JPH03191290A - Vacuum dissolving apparatus - Google Patents

Vacuum dissolving apparatus

Info

Publication number
JPH03191290A
JPH03191290A JP32994189A JP32994189A JPH03191290A JP H03191290 A JPH03191290 A JP H03191290A JP 32994189 A JP32994189 A JP 32994189A JP 32994189 A JP32994189 A JP 32994189A JP H03191290 A JPH03191290 A JP H03191290A
Authority
JP
Japan
Prior art keywords
melting
chamber
alloy
dissolving
forming chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32994189A
Other languages
Japanese (ja)
Inventor
Satoru Sasaki
覚 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP32994189A priority Critical patent/JPH03191290A/en
Publication of JPH03191290A publication Critical patent/JPH03191290A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an alloy material of an arbitrary mixing ratio without lowering impurity removal efficiency by dissolving a low vapor pressure material in a host material dissolving chamber, dissolving a high vapor pressure material in a dissolution forming chamber, and guiding the material dissolved in the host material dissolving chamber into the dissolution forming chamber. CONSTITUTION:An alloy material from which impurities are to be removed is mounted on a material dissolving chamber 3, while a material liable to be vaporized in the alloy material (additive material) is mounted on material 13 side in a dissolution forming chamber 4. Pressure in the dissolution forming chamber is raised to higher pressure than the vapor pressure of the material 13. A dissolved material 12a contained in a hearth is heated and hence not solidified, and allowed to pass through a partition plate 2 part and introduced into the dissolution forming chamber 4. The materials 12a, 13a falling into a mold are cooled and gradually solidified by a water cooling pipe, and hence alloy ingot is formed by gradually lowering the bottom of the mold.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、合金材料を電子ビームやレーザ光等で溶解す
る新規な真空溶解装置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides a novel vacuum melting apparatus for melting alloy materials using an electron beam, laser light, or the like.

[従来の技術] 材料中の例えば酸素、窒素、水素、炭素の不純物を取り
除くために、電子ビーム溶解法が使用されている。この
溶解法は高真空中で行われることから溶解した材料が蒸
発する問題がある。ここで、溶解室内の圧力を低くすれ
ばするほど材料中の不純物を完全に取り除くことができ
る。このように溶解室の圧力を低くすると、単一の成分
の材料を溶解する場合には、同等問題がないが、例えば
マンガンやクロムを添加したような合金材料を溶解する
場合には、混合材料のうちマンガンやクロム等の蒸気圧
の高い物質が溶解中に蒸発し、混合比が変化してしまう
[Prior Art] Electron beam melting is used to remove impurities such as oxygen, nitrogen, hydrogen, and carbon from materials. Since this melting method is performed in a high vacuum, there is a problem that the melted material evaporates. Here, the lower the pressure in the melting chamber, the more completely impurities in the material can be removed. Lowering the pressure in the melting chamber in this way poses no problem when melting single-component materials, but when melting alloy materials, such as those containing manganese or chromium, mixed materials Of these, substances with high vapor pressure such as manganese and chromium evaporate during melting, resulting in a change in the mixing ratio.

[発明が解決しよう本する課題] そこで、この混合比の変化を防止するために、蒸発量を
見込み、蒸発しやすい物質を所定の混合比よりも多量に
加えて溶解する方法が行われている。しかし、この方法
においても、蒸発量は溶解時間や溶解雰囲気により溶解
条件が変わってしまうため、所望の混合比の合金を得る
ことができない。一方、溶解室の圧力を下げて蒸発を抑
えば、混合比の変化を軽減することができるが、その反
面溶解室内の圧力を下げたふんだけ前述した不純物が残
る問題が生じる。
[Problems to be Solved by the Invention] Therefore, in order to prevent this change in the mixing ratio, a method has been used in which the amount of evaporation is estimated and a substance that easily evaporates is added in a larger amount than the predetermined mixing ratio and dissolved. . However, even in this method, the amount of evaporation changes depending on the melting time and the melting atmosphere, so it is not possible to obtain an alloy with a desired mixing ratio. On the other hand, if the pressure in the melting chamber is lowered to suppress evaporation, changes in the mixing ratio can be alleviated, but on the other hand, the above-mentioned impurities remain in the feces caused by lowering the pressure in the melting chamber.

そこで、本発明はかかる点に鑑みてなされたものであり
、不純物除去の効率を低下させることなく任意の混合比
の合金材料を得ることのできる真空溶解装置を提供する
ことを目的とするものである。
Therefore, the present invention has been made in view of this point, and an object of the present invention is to provide a vacuum melting apparatus that can obtain an alloy material with an arbitrary mixing ratio without reducing the efficiency of impurity removal. be.

[課題を解決するための手段] 上記目的を達成するため、本発明の真空溶解装置は、真
空に保たれた溶解室内を仕切板により母材溶解室と溶解
整形室とに分離すると共に、母材溶解室内の圧力を溶解
整形室よりも低くし、前記母材溶解室内で蒸気圧の低い
材料を溶解するための手段を設け、前記溶解成型室内で
蒸気圧の高い材料を溶解するための手段を設け、前記母
材溶解室及び溶解成型室内で夫々溶解された材料を前記
溶解整形室内で一緒に混ぜ合わせるために母材溶解室で
溶解された材料を溶解成型室に導くための手段を設けた
ことを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, the vacuum melting apparatus of the present invention separates the melting chamber kept in vacuum into a base material melting chamber and a melting and shaping chamber by a partition plate, and A means is provided for lowering the pressure in the material melting chamber than in the melting and shaping chamber, a means for melting a material with a low vapor pressure in the base material melting chamber, and a means for melting a material with a high vapor pressure in the melting and shaping chamber. and means for guiding the material melted in the base material melting chamber to the melting and forming chamber in order to mix together the materials melted in the base material melting chamber and the melting and shaping chamber, respectively, in the melting and shaping chamber. It is characterized by:

以下、本発明の実施例を図面に基づいて詳説する。Hereinafter, embodiments of the present invention will be explained in detail based on the drawings.

[実施例J 添付図面は本発明に係る真空溶解装置の一例の概略構成
を示す断面斜視図である。
[Example J] The attached drawing is a cross-sectional perspective view showing a schematic configuration of an example of a vacuum melting apparatus according to the present invention.

同図において、1は溶解室で、その中央部に設置した仕
切板2により母材溶解室3と溶解整形室4とに分離され
ている。前記母材溶解室3及び溶解整形室4内は排気管
5g、5bを介して図示外の高真空ポンプに接続されて
おり、また、排気管5bの途中には排気量可変バルブ6
が設置しである。さらに、前記溶解整形室4にはその内
部に不活性ガスを導入するための流量調整弁7を備えた
導入管8が接続しである。9は前記仕切板2に貫通、保
持されて前記母材溶解室3と溶解整形室4とに跨がって
配置された矩形状の銅製のハースで、このハースの溶解
整形室4側には湯口10が形成しである。11はこの湯
口の直下に置かれた銅製の中空状の鋳型で、この鋳型内
の下部には図示しないが上下動可能な底板が設けである
。この鋳型11及び前記ハース10は水冷パイプにより
冷却されている。
In the figure, 1 is a melting chamber, which is separated into a base material melting chamber 3 and a melting and shaping chamber 4 by a partition plate 2 installed in the center thereof. The insides of the base material melting chamber 3 and the melting and shaping chamber 4 are connected to a high vacuum pump (not shown) via exhaust pipes 5g and 5b, and a variable displacement valve 6 is provided in the middle of the exhaust pipe 5b.
is installed. Furthermore, an introduction pipe 8 equipped with a flow rate regulating valve 7 for introducing an inert gas into the melting and shaping chamber 4 is connected thereto. Reference numeral 9 denotes a rectangular copper hearth that penetrates and is held by the partition plate 2 and is disposed astride the base material melting chamber 3 and the melting and shaping chamber 4. On the melting and shaping chamber 4 side of this hearth is a A sprue 10 is formed. Reference numeral 11 denotes a hollow copper mold placed directly below the sprue, and a bottom plate (not shown) that can be moved up and down is provided at the bottom of the mold. This mold 11 and the hearth 10 are cooled by a water cooling pipe.

12及び13は前記母材溶解室3内のハース9及び溶解
整形室4内の鋳型11直上に夫々置かれた材料で、各材
料は図示外の移動機構に夫々保持されている。14及び
15は前記母材溶解室3及び溶解整形室4内に置かれた
各材料12.13を溶解するための電子ビームEBI、
EB2を夫々発生する電子線発生手段で、この各電子線
発生手段には電子ビームを偏向させるための偏向系が組
み込まれている。
Materials 12 and 13 are placed directly above the hearth 9 in the base material melting chamber 3 and directly above the mold 11 in the melting and shaping chamber 4, respectively, and each material is held by a moving mechanism not shown. 14 and 15 are electron beam EBI for melting each material 12 and 13 placed in the base material melting chamber 3 and the melting and shaping chamber 4;
Each electron beam generating means generates EB2, and each electron beam generating means has a built-in deflection system for deflecting the electron beam.

かかる構成における真空溶解装置による合金の溶解方法
の一例を以下に詳説する。
An example of a method for melting an alloy using a vacuum melting apparatus having such a configuration will be described in detail below.

先ず、母材溶解室3内の材料12側には不純物を除去す
べき合金物質を取り付けると共に、溶解整形室4内の材
料13側には前記合金物質中の蒸発しやすい物質(添加
物質)を取り付ける。次に、排気管5a、5bを介して
溶解室1(母材溶解室3と溶解形成室4)内を高真空ポ
ンプにより所望の高真空に排気した後、流量調整弁7を
開放し不活性ガスを溶解形成室4内に導入することによ
りこの溶解形成室の圧力を前記材料13の蒸気圧よりも
高い圧力まで上昇させる。この状態において、先ず、材
料12を一定量ずつ移動させながら電子線発生手段14
から発生した電子ビームEBIをこの材料先端に照射し
て溶解させる。溶解された材料12aはハース9内に溜
められる。このとき、電子ビームEBIは偏向系により
実線でその走査範囲を示すように材料12を照射すると
共にハース9内を照射しているため、ハース内に収容さ
れた溶解材料12aは加熱されるので、凝固することな
く仕切板2部分を通過して溶解整形室4側に導入する。
First, an alloy substance from which impurities should be removed is attached to the material 12 side in the base metal melting chamber 3, and a substance (additive substance) that is easily evaporated in the alloy substance is attached to the material 13 side in the melting and shaping chamber 4. Attach. Next, the inside of the melting chamber 1 (base material melting chamber 3 and melt forming chamber 4) is evacuated to a desired high vacuum via the exhaust pipes 5a and 5b, and then the flow rate adjustment valve 7 is opened to inactivate. By introducing gas into the melt-forming chamber 4, the pressure of this melt-forming chamber is increased to a pressure higher than the vapor pressure of the material 13. In this state, first, while moving the material 12 by a certain amount, the electron beam generating means 14
The tip of this material is irradiated with an electron beam EBI generated from the material to melt it. The melted material 12a is stored in the hearth 9. At this time, the electron beam EBI irradiates the material 12 using the deflection system so that its scanning range is indicated by a solid line, and also irradiates the inside of the hearth 9, so the melted material 12a accommodated in the hearth is heated. It passes through the partition plate 2 portion without solidifying and is introduced into the melting and shaping chamber 4 side.

また、電子ビームFBIの発生と同時に溶解整形室4側
の電子線発生手段15から電子ビームEB2が発生し、
点線でその走査範囲を示すようにハース9内及び鋳型1
1内を照射し加熱しているため、ハース内の溶解整形室
側に導入された溶解材料12gは凝固しない。
Further, at the same time as the electron beam FBI is generated, an electron beam EB2 is generated from the electron beam generating means 15 on the melting and shaping chamber 4 side.
Inside hearth 9 and mold 1, the scanning range is indicated by the dotted line.
Since the inside of the hearth is irradiated and heated, the melted material 12g introduced into the melting and shaping chamber side of the hearth does not solidify.

そして、溶解された材料12aがハース9の湯口部分ま
で達すると、湯口より落下して鋳型11内に収容される
。これと同時、材料13の先端を鋳型11直上に一定量
ずつ移動させ、電子ビームEB2に衝突させて溶解させ
、符号13aで示すように前記材料12gと共に鋳型1
1内に落下させる。鋳型内に落下した材料12a、13
aは水冷バイブにより冷却されて徐々に固まるため、鋳
型の底部を下方にゆっくりと引き下げることにより合金
のインゴットが形成される。尚、溶解整形室4の圧力を
上昇させる際、流量調整弁7だけを制御するのではなく
、この弁と排気量可変バルブ6とを同時に制御しても良
い。
When the melted material 12a reaches the sprue of the hearth 9, it falls from the sprue and is accommodated in the mold 11. At the same time, the tip of the material 13 is moved by a certain amount directly above the mold 11, and is made to collide with the electron beam EB2 and melt, and as shown by reference numeral 13a, the tip of the material 13 is moved into the mold 11 along with the material 12g.
Let it fall within 1. Materials 12a and 13 that have fallen into the mold
Since a is cooled by a water-cooled vibrator and gradually hardens, an alloy ingot is formed by slowly pulling down the bottom of the mold. Note that when increasing the pressure in the melting and shaping chamber 4, instead of controlling only the flow rate regulating valve 7, this valve and the variable displacement valve 6 may be controlled simultaneously.

このようになせば、合金材料を高真空内で溶解できると
共に、その溶解中に蒸発した添加物材料を圧力の高い雰
囲気中で添加することができるため、添加物の溶解時に
添加物が蒸発するのを防止できる。その結果、混合比を
変化させることなく合金物質の不純物を除去することが
できる。
By doing this, the alloy material can be melted in a high vacuum, and the additive material that evaporated during the melting can be added in a high pressure atmosphere, so that the additive material evaporates when the additive is melted. can be prevented. As a result, impurities in the alloy material can be removed without changing the mixing ratio.

尚、前述の説明は本発明の一例であり、実施にあたって
は幾多の変形が考えられる。例えば、上記実施例では合
金材料を直接高真空に保たれた母材溶解室で溶解させた
が、これに限定されることなく、高真空の母材溶解室で
は合金物質を構成する一方の蒸気圧の低い物質だけを溶
解し、他方の蒸気圧の高い物質は圧力の高い溶解整形室
4で溶解させるようにしても良い。このようになせば、
高純度でしかも任意の混合比の合金物質を形成すること
ができる。
It should be noted that the above description is an example of the present invention, and many modifications can be made in implementing the present invention. For example, in the above embodiment, the alloy material was directly melted in the base material melting chamber maintained at a high vacuum, but the present invention is not limited to this. Alternatively, only the substance with a low pressure may be melted, and the other substance with a high vapor pressure may be melted in the melting and shaping chamber 4 having a high pressure. If you do it like this,
Alloy materials of high purity and arbitrary mixing ratios can be formed.

また、上記実施例では母材溶解室と溶解整形室とは1つ
の溶解室を仕切板によって分離することによって形成し
たが、各室を別々に形成して両者を隣接させるように構
成しても良い。
Further, in the above embodiment, the base material melting chamber and the melting and shaping chamber are formed by separating one melting chamber with a partition plate, but it is also possible to form each chamber separately and arrange the two adjacently. good.

さらに、上記実施例では母材溶解室及び溶解整形室での
各材料の溶解にあたり、電子ビームを使用したが、これ
に限定されることなく、他のレーザ光や高周波誘導加熱
あるいは抵抗加熱などの既知の加熱手段を使用しても良
い。このとき、高周波誘導加熱や抵抗加熱を使用した場
合にはハースや坩堝上部に収容された溶解材料が凝固し
ないように加熱する必要がある。
Furthermore, in the above embodiments, an electron beam was used to melt each material in the base material melting chamber and the melting and shaping chamber. However, other methods such as laser beams, high frequency induction heating, resistance heating, etc. Known heating means may be used. At this time, when high frequency induction heating or resistance heating is used, it is necessary to heat the melted material contained in the hearth or the upper part of the crucible so that it does not solidify.

[効果] 以上詳述したように本発明によれば、不純物除去の効率
を低下させることなく任意の混合比の合金材料を得るこ
とのできる真空溶解装置を提供することができる。
[Effects] As detailed above, according to the present invention, it is possible to provide a vacuum melting apparatus capable of obtaining an alloy material with an arbitrary mixing ratio without reducing the efficiency of removing impurities.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明に係る真空溶解装置の一例の概略構成
を示す断面斜視図である。 1:溶解室     2:仕切板 3:母材溶解室   4:溶解整形室 5a、5b:排気管 6:排気量制御バルブ 7:流量可変弁   8:導入管 9:銅製ハース  10:湯口 11:坩堝     12,13:材料14.15:電
子線発生手段 16:インゴット
The accompanying drawing is a cross-sectional perspective view showing a schematic configuration of an example of a vacuum melting apparatus according to the present invention. 1: Melting chamber 2: Partition plate 3: Base material melting chamber 4: Melting shaping chamber 5a, 5b: Exhaust pipe 6: Exhaust volume control valve 7: Variable flow rate valve 8: Inlet pipe 9: Copper hearth 10: Sprue 11: Crucible 12, 13: Material 14.15: Electron beam generating means 16: Ingot

Claims (1)

【特許請求の範囲】[Claims] 真空に保たれた溶解室内を仕切板により母材溶解室と溶
解整形室とに分離すると共に、母材溶解室内の圧力を溶
解整形室よりも低くし、前記母材溶解室内で蒸気圧の低
い材料を溶解するための手段を設け、前記溶解成型室内
で蒸気圧の高い材料を溶解するための手段を設け、前記
母材溶解室及び溶解成型室内で夫々溶解された材料を前
記溶解整形室内で一緒に混ぜ合わせるために母材溶解室
で溶解された材料を溶解成型室に導くための手段を設け
たことを特徴とする真空溶解装置。
The melting chamber kept in vacuum is separated into a base material melting chamber and a melting and shaping chamber by a partition plate, and the pressure in the base material melting chamber is lower than that in the melting and shaping chamber, so that the vapor pressure in the base material melting chamber is low. A means for melting a material is provided, a means for melting a material having a high vapor pressure in the melting and shaping chamber, and a means for melting the material melted in the base material melting chamber and the melting and shaping chamber, respectively, is provided in the melting and shaping chamber. A vacuum melting apparatus characterized in that a means is provided for guiding materials melted in a base material melting chamber to a melting and molding chamber for mixing together.
JP32994189A 1989-12-20 1989-12-20 Vacuum dissolving apparatus Pending JPH03191290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32994189A JPH03191290A (en) 1989-12-20 1989-12-20 Vacuum dissolving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32994189A JPH03191290A (en) 1989-12-20 1989-12-20 Vacuum dissolving apparatus

Publications (1)

Publication Number Publication Date
JPH03191290A true JPH03191290A (en) 1991-08-21

Family

ID=18226982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32994189A Pending JPH03191290A (en) 1989-12-20 1989-12-20 Vacuum dissolving apparatus

Country Status (1)

Country Link
JP (1) JPH03191290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532856A (en) * 1999-07-15 2003-11-05 エイティーアイ・プロパティーズ・インコーポレーテッド Electron beam shielding device and electron beam shielding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532856A (en) * 1999-07-15 2003-11-05 エイティーアイ・プロパティーズ・インコーポレーテッド Electron beam shielding device and electron beam shielding method

Similar Documents

Publication Publication Date Title
US3342250A (en) Method of and apparatus for vacuum melting and teeming steel and steellike alloys
US6144690A (en) Melting method using cold crucible induction melting apparatus
US20090317282A1 (en) Method for manufacturing porous body
JP3848816B2 (en) High-purity metal purification method and apparatus
JP5513389B2 (en) Silicon purification method
US3250842A (en) Electron beam zone refining
US3237254A (en) Vacuum casting
JPH03191290A (en) Vacuum dissolving apparatus
RU2346221C1 (en) Method of vacuum-plasma melting of metals and alloys in skull furnace and facility for its implementation
KR102528691B1 (en) Manufacturing method of high-purity fe-ni alloy and high-purity fe-ni alloy manufactured thereby
JPH0778263B2 (en) Medium pressure electron beam furnace
KR100659285B1 (en) Plasma arc melting method and method of fabricating small-diameter rod of high melting point active metal using the same
RU2381990C1 (en) Method of vacuum cleaning of silicon
KR102531449B1 (en) The fabricating method of titanium ingot
JP4209964B2 (en) Method for melting and casting metal vanadium and / or metal vanadium alloy
JPH04218626A (en) Production of high purity ingot of refractory material
US5974075A (en) Method of Magnetically-controllable, electroslag melting of titanium and titanium-based alloys and apparatus for carrying out same
JPS63218506A (en) How to purify split silicon under plasma
CN116607028B (en) Smelting method of refractory high-entropy alloy
US7815882B2 (en) Method and apparatus for refining boron-containing silicon using an electron beam
Munitz et al. Solidification of supercooled Fe-Ni alloys
US3511641A (en) Method of heating up and initiating metallurgical reactions in the pouring jet when degasifying the latter in a vacuum
JP3149556B2 (en) Method and apparatus for producing melting stock for precision casting
JPH01242729A (en) Electron beam melting method for refractory high-melting-temperature metal material
KR20230081326A (en) The fabricating method of molybdenum ingot