JPH04173929A - Method for adding al in electron beam melting furnace - Google Patents

Method for adding al in electron beam melting furnace

Info

Publication number
JPH04173929A
JPH04173929A JP29718490A JP29718490A JPH04173929A JP H04173929 A JPH04173929 A JP H04173929A JP 29718490 A JP29718490 A JP 29718490A JP 29718490 A JP29718490 A JP 29718490A JP H04173929 A JPH04173929 A JP H04173929A
Authority
JP
Japan
Prior art keywords
electron beam
melting
melted
evaporation
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29718490A
Other languages
Japanese (ja)
Inventor
Toshiaki Tanaka
田中 俊彰
Kunio Yamamura
山村 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29718490A priority Critical patent/JPH04173929A/en
Publication of JPH04173929A publication Critical patent/JPH04173929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To reduce the evaporation of Al and to improve its yield by melting Al by the use of heat of melting of Ti melted by an electron beam. CONSTITUTION:Ti is charged to the inside of a water cooled copper crucible 4; its state is regulated to a vacuum one of about >=10<-2>Torr by a vacuum pump 2; and it is irradiated with an electron beam from an electron beam gun 1 to melt the Ti. Next, bar or granular Al is charged to the inside of the water cooled copper crucible 4 from a material charging apparatus 3 to melt the Al by the quantity of heat of the melted Ti. After that, a mold 5 is raised by a mold raising apparatus 6, and casting is executed. In this way, because Al is not directly irradiated with an electron beam, the evaporation of Al is reduced, and its yield is made better.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子ビーム溶解炉におけるAlの添加方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for adding Al in an electron beam melting furnace.

(従来の技術) 電子ビーム溶解炉を用いたM合金の溶解方法はMをTi
と一緒に電子ビームにより溶解していた。
(Prior art) A method for melting M alloy using an electron beam melting furnace is to replace M with Ti.
It was melted together with the electron beam.

(発明が解決しようとする課題) 電子ビーム溶解方法においては高真空状態であると共に
溶解温度が高いためAlの蒸発が激しく特に原料のMに
電子ビームが直接照射された場合は顕著である。このた
め八〇の溶解方法として電子ビーム溶解方法は一般に用
いられていない。
(Problems to be Solved by the Invention) In the electron beam melting method, since a high vacuum state is used and the melting temperature is high, the evaporation of Al is rapid, especially when the raw material M is directly irradiated with the electron beam. For this reason, the electron beam melting method is not generally used as a melting method.

本発明はかかる現状に鑑み開発されたものであってAl
の添加方法を工夫することによりIVの溶解方法として
電子ビーム溶解法を可能とすることを目的とする。
The present invention was developed in view of the current situation, and
The purpose is to make electron beam melting possible as a method for dissolving IV by devising a method of adding IV.

(課題を解決するための手段) 上記の目的を達成するための本発明の構成は電子ビーム
により溶解されたTiの溶解熱によりMを溶解させるこ
とを特徴とする。
(Means for Solving the Problems) The configuration of the present invention for achieving the above object is characterized in that M is melted by heat of melting Ti melted by an electron beam.

(作 用) そして本発明は上記の手段により高出力(125KW)
の電子ビームはMを直接照射することがないので、溶解
されるAlの蒸発は最小限にとどめられる。
(Function) The present invention achieves high output (125KW) by the above means.
Since the electron beam does not directly irradiate M, evaporation of the dissolved Al can be kept to a minimum.

(実施例) 以下本発明の一実施例を図面に基づいて説明すると(1
)は電子ビーム銃、(2)は真空ポンプ、(3)は材料
投入装置、(4)は水冷銅ルツボを示し、該水冷銅ルツ
ボ(4)にTiを入れ真空ポンプ(2)により1O−2
torr以上の真空状態にしておき電子ビーム銃(1)
から電子ビームを照射することによりT1が溶解した後
に、材料投入装置(3)から第2図に示すように棒状あ
るいは粒状のAAを投入し、Mは水冷銅ルツボ(4)内
の溶解Tiの熱量により溶解させ、その鋳込みは鋳型昇
障装置(6)により鋳型(5)を上昇させたのち行う。
(Example) An example of the present invention will be described below based on the drawings (1
) is an electron beam gun, (2) is a vacuum pump, (3) is a material feeding device, and (4) is a water-cooled copper crucible. 2
Electron beam gun (1) in a vacuum state of torr or higher
After T1 is melted by irradiating it with an electron beam, rod-shaped or granular AA is introduced from the material input device (3) as shown in Fig. 2, and M is the melted Ti in the water-cooled copper crucible (4). It is melted by the amount of heat, and the casting is performed after the mold (5) is raised by a mold raising device (6).

(発明の効果) このように本発明によるときは電子ビームにより溶解さ
れたTiの溶解熱によりMを溶解させたものであるから
、Mは電子ビームに直接照射されることがないのでAl
の蒸発を少くしてANの歩留りを良好にすることができ
、更に歩留りが向上したことにより成分のコントロール
が容易となる等の効果を有する。
(Effect of the invention) In this way, according to the present invention, M is melted by the melting heat of Ti melted by the electron beam, so M is not directly irradiated with the electron beam, so Al
It is possible to improve the yield of AN by reducing the evaporation of AN, and furthermore, the improved yield makes it easier to control the components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電子ビーム真空溶解鋳造炉の断面図。 第2図は溶解用ルツボの拡大図である。 FIG. 1 is a sectional view of an electron beam vacuum melting and casting furnace. FIG. 2 is an enlarged view of the melting crucible.

Claims (1)

【特許請求の範囲】[Claims] 電子ビームにより溶解されたTiの溶解熱によりAlを
溶解させることを特徴とする電子ビーム溶解炉における
Alの添加方法。
A method for adding Al in an electron beam melting furnace, characterized in that Al is melted by heat of melting Ti melted by an electron beam.
JP29718490A 1990-11-05 1990-11-05 Method for adding al in electron beam melting furnace Pending JPH04173929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29718490A JPH04173929A (en) 1990-11-05 1990-11-05 Method for adding al in electron beam melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29718490A JPH04173929A (en) 1990-11-05 1990-11-05 Method for adding al in electron beam melting furnace

Publications (1)

Publication Number Publication Date
JPH04173929A true JPH04173929A (en) 1992-06-22

Family

ID=17843263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29718490A Pending JPH04173929A (en) 1990-11-05 1990-11-05 Method for adding al in electron beam melting furnace

Country Status (1)

Country Link
JP (1) JPH04173929A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10196711B2 (en) * 2014-11-27 2019-02-05 Ald Vacuum Technologies Gmbh Melting method for alloys
WO2020059090A1 (en) * 2018-09-20 2020-03-26 日本製鉄株式会社 Method and device for manufacturing titanium alloy ingot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10196711B2 (en) * 2014-11-27 2019-02-05 Ald Vacuum Technologies Gmbh Melting method for alloys
WO2020059090A1 (en) * 2018-09-20 2020-03-26 日本製鉄株式会社 Method and device for manufacturing titanium alloy ingot
JPWO2020059090A1 (en) * 2018-09-20 2021-08-30 日本製鉄株式会社 Titanium alloy ingot manufacturing method and manufacturing equipment

Similar Documents

Publication Publication Date Title
HUT51685A (en) Apparatus for increasing form monocristals of optically transparent metal compound with high melting point
CN107164639B (en) A kind of electron beam covers the method that formula solidification technology prepares high temperature alloy
US3496280A (en) Method of refining steel in plasma-arc remelting
US3338988A (en) Method of making bars of an uranium compound and in particular uranium carbide
JPH04173929A (en) Method for adding al in electron beam melting furnace
JP5513389B2 (en) Silicon purification method
JPH0266129A (en) Method for regulating composition of titanium and titanium alloy in electron beam melting
CN109014088A (en) Method of smelting
JPS55149770A (en) Molding method for crude ingot of active metal or high- melting-point metal or alloy of these metals
JPS61106731A (en) Production of ingot of high melting active metallic alloy
JPH0617159A (en) Production of low oxygen high purity ti material
RU2774340C1 (en) Method for manufacturing ingots from a titanium-based metal compound
RU2191836C2 (en) Method of ingots production
US20210262061A1 (en) Method for producing ingots consisting of a metal compound containing titanium
GB1070108A (en) Apparatus and method for melting metals and compounds
RU2083712C1 (en) Method of production of vanadium-based alloying compositions
RU2082799C1 (en) Method of producing the molybdenum-containing master alloys
SU107653A1 (en) A new method of extruding single-crystal ingots
JPH06290770A (en) Forming method of strap for lead acid battery
JPH03291334A (en) Method for melting ag-in-cd alloy stock
JPS63212061A (en) Manufacture of pure titanium ingot
GB1145013A (en) Improvements in or relating to cold cathode, glow discharge devices
SU606883A1 (en) Method of manufacturing articles
Kornpan et al. ELLECTRICALLY INDUCED VORTICAL FLOW ROLE IN ELECTROSLAG WELDING AND METALLURGY
JPH03191290A (en) Vacuum dissolving apparatus