JPS61106731A - Production of ingot of high melting active metallic alloy - Google Patents

Production of ingot of high melting active metallic alloy

Info

Publication number
JPS61106731A
JPS61106731A JP22668084A JP22668084A JPS61106731A JP S61106731 A JPS61106731 A JP S61106731A JP 22668084 A JP22668084 A JP 22668084A JP 22668084 A JP22668084 A JP 22668084A JP S61106731 A JPS61106731 A JP S61106731A
Authority
JP
Japan
Prior art keywords
cathode
electron beam
ingot
crucible
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22668084A
Other languages
Japanese (ja)
Inventor
Chikara Hayashi
林 主税
Michio Nagase
長瀬 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Original Assignee
SHINKU YAKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK filed Critical SHINKU YAKIN KK
Priority to JP22668084A priority Critical patent/JPS61106731A/en
Publication of JPS61106731A publication Critical patent/JPS61106731A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce an ingot of a titled alloy having uniform and small crystal grains at a low cost by mixing and molding plural kinds of powder metals consisting essentially of a high melting active metal and melting the same in a plasma electron beam using a hollow hot-cathode thereby producing the alloy. CONSTITUTION:The hollow hot-cathode 2 made of tantalum is suspended in a melting chamber 1 and a water cooled copper crucible 3 is disposed in the position where said crucible faces the cathode. A focusing coil 4 is provided to enclose a plasma electron beam passage extending to the cathode 2. A raw material supply mechanism 6 is provided on the outside between the cathode 2 and the crucible 3 and the molding 5 mixed with plural kinds of powder and sponge-like metals consisting essentially of the high melting metal (Ti, Zr, Nb, Ta, etc.) is supplied from a horizontal direction to the mechanism. The molding 5 is melted in this state by the plasma electron beam under 1X10<-2>-1X10<-4>Torr working pressure and an ingot 7 is produced while the crucible 3 is pulled down by a pulling down mechanism 8.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、チタン、ジルコニウム、ニオブ、タンタル、
モリブデン、タングステン等の高融点活性金属を基体と
する二種またはそれ以上から成る合金を溶製する方法に
門するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to titanium, zirconium, niobium, tantalum,
It is a method for melting an alloy consisting of two or more kinds of active metals with a high melting point such as molybdenum and tungsten as a base.

従来の技術 上述の工うな通常元素周期律表の■b、 yh、ν1市
に属する二拙以上の金属から成る合金tmmする方法と
しては従来、アーク溶解法や電子ビーム#解決が一般に
知られている。アーク溶解法には、複数種の合金成分の
棒状”材または板状材を所望の組成比となるように束ね
て棒状または板状に成形した消耗電極を用いて真至雰囲
気または不活性ガス雰囲気中でアーク溶解により造塊す
る方法や、複数種の合金成分の粉末またはスポンジを所
望の組成比となるように混合し圧縮成形し消耗電極とし
て上記方法と同様にして造塊する方法がある。このよう
な消耗電極の公知例としては実公昭33−3!04号公
報および特公昭弘A−/74LIJ号公報を参照するこ
とができる。
Conventional Techniques Conventionally, the arc melting method and the electron beam method are generally known as methods for producing alloys consisting of two or more metals belonging to the groups ■b, yh, and ν1 of the periodic table of the elements. There is. The arc melting method uses a consumable electrode made by bundling rod-shaped or plate-shaped materials made of multiple alloy components into a desired composition ratio and forming them into a rod or plate shape in a pure atmosphere or an inert gas atmosphere. There is a method of forming an agglomerate by arc melting in a medium, or a method of mixing powders or sponges of multiple types of alloy components to a desired composition ratio, compression molding, and forming a consumable electrode in the same manner as the above method. As known examples of such consumable electrodes, reference may be made to Utility Model Publication No. 33-3!04 and Japanese Patent Publication Akihiro A-/74LIJ.

また電子ビーム溶解法は、複数種の合金成分の棒状材や
板状材を所望の組成比となるように束ねて棒状または板
状に成形した溶解金属或い扛複数種の合金成分の粉末や
スポンジを所望の組成比となるように混合した成形原料
または流動性原料を真空雰囲気で電子ビームで照射溶解
して造塊する方法である。
In addition, the electron beam melting method can produce molten metal, which is made by bundling rod-shaped materials or plate-shaped materials made of multiple types of alloy components to a desired composition ratio and forming them into a rod or plate shape, or powder made of multiple types of alloy components. In this method, a molding raw material or a fluid raw material mixed with sponge in a desired composition ratio is irradiated and melted with an electron beam in a vacuum atmosphere to form an agglomerate.

発明が解決しようとする問題点 ところで、上述のような従来の消耗電極式アーク溶解法
では、金属は水冷された銅製のルツ〆内で溶解され、溶
融した金属は急速にしかも層状に順次上方へと凝固が行
われる。従ってこのようにして造塊された合金は1組成
が不均一で偏析を生じ易く、′また場合によっては極め
て高融点の合金成分が未溶融の状態で残存することにな
る。
Problems to be Solved by the Invention By the way, in the conventional consumable electrode type arc melting method as described above, metal is melted in a water-cooled copper furnace, and the molten metal rapidly and sequentially moves upward in layers. and coagulation is performed. Therefore, the alloy ingotted in this way has a non-uniform composition and is likely to cause segregation, and in some cases, alloy components with extremely high melting points may remain in an unmolten state.

飼えば、超伝導材料として一般的なNb−Ti合金金棒
状や板状金属音束ねた原料音用いて消耗電極式アーク溶
解法で造塊する場合には組成の均一化を計るltめ、一
度溶融造塊した造塊物音再度鍛造等によシ消耗電極とし
て成形し、アーク溶解を繰返す必要がある。そのため工
程が複雑となるだけでなく、アーク溶解を繰返すため消
耗電極の再成形時の切削等Vcエク造塊の歩留りが悪く
通常!0係以下である。また原材料を必ず棒状に成形さ
れた電極としなければならない。そのため複数種の成分
の棒状や板状原料ヶ束ねた消耗電極を用いる)1   
方法においては、それらの棒状や板状原料を均一′;1 に組み合せて成形体とするのに手間がかかるという欠点
がある。一方、複数種の合金成分の粉末やスポンジ材料
を所望の組成比に混合して成形し友電極を用いる場合に
は電゛極の成形は容易であ#)%そして造塊された合金
の組成も均一となる。しかし粉末状原料はその性状から
酸素、窒素或いは水分全長く含んでお9.またアーク溶
解法は一般にルツざ内の圧力は7〜100Torrとな
るため脱ガスされない。七の友め造塊されたインゴット
中にも上記のガス成分が多量に残存し、以後の加工性が
悪くなる。例えばNb−Ti合金の超伝導材料は0.0
Jtxxφ程度の極細線として使用されるのが普通であ
シ、最終の超伝導特性は素材インゴットから途中に焼鈍
も加えないで加工した最終線の断面積減少率(すなわち
冷間加工率)が大きいほど艮いことが知られている。と
ころが上記の方法で造塊したインゴットは圧延加工途中
での割れや伸線加工途中での断線ヲ生じ易い。
When used as a superconducting material to make agglomerates using the consumable electrode type arc melting method using Nb-Ti alloy rod-shaped or plate-shaped raw material bundles, it is necessary to uniformize the composition once. It is necessary to form the melted agglomerated agglomerate into a consumable electrode by forging again, and repeat arc melting. This not only complicates the process, but also reduces the yield of Vc EX ingots due to repeated arc melting and cutting when remolding consumable electrodes. It is below 0. In addition, the raw material must always be an electrode shaped into a rod. Therefore, a consumable electrode made of rod-shaped or plate-shaped raw materials of multiple types of ingredients is used)
This method has the disadvantage that it takes time and effort to uniformly combine these rod-shaped or plate-shaped raw materials into a molded body. On the other hand, when powders or sponge materials of multiple alloy components are mixed in a desired composition ratio and molded and a friend electrode is used, it is easy to mold the electrode. is also uniform. However, powdered raw materials contain oxygen, nitrogen, or moisture due to their nature.9. Further, in the arc melting method, the pressure inside the melter is generally 7 to 100 Torr, so no degassing occurs. A large amount of the above-mentioned gas components remains in the ingot produced by Shichi no Tomome, which impairs subsequent workability. For example, the superconducting material of Nb-Ti alloy is 0.0
It is usually used as an ultra-fine wire of approximately Jtxxφ, and the final superconducting property is determined by the large cross-sectional area reduction rate (i.e. cold working rate) of the final wire processed from the raw material ingot without any intermediate annealing. It is known that it is very arrogant. However, the ingot formed by the above method is prone to cracking during rolling and wire breakage during wire drawing.

このように消耗電極式アーク浴接法では棒状に成形した
原料を消耗電極として使用する必要があ  1シ、溶解
速度が一定で任意に調節することができず、また予じめ
成分元素を消耗it他極中均一に配合しなければならず
、しかも均一性を得るためには二重溶解や三1溶解を行
なう必要があると共にその結果歩留シが悪くなり、また
スポンジや粉末状の原料を成形したものを消耗電極とし
て用いた場合に造塊物中ICおけるガス成分の残存も問
題となる。
In this way, in the consumable electrode type arc bath welding method, it is necessary to use a rod-shaped raw material as a consumable electrode, the dissolution rate is constant and cannot be adjusted arbitrarily, and the component elements are consumed in advance. It is necessary to mix the ingredients uniformly throughout the substrate, and to obtain uniformity, it is necessary to perform double melting or three-way melting, which results in poor yields, and it is difficult to mix sponge or powdered raw materials. When a molded product is used as a consumable electrode, residual gas components in the IC in the agglomerate also pose a problem.

また電子ビームf&解決は/ X 10−’Torr以
下の真空中で電力Vj度の高い電子ビームを照射して溶
解するため溶湯が過熱される。このため蒸気圧の高い成
分の蒸発減少が著しく、造塊物の合金組成が不均一とな
り易い。例えばNb−Tiの場合においてもTiの蒸気
圧がNMC比べて著しく高いためTiの蒸発減少が著し
く均一な合金成分の造塊物を溶製することは憾めて困難
である。さらに電子ビーム伺屏法で1l−1l:茜電圧
小電流であるため、電磁攪拌作用が生ぜず、合金が凝固
する除に均一@成のものが得ら1しにくい。
Further, in the electron beam f& solution, the molten metal is overheated because it is melted by irradiating an electron beam with a high power Vj in a vacuum of /X 10-'Torr or less. Therefore, the evaporation of components with high vapor pressure is significantly reduced, and the alloy composition of the agglomerate tends to be non-uniform. For example, even in the case of Nb-Ti, since the vapor pressure of Ti is significantly higher than that of NMC, it is extremely difficult to produce an agglomerate with uniform alloy composition in which the evaporation reduction of Ti is extremely uniform. Furthermore, in the electron beam scanning method, since the voltage is small and the current is small, no electromagnetic stirring effect occurs, and it is difficult to obtain a uniform composition even though the alloy solidifies.

従って電子ビーム浴屓法では、成分元素の蒸気圧が商い
場合には、成分画歪が困難であり電磁攪拌作用がないの
で、合戴岨放が不均一になシ易い点や′!&M速度の調
節性の点吟で問題である。
Therefore, in the electron beam bath method, when the vapor pressures of the component elements are low, it is difficult to distort the component image, and there is no electromagnetic stirring effect, so the agglomeration tends to be non-uniform. &M There is a problem with adjusting the speed.

そこで、本発明は、上述の従来の方法の捕々の問題点を
考慮して、マクロ的に均一組成を得やすい粉末状やスポ
ンジ原料の混合体を用い、しかも十分に脱ガスできて造
塊物中にガスを残存さぜなl/?工うに作動圧力を広い
範囲に設定でき%また溶解速度全任意に調整でき、アー
ク齢解法と同様に溶湯の電磁攪拌作用が得られ、さらに
溶湯池の深さを・浅くして結晶粒径の小さくて均一組成
の高融点活性金属合金を溶製できる方法を目的とする。
Therefore, in consideration of the problems of the conventional methods described above, the present invention uses a mixture of powdered or sponge raw materials that can easily obtain a macroscopically uniform composition, and can be sufficiently degassed to form agglomerates. Does gas remain in things? In addition, the operating pressure can be set over a wide range, the melting rate and melting rate can be adjusted to any desired value, and the electromagnetic stirring effect of the molten metal can be obtained in the same way as the arc age method. The purpose of this invention is to provide a method for producing small, uniform composition, high melting point active metal alloys.

問題点を解決するための手段 上記の目的を達成するために1本発明によれば、中空熱
陰極を用い九プラズマ電子ビーム全加熱手段として、高
融点活性金属を基体とする複数種の粉末状やスポンジ状
金属を混合した成形または流動性原料を溶解し、所望の
合金1に溶製することを特徴とする尚融点活性金属合金
の溶製法が提供される。
Means for Solving the Problems In order to achieve the above objects, according to the present invention, a hollow hot cathode is used as a plasma electron beam total heating means, and a plurality of types of powders having high melting point active metals as a base are used. A method for producing a melting point active metal alloy is provided, which is characterized by melting a molded or fluid raw material mixed with a spongy metal to produce a desired alloy 1.

作    用 このように本発明による方法においては、中空熱陰極を
用いたプラズマ電子ビームを加熱源として用いるため、
作動圧力’ii−/ X 104〜/XIO″TOrr
と幅広い範囲にでき、七tl[より原熱作用が安定して
おり、また嬉四気圧力に、E+)金属蒸気の蒸発は抑制
さnるが、ガス成分の放出には十分低い真空度であり、
従って粉末状原料でも十分・に脱ガスでき造塊中にガス
に残存しない。
Function As described above, in the method according to the present invention, since a plasma electron beam using a hollow hot cathode is used as a heating source,
Working pressure 'ii-/X 104~/XIO'' TOrr
It can be applied over a wide range of 7 tl [more stable primary heat action, and at a lower pressure of 7 tl (E+), the evaporation of metal vapor is suppressed, but the degree of vacuum is low enough to release gas components. can be,
Therefore, even powdered raw materials can be sufficiently degassed and will not remain in the gas during agglomeration.

また低電圧大電流゛電子ビームであるので、溶解速度を
任意に調整することができ、また自己電流に=る給湯の
電磁況拌作用が得られる。さらに浴湯の深さは伐〈でき
、せ金が凝固する屍に均一組成のものが得らnる。
Furthermore, since it is a low voltage, high current (electron beam), the dissolution rate can be adjusted as desired, and an electromagnetic stirring action for hot water supply based on the self-current can be obtained. Furthermore, the depth of the bath can be reduced, and a uniform composition of the corpse can be obtained when the slag solidifies.

本発明において用いらnる原料の形態は基体となる高融
点活性金桐金含む複数種の粉末状やスIンノ状金属の混
合体(成形し友ものでも未成形の流動性のものでもよい
)であり、七の供給は従来の電子ビーム溶解法と同様に
して行なうことかでj・  き、すなわち例えば、水冷
銅ルッ〆に対して原料1.1 を横方向ニジ供給して上方からプラズマ電子ビームを照
射したり、また原料が成形体の場合にはルツボの上方か
らつり下げてプラズマ電子ビームを側面よシ照射するよ
うにしてもよく、さらに未成形の流動性原料ではルツボ
の上方よりルッ?内に落下させるようにしてもよい。な
お、いずれの方式でも、中空陰極プラズマ電子銃を複数
基用いてもよい。
The raw material used in the present invention is in the form of a mixture of multiple types of powdered or cylindrical metals (including a high melting point active metal as a base) (it may be a molded material or an unformed fluid material). ), and the supply of step 7 can be carried out in the same manner as in the conventional electron beam melting method, i.e., for example, raw material 1.1 is laterally fed into a water-cooled copper lubrication tube and plasma is applied from above. If the raw material is a molded material, it may be suspended from above the crucible and the plasma electron beam may be irradiated from the side.Furthermore, if the raw material is a molded material, it may be irradiated from the top of the crucible with the plasma electron beam. Ruh? It may also be made to fall inside. Note that in either method, a plurality of hollow cathode plasma electron guns may be used.

このようにして溶融された合金はルツボから順次引き下
げらnるが、その際回転も行なうと′PjJJインゴッ
トの外周面を滑らかに仕上げることができる。
The alloy melted in this manner is sequentially lowered from the crucible, and by rotating the alloy at this time, the outer circumferential surface of the PjJJ ingot can be finished smoothly.

以下、添附図面を参照して本発明の方法?実施している
ta製i&装の一例について説明する。
The following describes the method of the present invention with reference to the accompanying drawings. An example of the TA-made i&so currently in use will be explained.

図示装置では粉末成形原料を用いるようにされており、
/は縦方向にのびる8P!1チヤンバーでとの漬解チャ
ンバー/内にはその上方からタンメル製の中空熱陰極コ
が垂下されてお夕、またこの中空熱陰極コに相対し次位
置には水冷銅ルツボ3が  ・配置され、この水冷銅ル
ツde3から中空lA陰極λへのびるプラズマ電子ビー
ムの通路を囲んで糸束コイル弘が配置されている。中空
熱陰極コと水冷銅ルツボ3との間において溶解チャンバ
ーlの外側には粉末成形原料j′fr:横方向から供給
する原料供給機r47が設けられている。、また溶解チ
ャンバーlの下側には水冷銅ルツボ3から造塊インボッ
)7に引下げる引下げ機構tが設けられている。
The illustrated device uses powder forming raw materials,
/ is 8 pages extending vertically! A hollow hot cathode made of Tammel is suspended from above inside the soaking chamber in one chamber, and a water-cooled copper crucible 3 is placed opposite to this hollow hot cathode. A yarn bundle coil is arranged surrounding the path of the plasma electron beam extending from the water-cooled copper nut de3 to the hollow lA cathode λ. Between the hollow hot cathode and the water-cooled copper crucible 3, a raw material feeder r47 for feeding powder forming raw material j'fr from the lateral direction is provided outside the melting chamber l. Further, on the lower side of the melting chamber 1, there is provided a pull-down mechanism t for pulling down from the water-cooled copper crucible 3 to the ingot ingot 7.

以上説明してきた工うに、本発明に工れば〃n熱手段と
して中空@陰極を用いたプラズマ電子ビームを用いてい
るので、作業圧力f/X10−”〜l×10”−’To
rrと幅広く取れ、ガス放出に十分な低い真空度にでき
、従ってマクロ的にみて均−組gtし易い粉末状やスポ
ンヅ状の原料tf用して造塊インゴット中にガスを残存
させずに/回の溶解で合金組成が均一で結晶粒径の小さ
くてしかも不純吻の少ないインゴットを造塊することが
できる。
As explained above, the present invention uses a plasma electron beam using a hollow cathode as the heating means, so the working pressure is f/X10-"~lx10"-'To
It is possible to obtain a wide range of rr, to achieve a sufficiently low degree of vacuum for gas release, and to use powdered or spongy raw materials tf, which are easy to assemble uniformly from a macroscopic point of view, without leaving any gas in the agglomerated ingot. It is possible to form an ingot with a uniform alloy composition, a small crystal grain size, and few impurities by melting twice.

また消耗嵐極弐アーク溶解法の工うに二車俗解や三重溶
解を行なう必要がないので造塊コス)k低減できるたけ
でなく歩留9r非常に良くすることができる。さらに本
発明による方法でd製したインゴットの金属組織は、そ
の結晶粒がA8TM−No、M−1程度と微a′cあ夛
、その後の圧延や伸線加工は断面減少率り?、タタタ壬
まで可能であり、従って本発明の方法によれば極めて塑
性加工性の良い合金金得ることができる。
In addition, since there is no need to carry out two-wheel melting or triple melting in the consumable storm arc melting method, not only can the ingot-forming cost be reduced, but the yield can also be greatly improved. Furthermore, the metal structure of the ingot made by the method according to the present invention shows that the crystal grains are about A8TM-No, M-1, and have slight a'c a'c grains. Therefore, according to the method of the present invention, an alloy with extremely good plastic workability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の方法を実施している装置の一例を示す概
略図である。
The drawing is a schematic illustration of an example of an apparatus implementing the method of the invention.

Claims (1)

【特許請求の範囲】[Claims] 中空熱陰極を用いたプラズマ電子ビームを加熱手段とし
て高融点活性金属を基体とする複数種の粉末状やスポン
ジ状金属を混合した成形または流動性原料を溶解し、所
望の合金を溶製することを特徴とする高融点活性金属合
金の溶製法。
Forming a mixture of multiple types of powder or sponge metals based on a high melting point active metal using a plasma electron beam using a hollow hot cathode as a heating means, or melting fluid raw materials to produce a desired alloy. A method for producing high melting point active metal alloys.
JP22668084A 1984-10-30 1984-10-30 Production of ingot of high melting active metallic alloy Pending JPS61106731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22668084A JPS61106731A (en) 1984-10-30 1984-10-30 Production of ingot of high melting active metallic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22668084A JPS61106731A (en) 1984-10-30 1984-10-30 Production of ingot of high melting active metallic alloy

Publications (1)

Publication Number Publication Date
JPS61106731A true JPS61106731A (en) 1986-05-24

Family

ID=16848967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22668084A Pending JPS61106731A (en) 1984-10-30 1984-10-30 Production of ingot of high melting active metallic alloy

Country Status (1)

Country Link
JP (1) JPS61106731A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280335A (en) * 1986-05-30 1987-12-05 Toshiba Corp High-purity titanium material and its production
JPS6473028A (en) * 1987-09-16 1989-03-17 Tosoh Corp Recovering method for high purity tantalum from scrap tantalum
JPH01212726A (en) * 1987-12-18 1989-08-25 Westinghouse Electric Corp <We> Production of zirconium used in linear of nuclear fuel element
EP0355766A2 (en) * 1988-08-26 1990-02-28 Hitachi Maxell Ltd. Vacuum deposition apparatus and process for preparing magnetic recording medium
CN109957678A (en) * 2017-12-25 2019-07-02 西部超导材料科技股份有限公司 A kind of preparation method of medical Ti-15Mo alloy cast ingot

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54442A (en) * 1977-06-02 1979-01-05 Mitsubishi Heavy Ind Ltd Garbage remover

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54442A (en) * 1977-06-02 1979-01-05 Mitsubishi Heavy Ind Ltd Garbage remover

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280335A (en) * 1986-05-30 1987-12-05 Toshiba Corp High-purity titanium material and its production
JPH0475301B2 (en) * 1986-05-30 1992-11-30
JPS6473028A (en) * 1987-09-16 1989-03-17 Tosoh Corp Recovering method for high purity tantalum from scrap tantalum
JPH01212726A (en) * 1987-12-18 1989-08-25 Westinghouse Electric Corp <We> Production of zirconium used in linear of nuclear fuel element
EP0355766A2 (en) * 1988-08-26 1990-02-28 Hitachi Maxell Ltd. Vacuum deposition apparatus and process for preparing magnetic recording medium
CN109957678A (en) * 2017-12-25 2019-07-02 西部超导材料科技股份有限公司 A kind of preparation method of medical Ti-15Mo alloy cast ingot

Similar Documents

Publication Publication Date Title
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
JP2005002356A (en) Process for production of titanium alloy
JPH03500188A (en) Method for producing oxide dispersion hardened sintered alloy
CN103502505A (en) Cu-Ga alloy sputtering target and method for producing same
US3565602A (en) Method of producing an alloy from high melting temperature reactive metals
CN108251693A (en) A kind of High-strength high-plasticity three-phase TiAl alloy and preparation method thereof
CN112916870A (en) Preparation method of medium-high entropy alloy material
CN104704139A (en) Cu-ga alloy sputtering target, and method for producing same
JPS61106731A (en) Production of ingot of high melting active metallic alloy
JPH11293454A (en) Target material for aluminum series sputtering and its production
US8778262B2 (en) Alloy having reduced inclusions
JPH0266129A (en) Method for regulating composition of titanium and titanium alloy in electron beam melting
JPH04272146A (en) Production of titanium and titanium alloy product
JP5605546B2 (en) α + β type titanium alloy, method for producing the same, and method for producing titanium alloy material
CN85109070A (en) The manufacture method of niobium alloy
CN108070800B (en) Ti-based amorphous alloy composite material and preparation method thereof
CN113512668A (en) Boron-containing shape memory alloy and preparation method thereof
US8414679B2 (en) Producing an alloy with a powder metallurgical pre-material
US3399084A (en) Method of making aluminum bronze articles
JP3632722B2 (en) Method for producing vanadium-containing master alloy for titanium alloy production
JPS6173849A (en) Superconductive cu alloy
CN116695030A (en) Large-size CuZr-based amorphous composite material and preparation method thereof
JPS6369928A (en) Production of alloy
JPH0551732A (en) Target for sputtering and production thereof
CN115948670A (en) AM decomposition type shape memory alloy and preparation method thereof