JPH04179068A - Secondary battery with non-aqueous electrolytic solution - Google Patents

Secondary battery with non-aqueous electrolytic solution

Info

Publication number
JPH04179068A
JPH04179068A JP2305166A JP30516690A JPH04179068A JP H04179068 A JPH04179068 A JP H04179068A JP 2305166 A JP2305166 A JP 2305166A JP 30516690 A JP30516690 A JP 30516690A JP H04179068 A JPH04179068 A JP H04179068A
Authority
JP
Japan
Prior art keywords
alloy
secondary battery
charging
carbon
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2305166A
Other languages
Japanese (ja)
Other versions
JP3019402B2 (en
Inventor
Yukio Nishikawa
幸雄 西川
Junichi Yamaura
純一 山浦
Masaki Kitagawa
雅規 北川
Teruyoshi Morita
守田 彰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2305166A priority Critical patent/JP3019402B2/en
Publication of JPH04179068A publication Critical patent/JPH04179068A/en
Application granted granted Critical
Publication of JP3019402B2 publication Critical patent/JP3019402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a secondary battery having excellent safety and charging/ discharging cyclic characteristic by mixing carbon with powder of a neg. electrode material which can occlude and release Li electrochemically and on whose surface an oxide film is formed. CONSTITUTION:Through a heat treatment in a gas atmosphere including oxygen, an oxide film is formed on the surface of a neg. electrode material such as a fusible alloy which can occlude and release Li electrochemically and Al, and this is mixed with carbon. Even through this fusible alloy, Al, makes repetition of expansion and contraction associated with charging/discharging to cause change in the shape, slipping-off from the core 3 is prevented and electricity collection held practicable by pulverizing them, forming such an oxide film, and mixing with carbon. This prevents drop of the charging/discharging capacity with cycles and also generation of internal shortcircuiting and firing.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウム二次電池の安全性および充放電サイ
クル特性の向上に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improving the safety and charge/discharge cycle characteristics of lithium secondary batteries.

従来の技術 近年、AV機器などエレクトロニクス機器のポータプル
化、コードレス化に伴い、その駆動用電源として、小形
、軽量であり、しかも高エネルギー密度のリチウム二次
電池への期待が大きい。
BACKGROUND OF THE INVENTION In recent years, as electronic devices such as AV devices have become portable and cordless, there are great expectations for small, lightweight, and high energy density lithium secondary batteries as power sources for driving them.

しかし、実用化するためには、まだいくっがの課題が残
されている。その一つとして、負極の充放電可逆性の向
上が挙げられる。
However, there are still a number of issues remaining before it can be put into practical use. One example of this is the improvement of the charge/discharge reversibility of the negative electrode.

たとえば、金属リチウムを負極材料に用いた場合、放電
によりリチウムが負極から電解液中にイオンとして溶解
し、充電により再び負極上に析出する。その析出形態は
、電解液の組成および充電条件により異なるが、主に針
状となり、これが負極から離脱して、あるいはセパレー
タを貫通して、正極と接触し内部短絡および発火が発生
する原因となる。
For example, when metallic lithium is used as the negative electrode material, lithium is dissolved as ions from the negative electrode into the electrolytic solution by discharging, and deposited on the negative electrode again by charging. The shape of the deposit varies depending on the composition of the electrolyte and charging conditions, but it is mainly needle-shaped, and it detaches from the negative electrode or penetrates the separator and comes into contact with the positive electrode, causing an internal short circuit and ignition. .

そこで、充電により電解液中のリチウムイオンを吸蔵し
てリチウムとの合金を形成し、放電によりリチウムをイ
オンとして電解液中へ放出する機能を有する金属または
合金を負極材料に用いる方法が提案された。すなわち、
この場合、充電時にはリチウムイオンが速やかに吸蔵・
拡散されて合金が形成されるため、負極上に針状リチウ
ムが析出せず、安全性は向上する。
Therefore, a method has been proposed in which a metal or alloy that has the function of absorbing lithium ions in the electrolytic solution during charging to form an alloy with lithium and releasing lithium as ions into the electrolytic solution during discharging is used as the negative electrode material. . That is,
In this case, lithium ions quickly absorb and absorb during charging.
Since an alloy is formed through diffusion, acicular lithium does not precipitate on the negative electrode, improving safety.

発明が解決しようとする課題 電気化学的にリチウムを吸蔵・放出しうる金属あるいは
合金の代表的なものに、(1)鉛を必須成分とし、これ
単独かあるいはスズ、カドミウム、亜鉛、インジウムお
よびビスマスよりなる群から選んだ少な(とも一つとの
合金、(2))スズを々・須成分とし、これ単独かある
いは鉛、カドミウム、亜鉛。
Problems to be Solved by the Invention Typical metals or alloys that can electrochemically absorb and release lithium include (1) lead as an essential component, either alone or with tin, cadmium, zinc, indium, and bismuth; A small amount selected from the following group (alloy with one, (2)) tin as a component, either alone or with lead, cadmium, and zinc.

インジウムおよびビスマスよりなる群から選んだ少なく
とも一つとの合金、(3)アルミニウム、が提案されて
いる。(1)および(2)は低融点の性質から可融合金
と呼ばれる。しかし、いずれもリチウムを吸蔵・放出す
るに伴い、膨張・収縮する。可融合金の場合、充放電を
繰り返すと、サイクル初期から表面にクラックが発生し
、サイクルが進むにつれ、微粉化するとともにクラック
に沿って崩壊し、芯材から脱落することが観察された。
An alloy (3) aluminum with at least one selected from the group consisting of indium and bismuth has been proposed. (1) and (2) are called fusible alloys because of their low melting point properties. However, both expand and contract as they absorb and release lithium. In the case of a fusible alloy, it was observed that when charging and discharging were repeated, cracks appeared on the surface from the beginning of the cycle, and as the cycle progressed, it became pulverized and collapsed along the cracks, falling off from the core material.

また、アルミニウムの場合、微粉化が著しく泥状になり
、芯材に保持できなくなることが観察された。可融合金
の負極材料としての性能(リチウムを吸蔵・放出する能
力、サイクルに伴う形状変化を抑制する能力)は可融合
金を形成する成分とその組成比に依存し、たとえば、ガ
ドミウムを含有する系の可融合金では、ガドミウムがリ
チウムを吸蔵・放出する能力に乏しく、あまり膨張・収
縮しないため、20重量%以上含有されていれば、サイ
クルに伴う形状変化をある程度抑制できる。しかし、サ
イクル初期からの崩壊こそないが、いずれ表面にクラッ
クが発生し、サイクルが進むにつれ、微粉化するととも
にクラックに沿って崩壊し、芯材から脱落することが観
察された。これは集電不能により充放電容量が低下する
だけでなく、セパレータを貫通して正極と接触し、内部
短絡および発火が発生する危険性がある。
In addition, in the case of aluminum, it was observed that the pulverization became extremely muddy and could not be held in the core material. The performance of a fusible metal as a negative electrode material (the ability to absorb and release lithium, the ability to suppress shape changes due to cycling) depends on the components forming the fusible metal and their composition ratios. In the type of fusible alloy, gadmium has a poor ability to absorb and release lithium, and does not expand or contract much, so if it is contained in an amount of 20% by weight or more, changes in shape due to cycling can be suppressed to some extent. However, although there was no collapse from the beginning of the cycle, it was observed that cracks eventually appeared on the surface, and as the cycle progressed, it became pulverized, collapsed along the cracks, and fell off from the core material. This not only reduces the charge/discharge capacity due to the inability to collect current, but also has the risk of penetrating the separator and coming into contact with the positive electrode, causing an internal short circuit and ignition.

本発明は、このような課題を解決するもので、安全性お
よび充放電サイクル特性に優れたりチーラム二次電池を
提供することを目的とするものであ化学的にリチウムを
吸蔵・放出しうる可融合金。
The present invention solves these problems and aims to provide a Chilam secondary battery with excellent safety and charge/discharge cycle characteristics. Fusion money.

アルミニウムなどの負極材料の表面に酸化被膜を、例え
ば、酸素を含むガス雰囲気中で熱処理して形成した後、
これとカーボンとを混合したものである。
After forming an oxide film on the surface of a negative electrode material such as aluminum by, for example, heat treatment in a gas atmosphere containing oxygen,
This is a mixture of this and carbon.

作用 本発明により、可融合金、アルミニウムが充放電に伴い
膨張・収縮を繰り返し、形状変化(可融合金の場合はク
ラックが発生し微粉化するとともにクラックに沿って崩
壊する/アルミニウムの場合は泥状になる)が起きた場
合においても、これらを粉末状とし、酸素を含むガス雰
囲気中で熱処理して表面に酸化被膜を形成した後、カー
ボンと混合することにより、芯材からの脱落を防止する
とともに集電可能とし、サイクルに伴う充放電容量の低
下、内部短絡および発火の発生という課題を解決するこ
ととなる。
Function: According to the present invention, fusible alloys and aluminum repeatedly expand and contract as they are charged and discharged, resulting in shape changes (in the case of fusible alloys, cracks occur and become pulverized and disintegrate along the cracks; in the case of aluminum, it becomes muddy). Even if this occurs, the powder is made into powder, heat treated in an oxygen-containing gas atmosphere to form an oxide film on the surface, and then mixed with carbon to prevent it from falling off from the core material. At the same time, it is possible to collect current, thereby solving the problems of a decrease in charge/discharge capacity due to cycling, internal short circuits, and the occurrence of fire.

実施例 以下、本発明の実施例について図面を参照し、説明する
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1表に本発明で用いた可融合金(1)〜(8)の組成
をまとめた。
Table 1 summarizes the compositions of fusible metals (1) to (8) used in the present invention.

可融合金(1)〜(8)は各成分を所定重量比で混合し
ステンレス容器中で加熱して溶融させた後、冷却してイ
ンゴットとしこれを圧延して可融合金シートとした。ま
た、溶融させた後、不活性ガスの高速気流中で噴霧する
、いわゆるアトマイズ法により可融合金粉末とした。ア
ルミニウム(9)はJIS規格H4160−IN30に
分類されるアルミニウム合金シートを用いた。また、粉
砕してアルミニウム合金粉末とした。以下、これらを単
に合金シート、合金粉末という。
For fusible metals (1) to (8), each component was mixed at a predetermined weight ratio, heated and melted in a stainless steel container, cooled to form an ingot, and this was rolled to form a fusible metal sheet. Further, after melting, a fusible metal powder was obtained by a so-called atomization method in which the powder was atomized in a high-speed inert gas stream. As aluminum (9), an aluminum alloy sheet classified into JIS standard H4160-IN30 was used. It was also ground into aluminum alloy powder. Hereinafter, these will be simply referred to as alloy sheets and alloy powders.

上記合金シートを用いて充放電によるリチウムの吸蔵・
放出をさせるための試験極を作製した。
The above alloy sheet can be used to store and discharge lithium by charging and discharging.
A test electrode for emission was fabricated.

第1図(A)は試験極の構成断面図である。FIG. 1(A) is a cross-sectional view of the structure of the test electrode.

上記合金シート1を輻20■、長さ25−2厚さ0.2
−に調整し、これに芯材3としてニッケルのエキスバン
ドを圧入し、ニッケルリード板4を芯材3にスポット溶
接して試験極を作製した。なお合金シート1の片面はポ
リエチレンコート5により充放電反応に関与しないよう
にした。
The above alloy sheet 1 has a diameter of 20 cm, a length of 25-2, a thickness of 0.2
-, a nickel expanded band was press-fitted as the core material 3, and a nickel lead plate 4 was spot welded to the core material 3 to prepare a test electrode. Note that one side of the alloy sheet 1 was coated with polyethylene 5 so as not to participate in the charge/discharge reaction.

上記合金粉末を用いて充放電によるリチウムの吸蔵・放
出をさせるための試験極を作製した。第1図(B)は試
験極の構成断面図である。
A test electrode for intercalating and deintercalating lithium through charging and discharging was prepared using the above alloy powder. FIG. 1(B) is a cross-sectional view of the structure of the test electrode.

上記合金粉末2にカーボンとしてアセチレンブラックを
3重量%混合し、増粘剤としてカルボキシメチルセルロ
ース水溶液を1重量%添加し、さらに結着剤としてポリ
4フツ化エチレン樹脂の水性ディスバージョンを5重量
%混練してペースト状にする。芯材3としてニッケル箔
を用い、その片面に塗着、乾燥し圧延した。以下、同様
に試験極を作製した。
3% by weight of acetylene black as carbon is mixed with the above alloy powder 2, 1% by weight of carboxymethyl cellulose aqueous solution is added as a thickener, and 5% by weight of aqueous dispersion of polytetrafluoroethylene resin is further kneaded as a binder. Make it into a paste. Nickel foil was used as the core material 3, and it was coated on one side, dried, and rolled. Thereafter, test electrodes were produced in the same manner.

この試験極を用いて充放電によるリチウムの吸蔵・放出
をさせるための装置を構成した。第2図は充放電試験装
置の構成断面図である。
Using this test electrode, we constructed a device for intercalating and deintercalating lithium through charging and discharging. FIG. 2 is a sectional view of the structure of the charge/discharge test apparatus.

上記試験極6を、対極7および参照極8とともにセパレ
ータ9で仕切られたH形セル10中に構成し、非水電解
液を注入して5mAの定電流で充放電させるものである
The test electrode 6, together with a counter electrode 7 and a reference electrode 8, is configured in an H-type cell 10 partitioned by a separator 9, and a nonaqueous electrolyte is injected into the cell 10 to charge and discharge at a constant current of 5 mA.

試験極がリチウムを吸蔵する反応を充電反応、放出する
反応を放電反応とし、参照極に対して充電終止電圧を5
0mV、放電終止電圧を800mVとした。また、対極
および参照極には金属リチウムを用い、それぞれ芯材と
してニッケルエキスバンドを圧入した。なお、対極の金
属リチウムは、その低い充放電可逆性のためサイクルに
伴い消耗されるので、予想される充放電容量に比べ過剰
に充填した。非水電解液として、プロピレンカーボネー
トおよびエチレンカーボネートを体積比1:1で混合し
、6フツ化リン酸リチウムをIM/e溶解したものを用
いた。
The reaction in which the test electrode absorbs lithium is called a charge reaction, and the reaction in which it releases lithium is called a discharge reaction.
0 mV, and the discharge end voltage was 800 mV. In addition, metallic lithium was used for the counter electrode and the reference electrode, and a nickel expanded band was press-fitted as a core material in each electrode. The counter electrode metal lithium was consumed during cycles due to its low charge/discharge reversibility, so it was filled in excess compared to the expected charge/discharge capacity. As the non-aqueous electrolyte, a mixture of propylene carbonate and ethylene carbonate at a volume ratio of 1:1 and IM/e dissolution of lithium hexafluorophosphate was used.

上記合金シート(1)〜(9)を用いた試験極(1)〜
(9)を充放電させた。第3図にサイクルに伴う充放電
容量の変化を示した。
Test electrodes (1) using the above alloy sheets (1) to (9)
(9) was charged and discharged. Figure 3 shows the change in charge/discharge capacity with cycles.

サイクルに伴う試験極の形状変化を観察した結果、5サ
イクル時では、試験極(9)はすでに泥状となり芯材か
ら流出していた。試験極(1) 、 (5)も、すでに
表面にクラックが発生しており、10サイクル時では、
クラックに沿って崩壊し微粉化するとともに一部は芯材
から脱落しており、−またこの時点で軽い衝撃を加える
と、さらに脱落が発生した。
As a result of observing the shape change of the test electrode due to the cycle, it was found that the test electrode (9) had already become muddy and was flowing out from the core material at the time of the 5th cycle. Test electrodes (1) and (5) already had cracks on their surfaces, and after 10 cycles,
It disintegrated along the cracks and became pulverized, and some of it fell off from the core material, and when a light impact was applied at this point, more flaking occurred.

試験極(2)、(6)は25サイクル時で、試験極(3
)、(7)は35サイクル時で、試験極(4)、(8)
は40サイクル時でそれぞれ一部に芯材からの脱落が見
られた。これは第3図に示した結果ともよ(対応してお
り、サイクルに伴う形状変化、特に芯材からの脱落が見
られると同時に、充放電容量は著しく低下する。
Test electrodes (2) and (6) are at 25 cycles, test electrode (3) is
), (7) are at 35 cycles, test electrodes (4), (8)
After 40 cycles, some parts of the core material fell off. This corresponds to the results shown in FIG. 3, where changes in shape due to cycling, especially falling off from the core material, were observed, and at the same time, the charge/discharge capacity significantly decreased.

実際に、このような合金シート(1)〜(9)を負極材
料に用いた電池に落下などの衝撃を与えれば、このよう
な脱落で生じた破片がセパレータを貫通して正極と接触
し内部短絡および発火を発生させると推測される。
In fact, if a battery using such alloy sheets (1) to (9) as the negative electrode material is subjected to an impact such as being dropped, the fragments generated by such falling will penetrate the separator and come into contact with the positive electrode, causing internal damage. It is presumed to cause short circuit and ignition.

実施例1 上記合金粉末(1)〜(9)にカーボンを混合した本発
明(1)の試験極(1′)〜(9′)を充放電させた。
Example 1 Test electrodes (1') to (9') of the present invention (1) in which carbon was mixed with the alloy powders (1) to (9) described above were charged and discharged.

第4図にそのサイクルに伴う充放電容量の変化を示した
Figure 4 shows the change in charge/discharge capacity accompanying the cycle.

サイクルに伴う試験極の形状変化を観察した結果、10
0サイクル時でも、試験極(1′)〜(9′)ずれも、
芯材からの脱落は見られなかった。これは第4図に示し
た結果ともよく対応しており、サイクルに伴う形状変化
、特に芯材からの脱落が見られないので、充放電容量は
あまり低下しない。
As a result of observing the shape change of the test electrode due to the cycle, 10
Even at 0 cycle, the test poles (1') to (9') are misaligned.
No falling off from the core material was observed. This corresponds well with the results shown in FIG. 4, and since there is no change in shape due to cycling, especially no falling off from the core material, the charge/discharge capacity does not decrease much.

実施例2 上記合金粉末(9)を酸素を含むガス雰囲気中で熱処理
し表面に酸化被膜を形成した後、カーボンを混合した本
発明(2)の試験極(9″)を充放電させ、本発明(1
)の試験極(9′)と比較した。熱処理は空気中300
℃、1時間とした。第5図にそのサイクルに伴う充放電
容量の変化を示した。
Example 2 The above alloy powder (9) was heat-treated in an oxygen-containing gas atmosphere to form an oxide film on the surface, and then the test electrode (9'') of the present invention (2) mixed with carbon was charged and discharged. Invention (1)
) test electrode (9'). Heat treatment in air 300℃
℃ for 1 hour. FIG. 5 shows the change in charge/discharge capacity accompanying the cycle.

サイクルに伴う試験極の形状変化を観察した結果、10
0サイクル時でも、試験極(9’)、 (9’)のいず
れも、芯材からの脱落は見られなかった。
As a result of observing the shape change of the test electrode due to the cycle, 10
Even during the 0 cycle, neither of the test electrodes (9') and (9') were observed to fall off from the core material.

これは第5図に示した結果ともよく対応しており、サイ
クルに伴う形状変化、特に芯材からの脱落が見られない
ので、充放電容量はほとんど低下しない。
This corresponds well to the results shown in FIG. 5, and since there is no change in shape due to cycling, especially no falling off from the core material, the charge/discharge capacity hardly decreases.

合金粉末にカーボンを混合した場合、合金粉末が凝集す
ることがあり、試験極(9′)では、充放電容量はあま
り低下しないが、その度合にバラツキがある。しかし、
合金粉末を酸素を含むガス雰囲気中で熱処理し表面に酸
化被膜を形成した後、カーボンを混合した場合、合金粉
末が凝集せずカーボンと均一に混合することが可能とな
り、試験極(9″)では、充放電容量はほとんど低下せ
ず、しかもその度合にバラツキがない。
When carbon is mixed into the alloy powder, the alloy powder may aggregate, and although the charge/discharge capacity does not decrease much in the test electrode (9'), the degree varies. but,
When alloy powder is heat-treated in an oxygen-containing gas atmosphere to form an oxide film on the surface and then mixed with carbon, the alloy powder does not aggregate and can be mixed uniformly with carbon, resulting in a test electrode (9″). In this case, the charge/discharge capacity hardly decreases, and there is no variation in the degree of decrease.

なお、アルミニウム粉末については、JIS規格H41
60に分類される他の組成のアルミニウム合金を用いた
場合においても差異は認められなかった。
Regarding aluminum powder, JIS standard H41
No difference was observed even when aluminum alloys with other compositions classified as 60 were used.

また、可融合金粉末については、鉛あるいはスズをイン
ジウムに5重量%置換した組成の合金を用いた場合にお
いても差異は認められなかった。
Further, regarding the fusible metal powder, no difference was observed even when an alloy having a composition in which 5% by weight of lead or tin was replaced with indium was used.

また、鉛あるいはスズをビスマスに20重量%置換した
組成の合金を用いた場合においても差異は認められなか
った。
Further, no difference was observed when an alloy having a composition in which 20% by weight of lead or tin was replaced with bismuth was used.

また、芯材については、ニッケルの他にステンレス鋼、
銅のいずれの材質を用いた場合においても差異は認めら
れなかった。
In addition to nickel, the core material is stainless steel,
No difference was observed when any copper material was used.

発明の効果 以上のように本発明によれば電気化学的にリチウムを吸
蔵・放出しうる可融合金、アルミニウムなどを負極材料
として用いた非水電解液二次電池において、これらを粉
末状として表面に酸化被膜を例えば酸素を含むガス雰囲
気中で熱処理して形成した後、カーボンを混合すること
により、可融合金、アルミニウムが充放電に伴い膨張・
収縮を繰り返し、形状変化(可融合金の場合はクラック
が発生し微粉化するとともにクラックに沿って崩壊する
。アルミニウムの場合は泥状となる)が起きた場合にお
いても、芯材からの脱落を防止するとともに集電可能と
し、サイクルに伴う充放電容量の低下も小さ(、内部短
絡および発火が発生しないという効果が得られた。
Effects of the Invention As described above, according to the present invention, in a non-aqueous electrolyte secondary battery using a fusible alloy, aluminum, etc. that can electrochemically intercalate and desorb lithium as a negative electrode material, it is possible to use these materials in powder form on the surface. After forming an oxide film by heat treatment in a gas atmosphere containing oxygen, for example, by mixing carbon, the fusible metal, aluminum, expands and expands as it charges and discharges.
Even if repeated shrinkage causes a change in shape (in the case of a fusible metal, cracks occur, it becomes pulverized, and collapses along the crack; in the case of aluminum, it becomes mud-like), it will not fall off from the core material. In addition to preventing this, it is possible to collect current, and the decrease in charge/discharge capacity due to cycling is small (and the effect is that internal short circuits and ignition do not occur).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験極の構成断面図、第2図は充放電試験装置
の構成断面図、第3図は従来の試験極のサイクルに伴う
充放電容量の変化を示す図、第4図および第5図は本発
明の試験極のサイクルに伴う充放電容量の変化を示す図
である。 1・・・・・・合金シート、2・・・・・・合金粉末、
3・・・・・・芯材、4・・・・・・リード板、5・・
・・・・ポリエチレンコート、6・・・・・・試験極、
7・・・・・・対極、8・・・・・・参照極、9・・・
第3図 賀を汐A(vイクル1欠(圏) N(−C1 第4図 丸太((亨Aクル秋く回) 第5図 凡欽電竹イク1し鼻((回)
Figure 1 is a cross-sectional view of the configuration of the test electrode, Figure 2 is a cross-sectional view of the charge/discharge test device, Figure 3 is a diagram showing changes in charge/discharge capacity with cycles of a conventional test electrode, Figures 4 and 2 are FIG. 5 is a diagram showing the change in charge/discharge capacity of the test electrode of the present invention as it cycles. 1... Alloy sheet, 2... Alloy powder,
3...core material, 4...lead plate, 5...
...Polyethylene coat, 6...Test electrode,
7... Counter electrode, 8... Reference electrode, 9...
Figure 3: A (v cycle 1 missing (area)

Claims (4)

【特許請求の範囲】[Claims] (1)電気化学的にリチウムを吸蔵・放出することがで
き、かつ表面に酸化被膜を形成した負極材料粉末と、カ
ーボンを混合したことを特徴とする非水電解液二次電池
(1) A non-aqueous electrolyte secondary battery characterized by mixing carbon with negative electrode material powder that can electrochemically absorb and release lithium and has an oxide film formed on its surface.
(2)上記負極材料粉末は、鉛を必須成分とし、これ単
独かあるいはスズ、カドミウム、亜鉛、インジウムおよ
びビスマスよりなる群から選んだ少なくとも一つとの合
金であることを特徴とする特許請求の範囲第1項記載の
非水電解液二次電池。
(2) Claims characterized in that the negative electrode material powder contains lead as an essential component, and is either alone or in an alloy with at least one selected from the group consisting of tin, cadmium, zinc, indium, and bismuth. The non-aqueous electrolyte secondary battery according to item 1.
(3)上記負極材料粉末は、スズを必須成分とし、これ
単独かあるいは鉛、カドミウム、亜鉛、インジウムおよ
びビスマスよりなる群から選んだ少なくとも一つとの合
金であることを特徴とする特許請求の範囲第1項記載の
非水電解液二次電池。
(3) Claims characterized in that the negative electrode material powder contains tin as an essential component, and is either alone or in an alloy with at least one selected from the group consisting of lead, cadmium, zinc, indium, and bismuth. The non-aqueous electrolyte secondary battery according to item 1.
(4)上記負極材料粉末はアルミニウムである特許請求
の範囲第1項記載の非水電解液二次電池。
(4) The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode material powder is aluminum.
JP2305166A 1990-11-09 1990-11-09 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3019402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2305166A JP3019402B2 (en) 1990-11-09 1990-11-09 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2305166A JP3019402B2 (en) 1990-11-09 1990-11-09 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04179068A true JPH04179068A (en) 1992-06-25
JP3019402B2 JP3019402B2 (en) 2000-03-13

Family

ID=17941862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2305166A Expired - Lifetime JP3019402B2 (en) 1990-11-09 1990-11-09 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3019402B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108945A (en) * 1998-05-13 2010-05-13 Ube Ind Ltd Non-aqueous secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108945A (en) * 1998-05-13 2010-05-13 Ube Ind Ltd Non-aqueous secondary battery

Also Published As

Publication number Publication date
JP3019402B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
JPH1186853A (en) Lithium secondary battery
JP3032338B2 (en) Non-aqueous electrolyte secondary battery
JPH05182689A (en) Nonaqueous electrolyte secondary battery
JPH06318454A (en) Nonaqueous electrolyte secondary battery
JPH10308207A (en) Non-aqueous electrolyte secondary battery
JP3393243B2 (en) Non-aqueous electrolyte secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPH0997626A (en) Nonaqueous electrolytic battery
JP3032339B2 (en) Non-aqueous electrolyte secondary battery
JPH04179068A (en) Secondary battery with non-aqueous electrolytic solution
JP2000012029A (en) Nonaqueous electrolyte secondary battery
JP2751625B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2794889B2 (en) Non-aqueous electrolyte secondary battery
JP6245954B2 (en) Negative electrode active material for lithium ion secondary battery
JPH0574490A (en) Nonaqueous electrolyte secondary battery
JP3019356B2 (en) Non-aqueous electrolyte secondary battery
JPH04179069A (en) Secondary battery with non-aqueous electrolytic solution
JPH03297072A (en) Secondary battery with non-aqueous electrolytic solution
JPH0574489A (en) Nonaqueous electrolyte secondary battery
JP2002343358A (en) Manufacturing method of positive electrode for lithium ion secondary battery
JP2961745B2 (en) Non-aqueous electrolyte secondary battery
JP3358482B2 (en) Lithium secondary battery
JP2003077478A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

EXPY Cancellation because of completion of term