JP3632722B2 - Method for producing vanadium-containing master alloy for titanium alloy production - Google Patents

Method for producing vanadium-containing master alloy for titanium alloy production Download PDF

Info

Publication number
JP3632722B2
JP3632722B2 JP09019097A JP9019097A JP3632722B2 JP 3632722 B2 JP3632722 B2 JP 3632722B2 JP 09019097 A JP09019097 A JP 09019097A JP 9019097 A JP9019097 A JP 9019097A JP 3632722 B2 JP3632722 B2 JP 3632722B2
Authority
JP
Japan
Prior art keywords
alloy
vanadium
ingot
master alloy
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09019097A
Other languages
Japanese (ja)
Other versions
JPH10265866A (en
Inventor
昌明 小泉
伸男 深田
好弘 八太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP09019097A priority Critical patent/JP3632722B2/en
Publication of JPH10265866A publication Critical patent/JPH10265866A/en
Application granted granted Critical
Publication of JP3632722B2 publication Critical patent/JP3632722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、チタン合金を製造する際に使用する低酸素バナジウム含有母合金の製造法に関する。
【0002】
【従来の技術】
チタン合金インゴットを製造する際、合金成分は母合金で添加されることが多い。これは、それぞれの合金成分を母合金化することにより融点を下げ、溶解しやすくするためである。例えば、モリブデンは2610°Cの融点をもち、しかも密度が10.23g/cm3と大きいので、消耗電極式真空アーク溶解法で溶解する場合は、金属単体のまま添加しても充分に溶解されないこともある。これをアルミニウム(35)/モリブデン(65)やアルミニウム(50)/モリブデン(25)/バナジウム(25)の母合金にすると、融点がそれぞれ1850°C、1440°Cに下がるので、容易に溶解できるようになる。
一方、チタン合金は、特に航空機及び宇宙技術等多くの用途において、合金成分と純度について、極度の要求が課されており、特に酸素含有量については、機械的特性に著しい影響を与えることから、低含有量のものが要求されている。
従来、チタン合金を製造する際に使用するバナジウム含有母合金の脱酸素を含めた脱ガス処理としては、例えば、アルミニウム/バナジウム母合金の場合、真空誘導炉溶解法又は高周波溶解法等で行っており、処理後の酸素含有量が約0.1%のレベルにまで低減している。
【0003】
【発明が解決しようとする課題】
しかしながら、上記真空誘導炉溶解法では合金中のバナジウム含有比率を高めると、テルミット反応後のアルミニウム/バナジウム合金の融点が高くなるため、溶解が困難となる。たとえ、このような高い融点まで温度を上げることは可能であっても、炉の耐火物が損傷を受け、合金中に不純物が混入することとなり、実際は脱酸素処理ができないため、脱酸素処理をすることなく製品化せざるを得ない。また、真空誘導炉溶解法以外の精製法を用いたとしても、精製インゴットとして取り出す際、凝固による熱歪で割れが生じ、連続的に引き出すことができないという問題もあり、一方、従来の脱酸素処理後の酸素含有量では未だ十分に満足するものではない等の課題が残されていた。
【0004】
従って、本発明の目的は、チタン合金を製造する際に使用するバナジウム含有母合金において、従来の脱酸素処理後の酸素含有量に比べさらに低減された低酸素母合金を割れを生じることなく、インゴットとして連続的に取り出す方法を提供することである。
【0005】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意検討を行った結果、チタン合金を製造する際に使用するバナジウム合金を10- 〜10- Torrの高真空下、電子ビームを用いて溶解し、脱酸素すれば極めて低酸素の母合金を割れのない安定したインゴットとして得られることを見出し、本発明を完成するに至った。すなわち、本発明は、アルミニウム/バナジウム母合金を10- 〜10- Torrの真空下、電子ビームを用いて溶解し、精製インゴットを得、これを原料として10- 〜10- Torrの真空下、電子ビームを用いて溶解し、脱酸素する、チタン / アルミニウム / バナジウム合金の製造に用いるバナジウム含有量が75重量%以上のバナジウム含有母合金の製造方法を提供することにある。
【0006】
【発明の実施の形態】
本発明方法において、原料となるアルミニウム/バナジウム母合金(以下、Al−V母合金と略す)は主成分以外にわずかの不純物を母合金中に含むものである。また、該Al−V母合金の母合金組成としては、脱酸素処理後、すなわち、チタン合金製造用原料の状態で、アルミニウム:バナジウムが、0.5〜25:99.5〜75、特に好ましくは12〜17:88〜83、更に好ましくは15:85である。該Al−V母合金中、アルミニウムの比率が高すぎると後述するインゴットの連続引下げの際、凝固時の熱歪みで割れが生じ好ましくない。また、原料となるアルミニウム及びバナジウム含有合金は、公知のテルミット反応を利用して製造することにより得られるものである。
【0007】
本発明においては、上記バナジウム含有母合金を10-3〜10-6Torrの高真空下、電子ビームを用いて溶解させ、脱酸素処理する。該脱酸素処理の方法としては、例えば、公知の電子ビーム溶解法(EBR)及び超高真空電子ビーム浮遊帯域溶融法等が挙げられる。電子ビーム溶解法の具体例を次に示す。すなわち、図1に示すように、電子ビーム溶解法において使用されるEBR炉10は、原料供給部1、上部で溶融プール7を形成して脱ガスを行う一方、下部でインゴットを生成する水冷銅クルーシブル2、電子銃3及びインゴット引下げ治具4から形成される。該EBR炉10において、10-3〜10-6、好ましくは10-4〜10-5Torrの真空下で熱陰極(フィラメント)を加熱することにより発生した熱電子に高電圧を印加して加速し、これを原料供給部1より送り込まれる原料に衝突させることによって原料を溶解し、脱ガスするものである。原料の供給方法としては、特に制限されないが、アルミニウム製の筒の中に、フレーク状の原料を充填した電極5をフィーダー6により押し出し、除々に、かつ次から次へと供給する方法が、装置を簡素化でき、組成の調整も容易であることから好ましい。電子銃3は2基以上有することが好ましく、電子銃から発せられる電子ビームを溶融プールと電極先端に各々照射すればよい。このように、溶解プール7で脱ガスを行いつつ、炉の下方に位置するインゴットはインゴット引下げ治具4を連続的に引き下げることにより脱酸処理された精製インゴットを取り出すことができる。
【0008】
また、上記方法により得られた精製インゴットは、これを再び原料として、10-3〜10-6Torrの真空下、電子ビームを用いて溶解し、脱酸素処理することが、さらに、低酸素のバナジウム含有母合金が得られることから好ましい。精製インゴットは、チタン合金を製造する際、切削して切粉状にして用いることが操作性等の点から好ましい。
【0009】
本発明において、上記方法により精製されたバナジウム含有母合金は酸素含有量の低減化が図れる他、不純物としての鉄の含有量も低減できる。
【0010】
これら脱酸素化された母合金が使用されるチタン合金の例としては、Ti−6Al−4V、Ti−3Al−2.5V等が挙げられ。上記Ti−6Al−4V合金の製造例を示せば、例えば、スポンジチタン90重量%、上記脱酸素化処理されたAl−V母合金4重量%及びAlショット6重量%からなる原料を真空アーク溶解法により均一に溶融し、次いで冷却し、チタン合金インゴットとして取り出せばよい。また、必要であれば、得られたチタン合金インゴットを再び真空アーク溶解法により精製してもよい。このようにして得られたチタン合金インゴットは、酸素含有量が極めて低く、機械的強度等において優れた特性を示すものである。
【0011】
【発明の効果】
本発明の方法によれば、極めて低酸素のバナジウム含有母合金を得ることができると共に、脱酸素処理されたバナジウム含有母合金をインンゴットとして取り出す際、熱歪みによる割れを生じることなく、連続的に取り出すことができる。さらに、脱酸素された精製母合金(インゴット)は不純物としての鉄の低減も図れる。また、低酸素のバナジウム含有母合金を用いてチタン合金を製造すれば、機械的強度等の特性が一段と優れたものが得られる。
【0012】
【実施例】
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
実施例1
テルミット反応により得られた下記組成バナジウム含有合金を原料とし、下記に示す条件の公知の電子ビーム溶解法により1回目の脱酸素処理を行った。次に、得られた低酸素インゴットを再び同様の条件により精製した。ただし、図2に示すように、2回目の精製において、原料のインゴット8の供給はEBR炉10の上方より軸9を回転させながら徐々に下降させるようにし、電子ビームは、図2に示すような角度で照射した。酸素含有量はJIS H 1620に記載の方法に従った。結果を表1に示す。
【0013】
原料A:85V−15Al(粒径0.3〜2.5mm 、GFE社製、組成:V;83 .7重量%( 以下、重量%は省略する) 、Al;15.2、Fe;0.29 、O; 0.17、N;0.035 、Si;0.12
【0014】
(電子ビーム溶解法試験条件)
真空度;10-4〜10-5Torr
EBR炉;ライボルト・ヘラウス社製(図1に概略を示す)
クルーシブル内径;直径180mm
電子銃の数;2基
インゴット鋳造方式;引下げ式
【0015】
比較例1
電子ビーム法に代えて、真空誘導炉溶解法とする以外は実施例1と同様の方法に従った。真空誘導炉溶解法(VIM)の条件は下記に示し、結果は表1に示す。
(真空誘導炉溶解法試験方法)
真空度;10-2〜10-3Torr
VIM炉;ライボルト・ヘラウス社製
耐火物ライニング構造;内径500mm
【0016】
【表1】

Figure 0003632722
【0017】
表1より、実施例185V−15Alおい、著しい低酸素のバナジウム含有母合金を得ることができた。特に、脱酸素処理2回目では、極めて著しい酸素の低減効果を示した。
【0018】
参考例1 チタン合金の製造
実施例1及び比較例1で得られた脱酸素2回処理のAl−V合金の2種を各々用いて、Ti−15V−3Cr−3Al−3Sn合金を製造した。製造は、表に示す組成となるよう真空アーク溶解法により均一溶解し、次いでチタン合金インゴットを得ることにより行った。結果を表2に示す。
【0019】
【0020】
【表
Figure 0003632722
0021
【図面の簡単な説明】
【図1】本発明方法で使用する電子ビーム溶解炉の概略図である。
【図2】第2回目の脱酸素化処理における、原料の位置と電子ビームの照射角度を示す図である。
【符号の説明】
1 原料供給部
2 水冷銅クルーシブル
3 電子銃
4 インゴット引下げ治具
5 電極
6 フィーダー
7 溶解プール
8 第1回目で得られた精製インゴット
9 軸
10 EBR炉[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a low-oxygen vanadium-containing master alloy used when producing a titanium alloy.
[0002]
[Prior art]
When producing a titanium alloy ingot, the alloy component is often added as a master alloy. This is because each alloy component is made into a master alloy to lower the melting point and facilitate melting. For example, molybdenum has a melting point of 2610 ° C. and a high density of 10.23 g / cm 3 , so when it is melted by a consumable electrode type vacuum arc melting method, it is not sufficiently dissolved even if it is added as a metal alone. Sometimes. When this is made into a master alloy of aluminum (35) / molybdenum (65) or aluminum (50) / molybdenum (25) / vanadium (25), the melting points are lowered to 1850 ° C. and 1440 ° C., respectively, so that they can be easily dissolved. It becomes like this.
Titanium alloys, on the other hand, are extremely demanding on alloy composition and purity, especially in many applications such as aircraft and space technology, and especially oxygen content has a significant impact on mechanical properties, Low content is required.
Conventionally, as a degassing treatment including deoxygenation of a vanadium-containing master alloy used for manufacturing a titanium alloy, for example, in the case of an aluminum / vanadium master alloy, a vacuum induction furnace melting method or a high-frequency melting method is used. The oxygen content after treatment is reduced to a level of about 0.1%.
[0003]
[Problems to be solved by the invention]
However, in the vacuum induction furnace melting method, when the vanadium content ratio in the alloy is increased, the melting point of the aluminum / vanadium alloy after the thermite reaction becomes high, so that melting becomes difficult. Even if it is possible to raise the temperature to such a high melting point, the refractory of the furnace will be damaged and impurities will be mixed into the alloy. We have no choice but to commercialize it. In addition, even if a purification method other than the vacuum induction furnace melting method is used, there is a problem that cracking occurs due to thermal strain due to solidification when it is taken out as a purified ingot, and it cannot be pulled out continuously. Problems remain such that the oxygen content after treatment is not yet fully satisfactory.
[0004]
Therefore, the object of the present invention is to produce a vanadium-containing master alloy used for producing a titanium alloy, without causing cracks in the low-oxygen master alloy further reduced compared to the oxygen content after conventional deoxygenation treatment, It is to provide a method for continuously taking out as an ingot.
[0005]
[Means for Solving the Problems]
In such circumstances, the present inventors have conducted extensive studies and conducted results, vanadium master alloys for use in manufacturing the titanium alloy 10 - dissolving 3 high vacuum of Torr, using an electron beam, - 6-10 It has been found that if deoxygenated, a very low oxygen master alloy can be obtained as a stable ingot without cracks, and the present invention has been completed. That is, the present invention, an aluminum / vanadium master alloy 10 - 6 ~10 - 3 Torr vacuum are dissolved by using an electron beam, to obtain a purified ingot 10 so as raw material - 6 ~10 - 3 Torr under vacuum, and dissolved using an electron beam, you deoxygenation is to vanadium content to be used for the production of titanium / aluminum / vanadium alloy to provide a method for producing a 75% or more by weight of vanadium master alloy.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, the raw material aluminum / vanadium mother alloy (hereinafter abbreviated as Al-V mother alloy) contains a small amount of impurities in the mother alloy in addition to the main component. As the matrix alloy composition of the Al-V master alloy, after deoxidation, i.e., in the state of the titanium alloy material for manufacturing, A aluminum: vanadium, 0. It is 5-25: 99.5-75, Most preferably, it is 12-17: 88-83, More preferably, it is 15:85. If the ratio of aluminum in the Al-V master alloy is too high, cracking occurs due to thermal strain during solidification during continuous pulling of the ingot described later. Moreover, the aluminum and vanadium containing alloy used as a raw material are obtained by manufacturing using a well-known thermite reaction.
[0007]
In the present invention, the vanadium-containing master alloy is dissolved using an electron beam under a high vacuum of 10 −3 to 10 −6 Torr and deoxidized. Examples of the deoxygenation method include a known electron beam melting method (EBR) and an ultrahigh vacuum electron beam floating zone melting method. A specific example of the electron beam melting method is shown below. That is, as shown in FIG. 1, the EBR furnace 10 used in the electron beam melting method forms a molten pool 7 at the raw material supply unit 1 and performs degassing, while generating water-cooled copper at the lower part. The crucible 2, the electron gun 3 and the ingot pulling jig 4 are formed. In the EBR furnace 10, acceleration is performed by applying a high voltage to thermoelectrons generated by heating a hot cathode (filament) under a vacuum of 10 −3 to 10 −6 , preferably 10 −4 to 10 −5 Torr. The raw material is then collided with the raw material fed from the raw material supply unit 1 to dissolve and degas the raw material. The method of supplying the raw material is not particularly limited, but a method of extruding the electrode 5 filled with the flaky raw material into the aluminum tube by the feeder 6 and gradually supplying from one to the next is an apparatus. Can be simplified, and the composition can be easily adjusted. It is preferable to have two or more electron guns 3, and it is only necessary to irradiate the molten pool and the tip of the electrode with an electron beam emitted from the electron gun. As described above, the ingot positioned under the furnace while degassing in the melting pool 7 can take out the deoxidized purified ingot by continuously lowering the ingot lowering jig 4.
[0008]
Further, the purified ingot obtained by the above method can be dissolved again using an electron beam under a vacuum of 10 −3 to 10 −6 Torr and deoxygenated using this as a raw material. This is preferable because a vanadium-containing master alloy is obtained. When manufacturing a titanium alloy, it is preferable to cut and use a refined ingot from the viewpoint of operativity.
[0009]
In the present invention, the vanadium-containing master alloy refined by the above method can reduce the oxygen content and also reduce the iron content as an impurity.
[0010]
These examples of the titanium alloy deoxygenated master alloy is used, T i-6Al-4V, T i-3Al-2.5 V or the like Ru mentioned. An example of manufacturing the Ti-6Al-4V alloy is, for example, vacuum arc melting of a raw material comprising 90% by weight of sponge titanium, 4% by weight of the deoxygenated Al-V master alloy and 6% by weight of Al shot. It may be melted uniformly by the method, then cooled, and taken out as a titanium alloy ingot. If necessary, the obtained titanium alloy ingot may be purified again by a vacuum arc melting method. The titanium alloy ingot thus obtained has an extremely low oxygen content and exhibits excellent characteristics such as mechanical strength.
[0011]
【The invention's effect】
According to the method of the present invention, an extremely low oxygen vanadium-containing master alloy can be obtained, and when taking out the deoxygenated vanadium-containing master alloy as an ingot, it is continuously produced without causing cracking due to thermal strain. It can be taken out. Further, the purified master alloy (ingot) deoxygenated can reduce iron as an impurity. Further, when a titanium alloy is produced using a low oxygen vanadium-containing master alloy, it is possible to obtain a material having excellent characteristics such as mechanical strength.
[0012]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.
Example 1
A vanadium-containing alloy having the following composition obtained by the thermite reaction was used as a raw material, and a first deoxygenation treatment was performed by a known electron beam melting method under the following conditions. Next, the obtained low oxygen ingot was purified again under the same conditions. However, as shown in FIG. 2, in the second refining, the supply of the raw ingot 8 is gradually lowered while rotating the shaft 9 from above the EBR furnace 10, and the electron beam is as shown in FIG. Irradiated at various angles. The oxygen content was in accordance with the method described in JIS H 1620. The results are shown in Table 1.
[0013]
Raw material A: 85V-15Al (particle size: 0.3 to 2.5 mm, manufactured by GFE, composition: V; 83.7% by weight (hereinafter, weight percent is omitted), Al; 15.2, Fe; 0.29, O; 0.17, N ; 0.035, Si; 0.12 )
[0014]
(Electron beam melting test conditions)
Degree of vacuum: 10 −4 to 10 −5 Torr
EBR furnace; manufactured by Leibold Heraus (schematically shown in FIG. 1)
Crucible inner diameter; diameter 180mm
Number of electron guns; 2 ingot casting system; pull-down type
Comparative Example 1
Instead of the electron beam method, the same method as in Example 1 was followed except that a vacuum induction furnace melting method was used. The conditions of the vacuum induction furnace melting method (VIM) are shown below, and the results are shown in Table 1.
(Vacuum induction furnace melting method test method)
Degree of vacuum: 10 -2 to 10 -3 Torr
VIM furnace; refractory lining structure manufactured by Leiboldt Heraus; inner diameter 500 mm
[0016]
[Table 1]
Figure 0003632722
[0017]
From Table 1, Example 1 was able to put the 85V-15Al, obtaining significant hypoxia vanadium-containing master alloy. In particular, in the second deoxygenation treatment, an extremely remarkable oxygen reduction effect was shown.
[0018]
Using each of the two kinds of Al-V alloy obtained deoxygenated twice treated with Reference Example 1 of the titanium alloy produced in Example 1 and Comparative Example 1 to produce a T i-15V-3Cr-3Al -3Sn alloy . Manufacture was performed by uniformly dissolving by a vacuum arc melting method so as to have the composition shown in Table 2 , and then obtaining a titanium alloy ingot. The results are shown in Table 2.
[0019]
[0020]
[Table 2 ]
Figure 0003632722
[ 0021 ]
[Brief description of the drawings]
FIG. 1 is a schematic view of an electron beam melting furnace used in the method of the present invention.
FIG. 2 is a diagram showing a position of a raw material and an irradiation angle of an electron beam in the second deoxygenation process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw material supply part 2 Water-cooled copper crucible 3 Electron gun 4 Ingot pulling jig 5 Electrode 6 Feeder 7 Melting pool 8 Refined ingot 9 obtained in the first round Axis 10 EBR furnace

Claims (1)

アルミニウム/バナジウム母合金を10- 〜10- Torrの真空下、電子ビームを用いて溶解し、精製インゴットを得、これを原料として10- 〜10- Torrの真空下、電子ビームを用いて溶解し、脱酸素する、チタン / アルミニウム / バナジウム合金の製造に用いるバナジウム含有量が75重量%以上のバナジウム含有母合金の製造方法。Aluminum / vanadium master alloy 10 - 6 ~10 - 3 Torr vacuum of, lysed using an electron beam, to obtain a purified ingot 10 so as raw material - 6 ~10 - 3 Torr vacuum of the electron beam lysed with, deoxygenation method for producing a titanium / aluminum / vanadium alloy vanadium content of 75 wt% or more vanadium-containing mother alloy used in the manufacture of.
JP09019097A 1997-03-25 1997-03-25 Method for producing vanadium-containing master alloy for titanium alloy production Expired - Lifetime JP3632722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09019097A JP3632722B2 (en) 1997-03-25 1997-03-25 Method for producing vanadium-containing master alloy for titanium alloy production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09019097A JP3632722B2 (en) 1997-03-25 1997-03-25 Method for producing vanadium-containing master alloy for titanium alloy production

Publications (2)

Publication Number Publication Date
JPH10265866A JPH10265866A (en) 1998-10-06
JP3632722B2 true JP3632722B2 (en) 2005-03-23

Family

ID=13991574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09019097A Expired - Lifetime JP3632722B2 (en) 1997-03-25 1997-03-25 Method for producing vanadium-containing master alloy for titanium alloy production

Country Status (1)

Country Link
JP (1) JP3632722B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298873C (en) * 2003-12-15 2007-02-07 张忠士 A V-Al-Sn intermediate alloy and process for preparing same
JP5064974B2 (en) * 2007-11-02 2012-10-31 株式会社神戸製鋼所 Ingot manufacturing method for TiAl-based alloy
CN113025831A (en) * 2021-02-26 2021-06-25 西安西工大超晶科技发展有限责任公司 Treatment method for reducing oxygen content of titanium alloy ingot
CN114807646B (en) * 2022-05-10 2023-12-05 山西太钢不锈钢股份有限公司 Nickel-based alloy plate blank and preparation method thereof

Also Published As

Publication number Publication date
JPH10265866A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
US3005246A (en) Method of producing high-quality ingots of reactive metals
CN113322386B (en) Preparation method of large-size NbTi alloy ingot
CN112410592B (en) Preparation method of aluminum alloy welding material cast ingot
CN111455219A (en) Electron beam cold hearth smelting method for nickel-based alloy
JP3632722B2 (en) Method for producing vanadium-containing master alloy for titanium alloy production
JP5064974B2 (en) Ingot manufacturing method for TiAl-based alloy
CN108456819B (en) A kind of control method of hyperfine cutting wire steel inclusion plastification
JPH06287661A (en) Production of smelted material of refractory metal
CN113278812B (en) Vacuum consumable melting method for high-Mo-content Ti-Mo alloy homogeneous ingot
CN114289874A (en) Preparation method of high-strength weld joint
RU2680321C1 (en) Method of obtaining semi-finished product from alloy on basis of niobium
JP2010275630A (en) METHOD FOR MANUFACTURING alpha+beta TYPE TITANIUM ALLOY CONTAINING BORON HAVING HIGH FATIGUE STRENGTH, AND METHOD FOR MANUFACTURING TITANIUM ALLOY MATERIAL BEING USED FOR THE SAME
JP3125393B2 (en) Casting method of titanium-aluminum alloy casting
JP3125394B2 (en) Casting method of titanium-aluminum alloy casting
JPS623227B2 (en)
JP2009113061A (en) METHOD FOR PRODUCING INGOT OF TiAl-BASED ALLOY
RU2762460C1 (en) Method for producing special copper ingots
RU2349658C1 (en) Method of manufacturing tungsten of high purity
CN114959329B (en) Preparation method of high-purity Ti32Ta alloy ingot
CN115781100B (en) Magnesium alloy welding wire and preparation method and application thereof
RU2770807C1 (en) Method for producing blanks from low-alloy copper-based alloys
RU2349657C1 (en) Method of molybdenum of high purity manufacturing
RU2154683C1 (en) Method of production of ingots by vacuum arc autocrucible melting
JP2000204422A (en) Production of high purity titanium ingot

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term