and the reference plane mirror as the value due to the influence of the tilt in the sweep of the stage from the output of the optical probe, The above A three-dimensional shape measuring device characterized in that the straightness of the image is corrected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12330192A JPH05312538A (en) | 1992-05-15 | 1992-05-15 | Three-dimensional shape measuring instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12330192A JPH05312538A (en) | 1992-05-15 | 1992-05-15 | Three-dimensional shape measuring instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05312538A true JPH05312538A (en) | 1993-11-22 |
Family
ID=14857155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12330192A Pending JPH05312538A (en) | 1992-05-15 | 1992-05-15 | Three-dimensional shape measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05312538A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100434445B1 (en) * | 2001-12-28 | 2004-06-04 | (주) 인텍플러스 | Tree demensional shape/surface illumination measuring apparatus |
KR100654177B1 (en) * | 1999-08-27 | 2006-12-05 | 토레 엔지니어링 가부시키가이샤 | Surface profile measuring method and apparatus |
JP2011020233A (en) * | 2009-07-17 | 2011-02-03 | Kyoto Univ | On-machine measuring method and measuring device |
JP2012007925A (en) * | 2010-06-23 | 2012-01-12 | Mori Seiki Co Ltd | Displacement detection device |
JP2012107978A (en) * | 2010-11-17 | 2012-06-07 | Pulstec Industrial Co Ltd | Thickness measurement apparatus of translucent tubular object |
JP2015203603A (en) * | 2014-04-11 | 2015-11-16 | 株式会社キーエンス | Shape measurement device, shape measurement method and shape measurement program |
-
1992
- 1992-05-15 JP JP12330192A patent/JPH05312538A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100654177B1 (en) * | 1999-08-27 | 2006-12-05 | 토레 엔지니어링 가부시키가이샤 | Surface profile measuring method and apparatus |
KR100434445B1 (en) * | 2001-12-28 | 2004-06-04 | (주) 인텍플러스 | Tree demensional shape/surface illumination measuring apparatus |
JP2011020233A (en) * | 2009-07-17 | 2011-02-03 | Kyoto Univ | On-machine measuring method and measuring device |
JP2012007925A (en) * | 2010-06-23 | 2012-01-12 | Mori Seiki Co Ltd | Displacement detection device |
JP2012107978A (en) * | 2010-11-17 | 2012-06-07 | Pulstec Industrial Co Ltd | Thickness measurement apparatus of translucent tubular object |
JP2015203603A (en) * | 2014-04-11 | 2015-11-16 | 株式会社キーエンス | Shape measurement device, shape measurement method and shape measurement program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4356392A (en) | Optical imaging system provided with an opto-electronic detection system for determining a deviation between the image plane of the imaging system and a second plane on which an image is to be formed | |
US5159412A (en) | Optical measurement device with enhanced sensitivity | |
US4355904A (en) | Optical inspection device for measuring depthwise variations from a focal plane | |
US4650335A (en) | Comparison type dimension measuring method and apparatus using a laser beam in a microscope system | |
US5929983A (en) | Optical apparatus for determining the height and tilt of a sample surface | |
KR20020025098A (en) | Apparatus and method for evaluating a target larger than a measuring aperture of a sensor | |
US5202740A (en) | Method of and device for determining the position of a surface | |
JPH05312538A (en) | Three-dimensional shape measuring instrument | |
JP2001033215A (en) | Measuring apparatus for unevenness of wafer thickness | |
JPS5979104A (en) | Optical device | |
JP4382315B2 (en) | Wafer bump appearance inspection method and wafer bump appearance inspection apparatus | |
JP2002202108A (en) | Plate thickness measuring device | |
JPS60147606A (en) | Thickness measuring device | |
JP2536059B2 (en) | Object surface condition measuring device and surface height measuring device | |
JPH02140608A (en) | Measuring instrument for surface shape | |
JPS5875005A (en) | Method and device for measuring thickness of plate | |
JPS61223604A (en) | Gap measuring instrument | |
JP3192461B2 (en) | Optical measuring device | |
JP2003004424A (en) | Surface geometry measuring method and apparatus | |
JP3955242B2 (en) | Measuring method and apparatus for flatness | |
JP2591143B2 (en) | 3D shape measuring device | |
JPS635208A (en) | Apparatus for measuring surface shape | |
JP2564799Y2 (en) | 3D shape measuring device | |
JP4580579B2 (en) | Surface shape measuring method and surface shape measuring apparatus | |
JPH06109435A (en) | Surface displacement meter |