JPH0417751A - Air-fuel ratio control system of internal combustion engine - Google Patents

Air-fuel ratio control system of internal combustion engine

Info

Publication number
JPH0417751A
JPH0417751A JP11680090A JP11680090A JPH0417751A JP H0417751 A JPH0417751 A JP H0417751A JP 11680090 A JP11680090 A JP 11680090A JP 11680090 A JP11680090 A JP 11680090A JP H0417751 A JPH0417751 A JP H0417751A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
correction value
learning correction
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11680090A
Other languages
Japanese (ja)
Other versions
JP2757062B2 (en
Inventor
Junichi Furuya
純一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP11680090A priority Critical patent/JP2757062B2/en
Publication of JPH0417751A publication Critical patent/JPH0417751A/en
Application granted granted Critical
Publication of JP2757062B2 publication Critical patent/JP2757062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To accelerate the progress of learning and enhance the accuracy of learning simultaneously by setting the learning correction value of the amount of correction of air-fuel ratio output from a lower air-fuel ratio sensor according to a uniform learning correction value for all of driving areas and a learning correction value for each of the subdivided driving areas. CONSTITUTION:A first air-fuel ratio correction amount setting means sets the first amount of correction of air-fuel ratio according to the detected value of a first air-fuel ratio sensor. A uniform learning correction value correcting means corrects and renews a uniform learning correction value according to a value obtained by addition of the value of a storage means to the average value of learning correction values for all of driving areas. A first correcting means for the learning correction value of each area corrects the learning correction value of each area according to the value of the storage means and the output of a second air-fuel ratio sensor, and a second correcting means for the learning correction value of each area decreases and renews the uniform learning correction value during learning of the uniform learning correction value. A second air-fuel ratio correction amount computing means computes the second amount of correction of air-fuel ratio according to the second sensor output, the uniform learning correction value, and the learning correction value of each area, and the final amount of correction of air-fuel ratio is obtained by an air-fuel ratio correction amount computing means.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の空燃比を制御する装置に関し、特
に空燃比センサを排気浄化触媒の上流側及び下流側に備
え、これら2つの空燃比センサの検出値に基づいて空燃
比を高精度にフィードパ、7り制御する装置に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a device for controlling the air-fuel ratio of an internal combustion engine, and in particular, the present invention relates to an apparatus for controlling the air-fuel ratio of an internal combustion engine, and in particular, the present invention relates to an apparatus for controlling the air-fuel ratio of an internal combustion engine, and in particular, an air-fuel ratio sensor is provided on the upstream side and downstream side of an exhaust purification catalyst. The present invention relates to a device that highly accurately controls an air-fuel ratio based on a detected value of a fuel ratio sensor.

〈従来の技術〉 従来の一般的な内燃機関の空燃比制御装置としては例え
ば特開昭60−240840号公報に示されるようなも
のがある。
<Prior Art> A conventional general air-fuel ratio control device for an internal combustion engine is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-240840.

このものの概要を説明すると、機関の吸入空気流量Q及
び回転数Nを検出してシリンダに吸入される空気量に対
応する基本燃料供給量TP(=K・Q/N ; Kは定
数)を演算し、この基本燃料供給量T、を機関温度等に
より補正したものを排気中酸素濃度の検出によって混合
気の空燃比を検出する空燃比センサ(酸素センサ)から
の信号によって設定される空燃比フィードバック補正係
数(空燃比補正量)を用いてフィードバック補正を施し
、バッテリ電圧による補正等をも行って最終的に燃料供
給量T1を設定する。
To give an overview of this, it detects the intake air flow rate Q and rotational speed N of the engine and calculates the basic fuel supply amount TP (=K・Q/N; K is a constant) corresponding to the amount of air taken into the cylinder. Then, this basic fuel supply amount T, corrected by engine temperature, etc., is used as air-fuel ratio feedback, which is set by a signal from an air-fuel ratio sensor (oxygen sensor) that detects the air-fuel ratio of the air-fuel mixture by detecting the oxygen concentration in the exhaust gas. Feedback correction is performed using a correction coefficient (air-fuel ratio correction amount), and correction based on battery voltage is also performed to finally set the fuel supply amount T1.

そして、このようにして設定された燃料供給量T、に相
当するパルス巾の駆動パルス信号を所定タイミングで燃
料噴射弁に出力することにより、機関に所定量の燃料を
噴射供給するようにしている。
Then, by outputting a drive pulse signal with a pulse width corresponding to the fuel supply amount T thus set to the fuel injection valve at a predetermined timing, a predetermined amount of fuel is injected and supplied to the engine. .

上記空燃比センサからの信号に基づく空燃比フィードバ
ック補正は空燃比を目標空燃比(理論空燃比)付近に制
御するように行われる。これは、排気系に介装され、排
気中のCo、 HC(炭化水素)を酸化すると共にNO
xを還元して浄化する排気浄化触媒(三元触媒)の転化
効率(浄化効率)が理論空燃比燃焼時の排気状態で有効
に機能するように設定されているからである。
The air-fuel ratio feedback correction based on the signal from the air-fuel ratio sensor is performed to control the air-fuel ratio to around the target air-fuel ratio (stoichiometric air-fuel ratio). This is installed in the exhaust system and oxidizes Co and HC (hydrocarbons) in the exhaust, as well as NO
This is because the conversion efficiency (purification efficiency) of the exhaust purification catalyst (three-way catalyst) that reduces and purifies x is set to function effectively in the exhaust state during combustion at the stoichiometric air-fuel ratio.

前記、空燃比センサの発生起電力(出力電圧)は理論空
燃比近傍で2、変する特性を有しており、この出力電圧
■oと理論空燃比相当の基準電圧(スライスレベル)S
Lとを比較して混合気の空燃比が理論空燃比に対してリ
ッチかリーンかを判定する。そして、例えば空燃比がリ
ーン(リッチ)の場合には、前記基本燃料供給量T2に
乗じるフィードバック補正係数αをリーン(リッチ)に
転じた初回に大きな比例定数Pを増大(減少)した後、
所定の積分定数■ずつ徐々に増大(減少)していき燃料
供給量T+を増量(減量)補正することで空燃比を理論
空燃比近傍に制御する。
As mentioned above, the electromotive force (output voltage) generated by the air-fuel ratio sensor has a characteristic that changes by 2 in the vicinity of the stoichiometric air-fuel ratio, and this output voltage o and the reference voltage (slice level) S corresponding to the stoichiometric air-fuel ratio
It is determined whether the air-fuel ratio of the air-fuel mixture is rich or lean with respect to the stoichiometric air-fuel ratio by comparing the air-fuel ratio with L. For example, when the air-fuel ratio is lean (rich), the feedback correction coefficient α multiplied by the basic fuel supply amount T2 is increased (decreased) by a large proportionality constant P the first time the basic fuel supply amount T2 is changed to lean (rich).
The air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio by gradually increasing (decreasing) the fuel supply amount T+ by a predetermined integral constant ■.

ところで、上記のような通常の空燃比フィードバック制
御装置では1個の空燃比センサを応答性を高めるため、
できるだけ燃焼室に近い排気マニホールドの集合部分に
設けているが、この部分は排気温度が高いため空燃比セ
ンサが熱的影響や劣化により特性が変化し易く、また、
気筒毎の排気の混合が不十分であるため全気筒の平均的
な空燃比を検出しにくく空燃比の検出精度に難があり、
引いては空燃比制御精度を悪くしていた。
By the way, in the above-mentioned normal air-fuel ratio feedback control device, one air-fuel ratio sensor is used to improve responsiveness.
It is installed in the gathering part of the exhaust manifold as close as possible to the combustion chamber, but since the exhaust temperature in this part is high, the characteristics of the air-fuel ratio sensor are likely to change due to thermal effects and deterioration.
Because the exhaust gas from each cylinder is not sufficiently mixed, it is difficult to detect the average air-fuel ratio of all cylinders, and the air-fuel ratio detection accuracy is difficult.
This in turn worsened the accuracy of air-fuel ratio control.

この点に鑑み、排気浄化触媒の下流側にも空燃比センサ
を設け、2つの空燃比センサの検出値を用いて空燃比を
フィードバック制御するものが提案されている(特開昭
58−48756号公報参照)。
In view of this, it has been proposed that an air-fuel ratio sensor is also provided on the downstream side of the exhaust purification catalyst, and the air-fuel ratio is feedback-controlled using the detected values of the two air-fuel ratio sensors (Japanese Patent Laid-Open No. 58-48756). (see official bulletin).

即ち、下流側の空燃比センサは燃焼室から離れているた
め応答性には難があるが、排気浄化触媒の下流であるた
め、排気成分バランスの影響(CO;  HC2NOx
、CO2等〉を受は難く、排気中の毒性成分による被毒
量が少ないため被毒による特性変化も受けにくく、しか
も排気の混合状態がよいため全気筒の平均的な空燃比を
検出できる等上流側の空燃比センサに比較して、高精度
で安定した検出性能が得られる。
In other words, the air-fuel ratio sensor on the downstream side has difficulty in responsiveness because it is far from the combustion chamber, but since it is downstream of the exhaust purification catalyst, it is less sensitive to the influence of the exhaust component balance (CO; HC2NOx
, CO2, etc.), and the amount of poisoning by toxic components in the exhaust is small, making it less susceptible to changes in characteristics due to poisoning.Moreover, since the exhaust gas is in a good mixing state, the average air-fuel ratio of all cylinders can be detected. Highly accurate and stable detection performance can be obtained compared to the upstream air-fuel ratio sensor.

そこで、2つの空燃比センサの検出値に基づいて前記同
様の演算によって夫々設定される2つの空燃比フィード
バック補正係数を組み合わせたり、或いは上流側の空燃
比センサにより設定される空燃比フィードバック補正係
数の制御定数(比例分や積分分)、上流側の空燃比セン
サの出力電圧の比較電圧や遅延時間を補正すること等に
よって上流側空燃比センサの出力特性のばらつきを下流
側の空燃比センサによって補償して高精度な空燃比フィ
ードバック制御を行うようにしている。
Therefore, it is possible to combine two air-fuel ratio feedback correction coefficients that are respectively set by calculations similar to those described above based on the detected values of the two air-fuel ratio sensors, or to combine the air-fuel ratio feedback correction coefficients that are set by the upstream air-fuel ratio sensor. The downstream air-fuel ratio sensor compensates for variations in the output characteristics of the upstream air-fuel ratio sensor by correcting the control constants (proportional and integral), comparison voltage and delay time of the output voltage of the upstream air-fuel ratio sensor. The system is designed to perform highly accurate air-fuel ratio feedback control.

しかし、上記のように2個の空燃比センサによる空燃比
制御装置においては、フィードバック制御時の空燃比補
正に係わる要求レベルが、非フイードバツク制御時と大
きく離れることがあり、特に非フイードバツク制御時か
らフィードバック制御時に移行する際のフィードバック
制御開始時点では次のような問題が発生する。
However, in the air-fuel ratio control device using two air-fuel ratio sensors as described above, the required level for air-fuel ratio correction during feedback control may be significantly different from that during non-feedback control, and especially during non-feedback control. The following problem occurs at the start of feedback control when transitioning to feedback control.

即ち、上記の場合、通常下流側の空燃比センサによるフ
ィードバック制御速度は上流側の空燃比センサによるフ
ィードバック制御速度に比較して小さく設定されている
ので、下流側空燃比センサによるフィードバック制御で
制御される空燃比補正量(例えば上流側空燃比センサに
ょる空燃比フィードハック補正係数の比例分の補正量)
が要求値に達するのに時間を要し、延いては目標空燃比
に達するのに時間を要して、燃費、運転性、排気エミッ
ションの悪化等を招く。
That is, in the above case, the feedback control speed by the downstream air-fuel ratio sensor is usually set smaller than the feedback control speed by the upstream air-fuel ratio sensor, so the feedback control speed by the downstream air-fuel ratio sensor is not used. air-fuel ratio correction amount (for example, the correction amount of the proportional portion of the air-fuel ratio feed hack correction coefficient by the upstream air-fuel ratio sensor)
It takes time for the air-fuel ratio to reach the required value, and in turn, it takes time to reach the target air-fuel ratio, resulting in deterioration of fuel efficiency, drivability, exhaust emissions, etc.

また、空燃比フィードバック制御中でも機関の運転状態
が異なる領域に遷移したときには、やはり空燃比が目標
空燃比から大きくずれることがあり、この場合にも、燃
費、運転性、排気エミッションの悪化等を招く。
Furthermore, even during air-fuel ratio feedback control, when the operating state of the engine changes to a different range, the air-fuel ratio may deviate significantly from the target air-fuel ratio, which also causes deterioration of fuel efficiency, drivability, and exhaust emissions. .

そこで、第2の空燃比補正量の平均的な値を逐次学習補
正値として演算し運転領域毎に記憶しておき、該学習補
正値を用いて燃料供給量を補正して設定することにより
、常に安定した空燃比制御を行えるようにしたものが提
案されている(特開昭63−97851号公報等参照)
Therefore, by sequentially calculating the average value of the second air-fuel ratio correction amount as a learning correction value and storing it for each driving region, and correcting and setting the fuel supply amount using the learning correction value, A system that allows stable air-fuel ratio control at all times has been proposed (see Japanese Patent Application Laid-Open No. 63-97851, etc.).
.

〈発明が解決しようとする課題〉 ところで、第2の空燃比補正量は第1の空燃比補正量の
ずれを長期的に補正するものであるため、制御周期は第
1の空燃比補正量の制御周期に比較して非常に長く、し
たがって前記学習補正値を記憶する運転領域を運転領域
を細かくすると、各領域に留まる時間が短くなって学習
が進行しない。
<Problems to be Solved by the Invention> By the way, since the second air-fuel ratio correction amount is for long-term correction of the deviation of the first air-fuel ratio correction amount, the control period is the same as that of the first air-fuel ratio correction amount. It is very long compared to the control cycle, so if the operating range in which the learning correction value is stored is made smaller, the time spent in each range becomes shorter and learning does not progress.

一方、学習補正値の要求値は運転条件(EGRの有無等
)、比例分の値(マニュアルトランスミッション搭載車
ではサージを回避するため、ある領域の比例分を特別小
さくしている)等により大幅に異なるため、学習補正値
を記憶する運転領域を大きくすると学習の精度を損ねる
ことになる。
On the other hand, the required value of the learning correction value varies greatly depending on driving conditions (e.g., presence or absence of EGR), the value of the proportional component (in vehicles equipped with manual transmission, the proportional component in a certain area is made particularly small to avoid surges), etc. Therefore, if the operating range in which the learning correction value is stored is increased, the accuracy of learning will be impaired.

したがって、従来は、学習の進行促進と学習の精度向上
との2つの目標を折衷して学習補正値を記憶する運転領
域を設定しているが、これらの目標を両立させることが
困難であり、排気エミッション特性の悪化や空燃比のば
らつきによる運転性の悪化を招いていた。
Therefore, conventionally, the driving range in which the learning correction value is stored is set by compromising the two goals of promoting the progress of learning and improving the accuracy of learning, but it is difficult to achieve both of these goals. This resulted in deterioration of drivability due to deterioration of exhaust emission characteristics and variations in air-fuel ratio.

本発明は、このような従来の問題点に鑑みなされたもの
で、広い運転領域における一律学習と、学習の精度向上
を維持するための細分化された運転領域別のエリア別学
習とをマツチングさせつつ同時に行うことにより、学習
の進行促進と学習の精度向上とを両立した内燃機関の空
燃比制御装置を提供することを目的とする。
The present invention was developed in view of these conventional problems, and it matches uniform learning over a wide driving range with area-specific learning for each subdivided driving range in order to maintain improvement in the accuracy of learning. An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that simultaneously promotes the progress of learning and improves the accuracy of learning.

く課題を解決するための手段〉 このため本発明は第1図に示すように、機関の排気通路
に備えられた排気浄化触媒の上流側及び下流側に夫々設
けられ、空燃比によって変化する排気中特定気体成分の
濃度比に感応じて出力値が変化する第1及び第2の空燃
比センサと、前記第1の空燃比センサの出力値に応じて
第1の空燃比補正量を演算する第1の空燃比補正量演算
手段と、 前記第2の空燃比センサの出力と学習補正値とに基づい
て第2の空燃比補正量を演算する第2の空燃比補正量演
算手段と、 前記第1の空燃比補正量と、第2の空燃比補正量と、に
基づいて最終的な空燃比補正量を演算する空燃比補正量
演算手段と、 を含んで構成される内燃機関の空燃比制御装置において
、 前記第2の空燃比補正量を全運転N域で一律に補正する
ための一律学習補正値を記憶した書き換え可能な一律学
習補正値記憶手段と、 前記第2の空燃比補正量を複数に区分された運転領域毎
に補正するためのエリア別学習補正値を記憶した書き換
え可能なエリア別学習補正値記憶手段と、 前記エリア別学習補正値記憶手段から検索したエリア別
学習補正°値と第2の空燃比センサの出力とに基づいて
対応する運転領域のエリア別学習補正値を修正する第1
のエリア別学習補正値修正手段と、 前記一律学習補正値記憶手段から検索した一律学習補正
値にエリア別学習補正値を平均化演算した値を加算して
一律学習補正値を修正する一律学習補正値修正手段と、 前記一律学習補正値修正手段によって修正された一律学
習補正値で一律学習補正値記憶手段の一律学習補正値を
書き換える一律学習補正値更新手段と、 前記一律学習補正値修正手段によって加算された修正分
を全ての運転領域のエリア別学習補正値から減算してエ
リア別学習補正値を修正する第2のエリア別学習補正値
修正手段と、 前記第1のエリア別学習補正値修正手段及び前記第2の
エリア別学習補正値修正手段で修正されたエリア別学習
補正値で対応する運転N域のエリア別学習補正値を書き
換えるエリア別学習補正値更新手段と、 を備え、前記一律学習補正値とエリア別学習補正値とで
前記第2の空燃比補正量演算用の学習補正値を設定する
ようにした。
Means for Solving the Problems> For this reason, as shown in FIG. calculating a first air-fuel ratio correction amount according to the output value of first and second air-fuel ratio sensors whose output value changes depending on the concentration ratio of the middle specific gas component; and the first air-fuel ratio sensor. a first air-fuel ratio correction amount calculation means; a second air-fuel ratio correction amount calculation means for calculating a second air-fuel ratio correction amount based on the output of the second air-fuel ratio sensor and the learning correction value; an air-fuel ratio correction amount calculation means for calculating a final air-fuel ratio correction amount based on the first air-fuel ratio correction amount and the second air-fuel ratio correction amount; In the control device, a rewritable uniform learning correction value storage means storing a uniform learning correction value for uniformly correcting the second air-fuel ratio correction amount in the entire N range of operation; a rewritable area-specific learning correction value storage means that stores area-specific learning correction values for correcting the area-specific learning correction value for each of a plurality of divided driving regions; and an area-specific learning correction value retrieved from the area-specific learning correction value storage means. a first correcting area-based learning correction value for a corresponding operating region based on the value and the output of the second air-fuel ratio sensor;
area-specific learning correction value correction means, and uniform learning correction for correcting the uniform learning correction value by adding a value obtained by averaging the area-specific learning correction values to the uniform learning correction value retrieved from the uniform learning correction value storage means. a uniform learning correction value updating means for rewriting the uniform learning correction value of the uniform learning correction value storage means with the uniform learning correction value modified by the uniform learning correction value modifying means; a second area-specific learning correction value correction means for correcting the area-specific learning correction values by subtracting the added correction amount from the area-specific learning correction values of all driving regions; and the first area-specific learning correction value correction means. and an area-specific learning correction value updating means for rewriting the area-specific learning correction value of the corresponding driving area N with the area-specific learning correction value corrected by the second area-specific learning correction value correcting means; The learning correction value for calculating the second air-fuel ratio correction amount is set using the learning correction value and the area-specific learning correction value.

く作用〉 第1の空燃比補正量設定手段は、第1の空燃比センサか
らの検出値に基づいて、第1の空燃比補正量を設定する
Function> The first air-fuel ratio correction amount setting means sets the first air-fuel ratio correction amount based on the detected value from the first air-fuel ratio sensor.

また、一律学習補正値修正手段により、一律学習補正値
記憶手段から検索された一律学習補正値にエリア別学習
補正値を平均化演算した値を加算した値で一律学習補正
値を修正する学習が行われ、一律学習補正値更新手段に
よって前記修正された一律学習補正値で一律学習補正値
記憶手段に記憶されていた一律学習補正値が書き換え更
新される。
Further, the uniform learning correction value correction means performs learning for modifying the uniform learning correction value with a value obtained by adding a value calculated by averaging the learning correction values for each area to the uniform learning correction value retrieved from the uniform learning correction value storage means. The uniform learning correction value stored in the uniform learning correction value storage means is rewritten and updated with the modified uniform learning correction value by the uniform learning correction value updating means.

一方、第1のエリア別学習補正値修正手段によりエリア
別学習補正値がエリア別学習補正値記憶手段からの検索
値と第2の空燃比センサの出力とに基づいて修正され、
前記一律学習補正値の学習時には、更に第2のエリア別
学習補正値修正手段によって一律学習補正値の修正分減
少して修正され、エリア別学習補正値更新手段によって
前記修正されたエリア別学習補正値でエリア別学習補正
値記憶手段に記憶されていたエリア別学習補正値が書き
換え更新される。
On the other hand, the area-specific learning correction value is corrected by the first area-specific learning correction value correction means based on the search value from the area-specific learning correction value storage means and the output of the second air-fuel ratio sensor;
When learning the uniform learning correction value, the uniform learning correction value is further corrected by decreasing the correction amount by the second area-based learning correction value correcting means, and the area-based learning correction value updating means corrects the corrected area-based learning correction value. The area-specific learning correction value stored in the area-specific learning correction value storage means is rewritten and updated with the value.

そして、第2の空燃比補正量演算手段により、第2の空
燃比センサからの出力と前記一律学習補正値及びエリア
別学習補正値とに基づいて第2の空燃比補正量が演算さ
れ、前記第1の空燃比補正量と第2の空燃比補正量とに
基づいて空燃比補正量演算手段により最終的な空燃比補
正量が演算される。
Then, the second air-fuel ratio correction amount calculation means calculates the second air-fuel ratio correction amount based on the output from the second air-fuel ratio sensor, the uniform learning correction value and the area-specific learning correction value, and The final air-fuel ratio correction amount is calculated by the air-fuel ratio correction amount calculation means based on the first air-fuel ratio correction amount and the second air-fuel ratio correction amount.

〈実施例〉 以下に、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

一実施例の構成を示す第2図において、機関11の吸気
道路12には吸入空気流量Qを検出するエアフローメー
タ13及びアクセルペダルと連動して吸入空気流量Qを
制御する絞り弁14が設けられ、下流のマニホールド部
分には気筒毎に燃料供給手段としての電磁式の燃料噴射
弁15が設けられる。
In FIG. 2 showing the configuration of one embodiment, an air flow meter 13 for detecting the intake air flow rate Q and a throttle valve 14 for controlling the intake air flow rate Q in conjunction with the accelerator pedal are provided on the intake road 12 of the engine 11. An electromagnetic fuel injection valve 15 serving as a fuel supply means is provided for each cylinder in the downstream manifold portion.

燃料噴射弁15は、マイクロコンピュータを内蔵したコ
ントロール二二ッ1−16からの噴射パルス信号によっ
て開弁駆動し、図示しない燃料ポンプから圧送されてプ
レッシャレギュレータにより所定圧力に制御された燃料
を噴射供給する。更に、機関11の冷却ジャケット内の
冷却水温度Twを検出する水温センサ17が設けられる
。一方、排気通路I8にはマニホールド集合部に排気中
酸素濃度を検出することによって吸入混合気の空燃比を
検出する第1の空燃比センサ19が設けられ、その下流
側の排気管に排気中のCo、HCの酸化とNOXの還元
を行って浄化する排気浄化触媒としての三元触媒20が
設けられ、更に該三元触媒20の下流側に第1空燃比セ
ンサと同一の機能を持つ第2の空燃比センサ21が設け
られる。
The fuel injection valve 15 is driven to open by an injection pulse signal from a control 22-16 having a built-in microcomputer, and injects fuel that is pressure-fed from a fuel pump (not shown) and controlled to a predetermined pressure by a pressure regulator. do. Further, a water temperature sensor 17 is provided to detect the temperature Tw of cooling water in the cooling jacket of the engine 11. On the other hand, the exhaust passage I8 is provided with a first air-fuel ratio sensor 19 that detects the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust gas in the manifold gathering part, and the A three-way catalyst 20 is provided as an exhaust purification catalyst that performs oxidation of Co and HC and reduction of NOx for purification, and furthermore, a second air-fuel ratio sensor having the same function as the first air-fuel ratio sensor is provided downstream of the three-way catalyst 20. An air-fuel ratio sensor 21 is provided.

また、第2図で図示しないディストリビュータには、ク
ランク角センサ22が内蔵されており、該クランク角セ
ンサ22から機関回転と同期して出力されるクランク単
位角信号を一定時間カウントして、又は、クランク基準
角信号の周期を計測して機関回転数Nを検出する。
Further, the distributor (not shown in FIG. 2) has a built-in crank angle sensor 22, and a crank angle signal outputted from the crank angle sensor 22 in synchronization with the engine rotation is counted for a certain period of time, or The engine rotation speed N is detected by measuring the period of the crank reference angle signal.

次に、コントロールユニット16による空燃比制御ルー
チンを第3図及び第4図のフローチャートに従って説明
する。第3図は燃料噴射量設定ルーチンを示し、このル
ーチンは所定周期(例えば10m5)毎に行われる。
Next, the air-fuel ratio control routine by the control unit 16 will be explained according to the flowcharts of FIGS. 3 and 4. FIG. 3 shows a fuel injection amount setting routine, and this routine is performed at predetermined intervals (for example, every 10 m5).

ステップ(図ではSと記す)1では、エアフローメータ
13によって検出された吸入空気流量Qとクランク角セ
ンサ24からの信号に基づいて算出した機関回転数Nと
に基づき、単位回転当たりの吸入空気量に相当する基本
燃料噴射量T、を次式によって演算する。
In step 1 (denoted as S in the figure), the amount of intake air per unit rotation is determined based on the intake air flow rate Q detected by the air flow meter 13 and the engine rotation speed N calculated based on the signal from the crank angle sensor 24. The basic fuel injection amount T, which corresponds to T, is calculated using the following equation.

TP =KxQ/N   (Kは定数)ステップ2では
、水温センサ17によって検出された冷却水温度Tw等
に基づいて各種補正係数C0EFを設定する。
TP = KxQ/N (K is a constant) In step 2, various correction coefficients C0EF are set based on the cooling water temperature Tw etc. detected by the water temperature sensor 17.

ステップ3では、後述するフィードバック補正係数設定
ルーチンにより設定されたフィードバック補正係数αを
読み込む。
In step 3, a feedback correction coefficient α set by a feedback correction coefficient setting routine to be described later is read.

ステップ4では、バッテリ電圧値に基づいて電圧補正分
子、を設定する。これは、バッテリ電圧変動による燃料
噴射弁15の噴射流量変化を補正するためのものである
In step 4, a voltage correction numerator is set based on the battery voltage value. This is to correct changes in the injection flow rate of the fuel injection valve 15 due to battery voltage fluctuations.

ステップ5では、最終的な燃料噴射量(燃料供給量)T
Iを次式に従って演算する。
In step 5, the final fuel injection amount (fuel supply amount) T
I is calculated according to the following formula.

T r = T P X COE F Xα+T。T r = T P X COE F X α + T.

ステップ6では、演算された燃料噴射弁T1を出力用レ
ジスタにセットする。
In step 6, the calculated fuel injection valve T1 is set in the output register.

これにより、予め定められた機関回転同期の燃料噴射タ
イミングになると、演算した燃料噴射量T1のパルス巾
をもつ駆動パルス信号が燃料噴射弁15に与えられて燃
料噴射が行われる。
As a result, at a predetermined fuel injection timing synchronized with the engine rotation, a drive pulse signal having a pulse width of the calculated fuel injection amount T1 is applied to the fuel injection valve 15 to perform fuel injection.

次に、空燃比フィードバック補正係数設定ルーチンを第
4図に従って説明する。このルーチンは機関回転に同期
して実行される。
Next, the air-fuel ratio feedback correction coefficient setting routine will be explained with reference to FIG. This routine is executed in synchronization with engine rotation.

ステップ11では、空燃比のフィードバック制御を行う
運転条件(後述する一律学習補正値P HOSM及びエ
リア別学晋補正値P HO5SXの学習を行う運転条件
と一致、但し、学習を定常条件を加味して行うようにし
て精度向上を図ってもよい)であるか否かを判定する。
In step 11, the operating conditions for performing feedback control of the air-fuel ratio (matching the operating conditions for learning the uniform learning correction value P HOSM and the area-specific learning correction value P HO5SX, which will be described later), however, the learning is performed in consideration of steady conditions. It is also possible to improve the accuracy by doing so.

前記運転条件を満たしていないときには、このルーチン
を終了する。この場合、フィードバック補正係数αは前
回のフィードバック制御終了時の値若しくは一定の基準
値にクランプされ、フィードバック制御は停止される。
If the operating conditions are not satisfied, this routine is terminated. In this case, the feedback correction coefficient α is clamped to the value at the end of the previous feedback control or a constant reference value, and the feedback control is stopped.

ステップ12では、第1の空燃比センサ19からの信号
電圧V。2及び第2の空燃比センサ21からの信号電圧
V′o2を入力する。
In step 12, the signal voltage V from the first air-fuel ratio sensor 19 is determined. 2 and the signal voltage V'o2 from the second air-fuel ratio sensor 21 are input.

ステップ13では、ステップ11で入力した第1の空燃
比センサ19の信号電圧V。2と目標空燃比(理論空燃
比)相当の基準値SLとを比較し、空燃比がリーンから
リッチ又はリッチからリーンへの反転時か否かを判定す
る。
In step 13, the signal voltage V of the first air-fuel ratio sensor 19 input in step 11 is determined. 2 and a reference value SL corresponding to the target air-fuel ratio (stoichiometric air-fuel ratio) to determine whether the air-fuel ratio is changing from lean to rich or from rich to lean.

反転時と判定されたときはステップ14へ進み、第2の
空燃比補正量である空燃比フィードバック補正係数αの
比例分捕正量P HOSを学習補正するための一律学習
補正値P 805Mを記憶させた一律学習補正値マノブ
(コントロールユニット16内蔵のマイクロコンピュー
タのRAMに記憶)から検索すると共に、機関回転速度
Nと基本燃料噴射量T。
When it is determined that it is the time of reversal, the process proceeds to step 14, where a uniform learning correction value P805M for learning and correcting the proportional correction amount PHOS of the air-fuel ratio feedback correction coefficient α, which is the second air-fuel ratio correction amount, is stored. The engine speed N and basic fuel injection amount T are searched from the uniform learning correction value MANOBU (stored in the RAM of the microcomputer built into the control unit 16).

とに基づいて同じく比例分捕正量P HOSのエリア別
学習補正値を記憶させたエリア別学習補正値マツプ(同
しくRAMに記憶)から対応する運転領域に記憶された
エリア別学習補正値P HO5SXを検索する。
The area-specific learning correction value P stored in the corresponding operating area from the area-specific learning correction value map (also stored in RAM) in which the area-specific learning correction value of the proportional correction amount P HOS is stored based on Search for HO5SX.

尚、第5図に示すように前記一律学習補正値マツブには
、学習を行う全運転領域で1個の一律学習補正値P 8
05Mが記憶され、エリア別学習補正値マツプには、機
関回転速度Nと基本燃料噴射量T。
Incidentally, as shown in FIG. 5, the uniform learning correction value Matsubu includes one uniform learning correction value P8 for all operating ranges in which learning is performed.
05M is stored, and the area-based learning correction value map includes the engine rotational speed N and the basic fuel injection amount T.

とによって夫々3分され計9個に区分された各運転領域
に夫々エリア別学習補正値が記憶される。
Area-based learning correction values are stored in each of the driving areas, which are divided into three areas and divided into a total of nine areas.

ここで、一律学習補正値P HOSM及びエリア別学習
補正値P HOSSXを記憶したRAMが一律学習補正
値P HOSM記憶手段及びエリア別学習補正値P H
OSSXを構成する。
Here, the RAM storing the uniform learning correction value P HOSM and the area-specific learning correction value P HOSSX is the uniform learning correction value P HOSM storage means and the area-specific learning correction value P H
Configure OSSX.

ステップ15では、第2の空燃比センサ21からの信号
電圧V′。2と目標空燃比(理論空燃比)相当の基準値
SLとを比較し、空燃比がリーンからリッチ又はリッチ
からリーンへの反転時か否かを判定する。
In step 15, the signal voltage V' from the second air-fuel ratio sensor 21 is determined. 2 and a reference value SL corresponding to the target air-fuel ratio (stoichiometric air-fuel ratio) to determine whether the air-fuel ratio is changing from lean to rich or from rich to lean.

反転時と判定された時にはステップ16へ進み、ステッ
プ14で検索されたエリア別学習補正値PH08SXを
今回の値P HO3P、とじてセットした後ステップ1
7へ進み、一律学習補正値P HOSMの修正量UP)
IO5Pを次式により演算する。
When it is determined that it is the time of reversal, the process proceeds to step 16, where the area-specific learning correction value PH08SX searched in step 14 is set as the current value PHO3P, and then step 1
Proceed to step 7 and uniformly increase the learning correction value P HOSM correction amount)
IO5P is calculated using the following formula.

DPHOSP=M (PHO5P0+PH05P−1)
 / 2ここで、P HO5P−、は前回第2の空燃比
センサ21の出力v’、、が反転した時のエリア別学習
補正値P Boss、であり、Mは正の定数(〈l)で
ある。
DPHOSP=M (PHO5P0+PH05P-1)
/ 2 Here, P HO5P-, is the area-specific learning correction value P Boss, when the output v', , of the second air-fuel ratio sensor 21 was reversed last time, and M is a positive constant (<l). be.

つまり、該修正量DPHO5Pは反転時毎にエリア別学
習補正値P HOSS、を平均化演算した値の所定割合
骨の値として設定される。
In other words, the correction amount DPHO5P is set as a bone value of a predetermined percentage of the value obtained by averaging the area-based learning correction value PHOSS every time the area is reversed.

ステップ18では、ステップ14で検索した一律学習補
正値P HOSMに前記ステップ17で演算した修正量
DPHOSPを加算した値で一律学習補正値P HOS
Mを修正し、該修正値でRAMに記憶される一律学習補
正値P HOSMを更新する。
In step 18, the uniform learning correction value P HOSM is determined by adding the correction amount DPHOSP calculated in step 17 to the uniform learning correction value P HOSM retrieved in step 14.
M is corrected, and the uniform learning correction value P HOSM stored in the RAM is updated with the corrected value.

したがって、ステップ17.18の部分が一律学習補正
値修正手段に相当し、ステップ18の部分は一律学習補
正値更新手段にも相当する。
Therefore, the portions of steps 17 and 18 correspond to uniform learning correction value modifying means, and the portion of step 18 also corresponds to uniform learning correction value updating means.

次いで、ステップ19では、エリア別学習補正値マツプ
の全運転領域のエリア別学習補正値P HOSSXを前
記修正量DPHOSPを減算した値で修正演算する。
Next, in step 19, the area-by-area learning correction value PHOSSX for all driving ranges of the area-by-area learning correction value map is corrected by the value obtained by subtracting the correction amount DPHOSP.

即ち、このステップ19の部分が第2のエリア別学習補
正値修正手段に相当する。
That is, this step 19 corresponds to the second area-based learning correction value modification means.

ステップ20では、前記ステップ19で演算されたエリ
ア別学習補正値P HOSSXを次回のステップ17で
の演算のためP HO5P−+としてセットし、次いで
ステップ21に進む。
In step 20, the area-based learning correction value P HOSSX calculated in step 19 is set as P HO5P-+ for the next calculation in step 17, and then the process proceeds to step 21.

ステップ15で非反転時と判定された時は、ステップ1
6〜ステツプ20をジャンプしてステップ21へ進む。
When it is determined in step 15 that it is not inverted, step 1
Jump from step 6 to step 20 and proceed to step 21.

ステップ21では、第2の空燃比センサ21の出力■゛
。2を基準値SLと比較して空燃比のリッチ。
In step 21, the output of the second air-fuel ratio sensor 21 is determined. 2 to the standard value SL to find the air-fuel ratio rich.

リーンを判別する。Determine lean.

そして、空燃比がリッチ(■“。、>SL)と判定され
たときにはステップ22へ進み、ステップ14で検索さ
れたエリア別学習補正値PH08SXから所定[DP)
IO3Rを差し引いた値でエリア別学習補正値P HO
SSXを修正演算する。また、空燃比がリーン(■“。
When the air-fuel ratio is determined to be rich (■"., >SL), the process proceeds to step 22, and a predetermined value [DP] is determined from the area-specific learning correction value PH08SX retrieved in step 14.
Area-specific learning correction value P HO by subtracting IO3R
Perform corrective calculations on SSX. Also, the air-fuel ratio is lean (■“.

z < S L )と判定されたときにはステップ23
へ進み、検索されたエリア別学習補正値P HOSSX
に所定値DPHO5Lを加算した値でエリア別学習補正
値P HOSSXを修正演算する。即ち、ステップ22
及びステップ23の部分が第1のエリア別学習補正値修
正手段に相当する。
When it is determined that z < S L ), step 23
Proceed to the searched area-specific learning correction value P HOSSX
The area-specific learning correction value PHOSSX is corrected using the value obtained by adding a predetermined value DPHO5L to DPHO5L. That is, step 22
and step 23 corresponds to the first area-based learning correction value modification means.

ステップ24ではステップ22又は23で修正されたエ
リア別学習補正値PH08Sxでエリア別学習補正値マ
ツプの対応する運転領域に記憶されたエリア別学習補正
値P HOSS、を書き換え更新する。即ち、このステ
ップ24の部分がエリア別学習補正値更新手段に相当す
る。
In step 24, the area-specific learning correction value PHOSS stored in the corresponding driving region of the area-specific learning correction value map is rewritten and updated with the area-specific learning correction value PH08Sx corrected in step 22 or 23. That is, this step 24 corresponds to area-based learning correction value updating means.

ステップ25では、以上のようにして更新演算された一
律学習補正値P HOSMとエリア別学習補正値P H
OSSXとを加算して第2の空燃比補正量としての比例
分捕正量P )IQsを演算する。
In step 25, the uniform learning correction value P HOSM and the area-specific learning correction value P H updated as described above are updated.
OSSX is added to calculate the proportional correction amount P)IQs as the second air-fuel ratio correction amount.

次にステップ26へ進み、第1の空燃比センサ19によ
るリッチ、リーン判定を行い、リーン−リッチの反転時
にはステップ27へ進んで、空燃比フィードバック補正
係数α設定用のリーン反転時に与える減少方向の比例骨
PRを基準値PIIOから前記第2の空燃比補正量P 
HO5を減少した値で更新する。次いで、ステップ28
で空燃比フィードバック補正係数αを現在値から前記比
例骨PRを滅じた値で更新する。
Next, the process proceeds to step 26, where the first air-fuel ratio sensor 19 makes a rich/lean determination, and when the lean-rich state is reversed, the process proceeds to step 27, where the decreasing direction given at the time of lean reversal is used to set the air-fuel ratio feedback correction coefficient α. The proportional bone PR is changed from the reference value PIIO to the second air-fuel ratio correction amount P.
Update HO5 with the decreased value. Then step 28
The air-fuel ratio feedback correction coefficient α is updated to a value obtained by subtracting the proportional bone PR from the current value.

又、リッチ→リーンの反転時にはステップ29へ進み、
空燃比フィードバック補正係数α設定用のリーン反転時
に与える増加方間の比例骨Pcを基準値PLOに第2の
空燃比補正量P HO5を加算した値で更新する。次い
で、ステップ30で空燃比フィードバック補正係数αを
現在値に前記比例分PLを加算した値で更新する。
Also, when the transition from rich to lean is reversed, proceed to step 29,
The increasing proportion Pc given at the time of lean inversion for setting the air-fuel ratio feedback correction coefficient α is updated with the value obtained by adding the second air-fuel ratio correction amount PHO5 to the reference value PLO. Next, in step 30, the air-fuel ratio feedback correction coefficient α is updated with a value obtained by adding the proportional amount PL to the current value.

また、ステップ13で第1の空燃比センサ19の出力が
反転時でないと判定された時には、ステップ31へ進ん
でリッチ、リーン判定を行い、リッチ時はステップ32
へ進んで空燃比フィードバック補正係数αを現在値から
積分分IRを減少した値で更新し、リーン時はステップ
33へ進んで積分分Itを加算した値で更新する。
Further, when it is determined in step 13 that the output of the first air-fuel ratio sensor 19 is not in the inversion state, the process proceeds to step 31 to perform a rich/lean determination, and if the output is rich, step 32
The process proceeds to step 33, where the air-fuel ratio feedback correction coefficient α is updated with a value obtained by subtracting the integral IR from the current value, and when lean, the process proceeds to step 33, where it is updated with a value obtained by adding the integral It.

ここで、ステップ26〜ステツプ33の部分でステップ
27.ステップ29による補正を除いて空燃比フィード
バック補正係数αを設定する機能が第1の空燃比センサ
19による第1の空燃比補正量設定手段に相当し、ステ
ップ27.ステップ29を含めてステップ26〜ステツ
プ33の部分が空燃比補正量設定手段に相当する。
Here, steps 26 to 33 are replaced by step 27. The function of setting the air-fuel ratio feedback correction coefficient α, excluding the correction in step 29, corresponds to the first air-fuel ratio correction amount setting means by the first air-fuel ratio sensor 19, and step 27. The portions from step 26 to step 33 including step 29 correspond to air-fuel ratio correction amount setting means.

かかる構成とすれば、一律学習補正値P HOSMによ
って学習を行う全運転領域での学習を進行させて基準値
への収束を促進できると共に、エリア別学習補正値P 
HO5SXによるエリア別に異なる精度の高い学習を行
うことができる。
With such a configuration, it is possible to promote convergence to the reference value by promoting learning in all driving regions where learning is performed using the uniform learning correction value P HOSM, and to promote convergence to the reference value.
HO5SX allows for highly accurate learning that varies by area.

尚、第6図及び第7図は、夫々一律学習補正値P HO
SM及びエリア別学習補正値P HO5Sxが更新され
ていく様子を示したものである。
In addition, FIGS. 6 and 7 show the uniform learning correction value P HO
It shows how the SM and area-specific learning correction value PHO5Sx are updated.

尚、本実施例では第1の空燃比センサ19の検出値に基
づく空燃比フィードバック制御を基調としつつ、その空
燃比フィードバック補正係数の比例分を第2の空燃比セ
ンサの検出値に基づいて補正するものに適用した例を示
したが、これに限らず夫々の空燃比センサによって空燃
比フィードバック補正係数を設定し、双方の値を合成し
て得た空燃比フィードバック補正係数を使用したり、第
1の空燃比センサによる空燃比フィードバック制御を行
いつつ、リッチ、リーン判定の基準値SLや出力遅延時
間を第2の空燃比センサの検出で補正したりするような
ものにも適用できる。
In this embodiment, while air-fuel ratio feedback control is based on the detected value of the first air-fuel ratio sensor 19, the proportional portion of the air-fuel ratio feedback correction coefficient is corrected based on the detected value of the second air-fuel ratio sensor. Although we have shown an example in which the air-fuel ratio feedback correction coefficient is set by each air-fuel ratio sensor and the air-fuel ratio feedback correction coefficient obtained by combining both values is used, the application is not limited to this. The present invention can also be applied to a system in which the air-fuel ratio feedback control is performed using the first air-fuel ratio sensor while correcting the reference value SL for rich/lean determination or the output delay time using the detection by the second air-fuel ratio sensor.

〈発明の効果〉 以上説明したように本発明によれば、排気浄化触媒の上
流側及び下流側に空燃比センサを備え、これら雨空燃比
センサの検出値に基づいて空燃比フィードバック制御を
行うものにおいて、下流側空燃比センサの出力に基づい
て設定される空燃比補正量の学習補正値を、全運転領域
一律に学習補正される一律学習補正値と、細分された運
転領域毎に学習補正されるエリア別学習補正値とで設定
する構成としたため、学習の進行促進と学習の精度向上
との両立を図ることができ、排気エミッション特性や運
転性能を良好に維持できるものである。
<Effects of the Invention> As explained above, according to the present invention, air-fuel ratio sensors are provided on the upstream and downstream sides of the exhaust purification catalyst, and air-fuel ratio feedback control is performed based on the detected values of these rain air-fuel ratio sensors. , the learning correction value of the air-fuel ratio correction amount that is set based on the output of the downstream air-fuel ratio sensor is divided into a uniform learning correction value that is learned and corrected uniformly for all operating regions, and a learning correction value that is learned and corrected for each subdivided operating region. Since the configuration is set using area-specific learning correction values, it is possible to simultaneously promote the progress of learning and improve the accuracy of learning, and maintain good exhaust emission characteristics and driving performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例の構成を示す図、第3図は同上実施例の燃
料噴射量設定ルーチンを示すフローチャート、第4図は
同じく空燃比フィードバック補正係数設定ルーチンを示
すフローチャート、第5図(A)、(B)は夫々一律学
習補正値マツブとエリア別学習補正値マツプの運転領域
を示す図、第6図及び第7図は夫々一律学習補正値とエ
リア別学習補正値の更新される様子を示す線図である。 11・・・内燃機関  12・・・吸気通路射弁16・
・・コントロールユニット の空燃比センサ  20・・・三元触媒空燃比センサ 15・・・燃料噴 19・・・第1 21・・・第2の 特許出願人   日本電子機器株式会社代理人 弁理士
 笹 島  冨二雄 第2図 第3図 第 4図 シラ 第5 図 (Δ) 第 図(B) 猟関回転汰7ffN
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a diagram showing the configuration of an embodiment of the present invention, FIG. 3 is a flowchart showing the fuel injection amount setting routine of the same embodiment, and FIG. Similarly, FIGS. 5A and 5B are flowcharts showing the air-fuel ratio feedback correction coefficient setting routine, and FIGS. 2 is a diagram showing how the uniform learning correction value and the area-by-area learning correction value are updated, respectively. 11... Internal combustion engine 12... Intake passage injection valve 16.
...Air-fuel ratio sensor of control unit 20...Three-way catalyst air-fuel ratio sensor 15...Fuel injection 19...1st 21...2nd patent applicant Japan Electronics Co., Ltd. Agent Patent attorney Sasa Shima Fujio Figure 2 Figure 3 Figure 4 Shira Figure 5 Figure (Δ) Figure (B) Hunting station rotation 7ffN

Claims (1)

【特許請求の範囲】  機関の排気通路に備えられた排気浄化触媒の上流側及
び下流側に夫々設けられ、空燃比によって変化する排気
中特定気体成分の濃度比に感応して出力値が変化する第
1及び第2の空燃比センサと、前記第1の空燃比センサ
の出力値に応じて第1の空燃比補正量を演算する第1の
空燃比補正量演算手段と、 前記第2の空燃比センサの出力と学習補正値とに基づい
て第2の空燃比補正量を演算する第2の空燃比補正量演
算手段と、 前記第1の空燃比補正量と、第2の空燃比補正量と、に
基づいて最終的な空燃比補正量を演算する空燃比補正量
演算手段と、 を含んで構成される内燃機関の空燃比制御装置において
、 前記第2の空燃比補正量を全運転領域で一律に補正する
ための一律学習補正値を記憶した書き換え可能な一律学
習補正値記憶手段と、 前記第2の空燃比補正量を複数に区分された運転領域毎
に補正するためのエリア別学習補正値を記憶した書き換
え可能なエリア別学習補正値記憶手段と、 前記エリア別学習補正値記憶手段から検索したエリア別
学習補正値と第2の空燃比センサの出力とに基づいて対
応する運転領域のエリア別学習補正値を修正する第1の
エリア別学習補正値修正手段と、 前記一律学習補正値記憶手段から検索した一律学習補正
値にエリア別学習補正値を平均化演算した値を加算して
一律学習補正値を修正する一律学習補正値修正手段と、 前記一律学習補正値修正手段によって修正された一律学
習補正値で一律学習補正値記憶手段の一律学習補正値を
書き換える一律学習補正値更新手段と、 前記一律学習補正値修正手段によって加算された修正分
を全ての運転領域のエリア別学習補正値から減算してエ
リア別学習補正値を修正する第2のエリア別学習補正値
修正手段と、 前記第1のエリア別学習補正値修正手段及び前記第2の
エリア別学習補正値修正手段で修正されたエリア別学習
補正値で対応する運転領域のエリア別学習補正値を書き
換えるエリア別学習補正値更新手段と、 を備え、前記一律学習補正値とエリア別学習補正値とで
前記第2の空燃比補正量演算用の学習補正値を設定する
ようにしたことを特徴とする内燃機関の空燃比制御装置
[Claims] The catalyst is provided on the upstream and downstream sides of an exhaust purification catalyst provided in the exhaust passage of an engine, and its output value changes in response to the concentration ratio of a specific gas component in the exhaust gas, which changes depending on the air-fuel ratio. first and second air-fuel ratio sensors; first air-fuel ratio correction amount calculation means for calculating a first air-fuel ratio correction amount according to the output value of the first air-fuel ratio sensor; a second air-fuel ratio correction amount calculating means for calculating a second air-fuel ratio correction amount based on the output of the fuel ratio sensor and the learning correction value; the first air-fuel ratio correction amount and the second air-fuel ratio correction amount; and an air-fuel ratio correction amount calculating means for calculating a final air-fuel ratio correction amount based on the following: In an air-fuel ratio control device for an internal combustion engine, the second air-fuel ratio correction amount is applied to the entire operating range. a rewritable uniform learning correction value storage unit storing a uniform learning correction value for uniformly correcting the second air-fuel ratio correction amount; and area-specific learning for correcting the second air-fuel ratio correction amount for each of the plurality of operating regions. a rewritable area-specific learning correction value storage means that stores correction values; and a corresponding operating region based on the area-specific learning correction value retrieved from the area-specific learning correction value storage means and the output of the second air-fuel ratio sensor. a first area-specific learning correction value correction means for correcting the area-specific learning correction value; and adding a value obtained by averaging the area-specific learning correction values to the uniform learning correction value retrieved from the uniform learning correction value storage means. uniform learning correction value correction means for modifying the uniform learning correction value by using the uniform learning correction value modifying means; and uniform learning correction value updating for rewriting the uniform learning correction value in the uniform learning correction value storage means with the uniform learning correction value modified by the uniform learning correction value modifying means. and second area-specific learning correction value correction means for correcting the area-specific learning correction values by subtracting the correction amount added by the uniform learning correction value correction means from the area-specific learning correction values of all driving regions. , Area-specific learning correction for rewriting the area-specific learning correction value of the corresponding driving region with the area-specific learning correction value corrected by the first area-specific learning correction value correction means and the second area-specific learning correction value correction means. An air-fuel ratio control system for an internal combustion engine, characterized in that the learning correction value for calculating the second air-fuel ratio correction amount is set using the uniform learning correction value and the area-specific learning correction value. Fuel ratio control device.
JP11680090A 1990-05-08 1990-05-08 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP2757062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11680090A JP2757062B2 (en) 1990-05-08 1990-05-08 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11680090A JP2757062B2 (en) 1990-05-08 1990-05-08 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0417751A true JPH0417751A (en) 1992-01-22
JP2757062B2 JP2757062B2 (en) 1998-05-25

Family

ID=14695979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11680090A Expired - Fee Related JP2757062B2 (en) 1990-05-08 1990-05-08 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2757062B2 (en)

Also Published As

Publication number Publication date
JP2757062B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
JP2917173B2 (en) Air-fuel ratio control device for internal combustion engine
US5193339A (en) Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
JPH0412151A (en) Air fuel ratio controller of internal combustion engine
JPH03179147A (en) Air-fuel learning controller for internal combustion engine
JP3596011B2 (en) Air-fuel ratio control device for internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JP2757064B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0417751A (en) Air-fuel ratio control system of internal combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757065B2 (en) Air-fuel ratio control device for internal combustion engine
JP3067489B2 (en) Fuel supply control device for internal combustion engine
JPH04112939A (en) Air-fuel ratio control device for internal combustion engine
JP2759545B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04116237A (en) Air-fuel ratio controller of internal combustion engine
JPH0968094A (en) Air-fuel ratio control device of internal combustion engine
JPH0417749A (en) Air-fuel ratio control system of internal combustion engine
JP2631585B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JPH11173218A (en) Egr rate estimation device for engine
JP2808214B2 (en) Air-fuel ratio control device for internal combustion engine with evaporative fuel control device
JPH10159629A (en) Air-fuel ratio controller for engine
JPH0422725A (en) Air fuel ratio control device of internal combustion engine
JPH04124438A (en) Air fuel ratio control device for internal combustion engine
JPH03185245A (en) Fuel injection control device for 2-cycle internal combustion engine
JPH1030479A (en) Air-fuel ratio controller of internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees