JPH10265866A - Production of vanadium-containing base alloy for producing titanium alloy - Google Patents

Production of vanadium-containing base alloy for producing titanium alloy

Info

Publication number
JPH10265866A
JPH10265866A JP9019097A JP9019097A JPH10265866A JP H10265866 A JPH10265866 A JP H10265866A JP 9019097 A JP9019097 A JP 9019097A JP 9019097 A JP9019097 A JP 9019097A JP H10265866 A JPH10265866 A JP H10265866A
Authority
JP
Japan
Prior art keywords
vanadium
alloy
ingot
raw material
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9019097A
Other languages
Japanese (ja)
Other versions
JP3632722B2 (en
Inventor
Masaaki Koizumi
昌明 小泉
Nobuo Fukada
伸男 深田
Yoshihiro Hatsuta
好弘 八太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP09019097A priority Critical patent/JP3632722B2/en
Publication of JPH10265866A publication Critical patent/JPH10265866A/en
Application granted granted Critical
Publication of JP3632722B2 publication Critical patent/JP3632722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously draw out a low oxygen base alloy as an ingot without developing the crack by using an electronic beam to melt a vanadium-containing alloy in a specific vacuum degree and deoxidizing. SOLUTION: As the vanadium-containing alloy used as the raw material, an alloy composed of aluminum and vanadium, is suitable. Further, the vanadium content in the alloy is desirable to be >=75 wt.%. The vanadium-containing base alloy is melted under high vanadium of 10<-3> -10<-6> Torr by using the electronic beam and the deoxidizing treatment is executed. As the deoxidizing treatment, the well-known electronic beam melting method, etc., is mentioned. By this method, the oxygen content is reduced in the refined vanadium- containing base alloy and as the other result, iron content as impurity can be reduced. Then, at the time of drawing out as the ingot, this ingot can continuously be drawn out without developing the crack caused by heat strain.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チタン合金を製造
する際に使用する低酸素バナジウム含有母合金の製造法
に関する。
TECHNICAL FIELD The present invention relates to a method for producing a low oxygen vanadium-containing master alloy used for producing a titanium alloy.

【0002】[0002]

【従来の技術】チタン合金インゴットを製造する際、合
金成分は母合金で添加されることが多い。これは、それ
ぞれの合金成分を母合金化することにより融点を下げ、
溶解しやすくするためである。例えば、モリブデンは2
610°Cの融点をもち、しかも密度が10.23g/cm
3 と大きいので、消耗電極式真空アーク溶解法で溶解す
る場合は、金属単体のまま添加しても充分に溶解されな
いこともある。これをアルミニウム(35)/モリブデ
ン(65)やアルミニウム(50)/モリブデン(2
5)/バナジウム(25)の母合金にすると、融点がそ
れぞれ1850°C、1440°Cに下がるので、容易
に溶解できるようになる。一方、チタン合金は、特に航
空機及び宇宙技術等多くの用途において、合金成分と純
度について、極度の要求が課されており、特に酸素含有
量については、機械的特性に著しい影響を与えることか
ら、低含有量のものが要求されている。従来、チタン合
金を製造する際に使用するバナジウム含有母合金の脱酸
素を含めた脱ガス処理としては、例えば、アルミニウム
/バナジウム母合金の場合、真空誘導炉溶解法又は高周
波溶解法等で行っており、処理後の酸素含有量が約0.
1%のレベルにまで低減している。
2. Description of the Related Art When producing a titanium alloy ingot, alloy components are often added as a master alloy. This lowers the melting point by making each alloy component a master alloy,
This is for facilitating dissolution. For example, molybdenum is 2
It has a melting point of 610 ° C and a density of 10.23 g / cm
When the metal is melted by the consumable electrode type vacuum arc melting method, it may not be sufficiently melted even if it is added as a single metal. Aluminum (35) / molybdenum (65) or aluminum (50) / molybdenum (2
In the case of a 5) / vanadium (25) master alloy, the melting points are lowered to 1850 ° C. and 1440 ° C., respectively, so that it can be easily melted. On the other hand, in titanium alloys, especially in many applications such as aircraft and space technology, extreme requirements are imposed on alloy components and purity, and particularly on oxygen content, since it has a significant effect on mechanical properties, Low content is required. Conventionally, as a degassing process including deoxidation of a vanadium-containing master alloy used when manufacturing a titanium alloy, for example, in the case of an aluminum / vanadium master alloy, a vacuum induction furnace melting method or a high-frequency melting method is used. And the oxygen content after treatment is about 0.
It has been reduced to a level of 1%.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記真
空誘導炉溶解法では合金中のバナジウム含有比率を高め
ると、テルミット反応後のアルミニウム/バナジウム合
金の融点が高くなるため、溶解が困難となる。たとえ、
このような高い融点まで温度を上げることは可能であっ
ても、炉の耐火物が損傷を受け、合金中に不純物が混入
することとなり、実際は脱酸素処理ができないため、脱
酸素処理をすることなく製品化せざるを得ない。また、
真空誘導炉溶解法以外の精製法を用いたとしても、精製
インゴットとして取り出す際、凝固による熱歪で割れが
生じ、連続的に引き出すことができないという問題もあ
り、一方、従来の脱酸素処理後の酸素含有量では未だ十
分に満足するものではない等の課題が残されていた。
However, in the above-described vacuum induction furnace melting method, when the content ratio of vanadium in the alloy is increased, the melting point of the aluminum / vanadium alloy after the thermite reaction becomes high, so that melting becomes difficult. for example,
Even if it is possible to raise the temperature to such a high melting point, the refractory of the furnace will be damaged and impurities will be mixed in the alloy, and it is not possible to actually perform deoxidation. It has to be commercialized without it. Also,
Even if a refining method other than the vacuum induction furnace melting method is used, there is a problem in that when it is taken out as a refined ingot, cracks occur due to heat distortion due to solidification and it cannot be continuously withdrawn. However, there remains a problem that the oxygen content is not sufficiently satisfactory.

【0004】従って、本発明の目的は、チタン合金を製
造する際に使用するバナジウム含有母合金において、従
来の脱酸素処理後の酸素含有量に比べさらに低減された
低酸素母合金を割れを生じることなく、インゴットとし
て連続的に取り出す方法を提供することである。
Accordingly, an object of the present invention is to provide a vanadium-containing master alloy used in the production of a titanium alloy, in which a low-oxygen master alloy whose oxygen content is further reduced as compared with the oxygen content after the conventional deoxidation treatment is cracked. The present invention provides a method for continuously taking out an ingot without using it.

【0005】[0005]

【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討を行った結果、チタン合金を製造す
る際に使用するバナジウム含有合金を10-3〜10-6
orrの高真空下、電子ビームを用いて溶解し、脱酸素
すれば極めて低酸素の母合金を割れのない安定したイン
ゴットとして得られることを見い出し、本発明を完成す
るに至った。すなわち、本発明は、バナジウム含有合金
を10-3〜10-6Torrの真空下、電子ビームを用い
て溶解し、脱酸素することを特徴とするチタン合金製造
用バナジウム含有母合金の製造方法を提供することにあ
る。
Under such circumstances, the present inventors have conducted intensive studies and as a result, have found that a vanadium-containing alloy used for producing a titanium alloy can be reduced to 10 -3 to 10 -6 T.
It has been found that a very low oxygen master alloy can be obtained as a stable ingot without cracking by melting and deoxidizing using an electron beam under a high vacuum of orr, and completed the present invention. That is, the present invention provides a method for producing a vanadium-containing master alloy for titanium alloy production, which comprises melting and deoxidizing a vanadium-containing alloy using an electron beam under a vacuum of 10 -3 to 10 -6 Torr. To provide.

【0006】[0006]

【発明の実施の形態】本発明方法において、原料となる
バナジウム含有合金としては、特に制限されないが、例
えば、アルミニウム/バナジウム母合金(以下、Al−
V母合金と略す)、アルミニウム/モリブデン/バナジ
ウム母合金(以下、Al−Mo−V母合金と略す)、ア
ルミニウム/スズ/バナジウム母合金及びアルミニウム
/クロム/バナジウム母合金等が挙げられる。これらは
主成分以外にわずかの不純物を母合金中に含むものであ
る。また、これらバナジウム含有母合金の母合金組成と
しては、特に制限されないが、脱酸素処理後、すなわ
ち、チタン合金製造用原料の状態で、Al−V母合金で
は、アルミニウム:バナジウムが、0.5〜60:9
9.5〜40、好ましくは0.5〜25:99.5〜7
5、特に好ましくは12〜17:88〜83、更に好ま
しくは15:85である。該Al−V母合金中、アルミ
ニウムの比率が高すぎると後述するインゴットの連続引
下げの際、凝固時の熱歪みで割れが生じ好ましくない。
また、原料となるアルミニウム及びバナジウム含有合金
は、公知のテルミット反応を利用して製造することによ
り得られるものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, the vanadium-containing alloy used as a raw material is not particularly limited. For example, an aluminum / vanadium master alloy (hereinafter referred to as Al-
V mother alloy), aluminum / molybdenum / vanadium master alloy (hereinafter abbreviated as Al-Mo-V master alloy), aluminum / tin / vanadium master alloy, and aluminum / chromium / vanadium master alloy. These contain slight impurities in the mother alloy in addition to the main components. The composition of the mother alloy of these vanadium-containing master alloys is not particularly limited, but after deoxidation treatment, that is, in the state of a raw material for titanium alloy production, in an Al-V master alloy, aluminum: vanadium is 0.5%. ~ 60: 9
9.5 to 40, preferably 0.5 to 25: 99.5 to 7
5, particularly preferably 12 to 17:88 to 83, more preferably 15:85. If the ratio of aluminum in the Al-V master alloy is too high, cracks due to thermal strain during solidification during continuous lowering of the ingot, which will be described later, are not preferred.
The alloy containing aluminum and vanadium as a raw material is obtained by manufacturing using a known thermite reaction.

【0007】本発明においては、上記バナジウム含有母
合金を10-3〜10-6Torrの高真空下、電子ビーム
を用いて溶解させ、脱酸素処理する。該脱酸素処理の方
法としては、例えば、公知の電子ビーム溶解法(EB
R)及び超高真空電子ビーム浮遊帯域溶融法等が挙げら
れる。電子ビーム溶解法の具体例を次に示す。すなわ
ち、図1に示すように、電子ビーム溶解法において使用
されるEBR炉10は、原料供給部1、上部で溶融プー
ル7を形成して脱ガスを行う一方、下部でインゴットを
生成する水冷銅クルーシブル2、電子銃3及びインゴッ
ト引下げ治具4から形成される。該EBR炉10におい
て、10-3〜10-6、好ましくは10-4〜10-5Tor
rの真空下で熱陰極(フィラメント)を加熱することに
より発生した熱電子に高電圧を印加して加速し、これを
原料供給部1より送り込まれる原料に衝突させることに
よって原料を溶解し、脱ガスするものである。原料の供
給方法としては、特に制限されないが、アルミニウム製
の筒の中に、フレーク状の原料を充填した電極5をフィ
ーダー6により押し出し、除々に、かつ次から次へと供
給する方法が、装置を簡素化でき、組成の調整も容易で
あることから好ましい。電子銃3は2基以上有すること
が好ましく、電子銃から発せられる電子ビームを溶融プ
ールと電極先端に各々照射すればよい。このように、溶
解プール7で脱ガスを行いつつ、炉の下方に位置するイ
ンゴットはインゴット引下げ治具4を連続的に引き下げ
ることにより脱酸処理された精製インゴットを取り出す
ことができる。
In the present invention, the above vanadium-containing master alloy is melted using an electron beam under a high vacuum of 10 -3 to 10 -6 Torr, and deoxidized. As the deoxidizing method, for example, a known electron beam melting method (EB
R) and an ultrahigh vacuum electron beam floating zone melting method. The following is a specific example of the electron beam melting method. That is, as shown in FIG. 1, an EBR furnace 10 used in the electron beam melting method includes a raw material supply unit 1, a molten pool 7 formed at an upper portion to perform degassing, and a water-cooled copper that forms an ingot at a lower portion. It is formed from the crucible 2, the electron gun 3, and the ingot pulling jig 4. In the EBR furnace 10, 10 -3 to 10 -6 , preferably 10 -4 to 10 -5 Torr
Heating the hot cathode (filament) under a vacuum of r applies a high voltage to the generated thermoelectrons to accelerate them, and collides the hot electrons with the raw material fed from the raw material supply unit 1 to dissolve and remove the raw material. That is what gas. The method of supplying the raw material is not particularly limited, but a method of extruding the electrode 5 filled with the flake-form raw material into an aluminum cylinder by a feeder 6 and supplying the electrode 5 gradually and successively from one apparatus to another is used. Is preferred because the composition can be simplified and the composition can be easily adjusted. The electron gun 3 preferably has two or more electron guns, and an electron beam emitted from the electron gun may be applied to the molten pool and the tip of the electrode. As described above, while performing degassing in the melting pool 7, the ingot located below the furnace can take out the deoxidized purified ingot by continuously lowering the ingot lowering jig 4.

【0008】また、上記方法により得られた精製インゴ
ットは、これを再び原料として、10-3〜10-6Tor
rの真空下、電子ビームを用いて溶解し、脱酸素処理す
ることが、さらに、低酸素のバナジウム含有母合金が得
られることから好ましい。精製インゴットは、チタン合
金を製造する際、切削して切粉状にして用いることが操
作性等の点から好ましい。
[0008] The purified ingot obtained by the above method is used again as a raw material for 10 -3 to 10 -6 Torr.
Melting using an electron beam under a vacuum of r and deoxygenation treatment is further preferred because a low-oxygen vanadium-containing mother alloy can be obtained. When producing a titanium alloy, it is preferable to use the refined ingot in the form of a chip when cutting it from the viewpoint of operability and the like.

【0009】本発明において、上記方法により精製され
たバナジウム含有母合金は酸素含有量の低減化が図れる
他、不純物としての鉄の含有量も低減できる。
In the present invention, the vanadium-containing master alloy purified by the above method can reduce the oxygen content and the iron content as an impurity.

【0010】これら脱酸素化された母合金が使用される
チタン合金の例としては、Al−V母合金の場合、Ti
−6Al−4V、 Ti−15V−3Cr−3Al−3
Sn、Ti−6Al−6V−2Sn、Ti−3Al−
2.5V、Ti−4Al−3Mo−1V、Ti−13.
5V−11Cr−3Al等が挙げられ、このうち、Ti
−15V−3Cr−3Al−3Snが特に好ましい。上
記Ti−6Al−4V合金の製造例を示せば、例えば、
スポンジチタン90重量%、上記脱酸素化処理されたA
l−V母合金4重量%及びAlショット6重量%からな
る原料を真空アーク溶解法により均一に溶融し、次いで
冷却し、チタン合金インゴットとして取り出せばよい。
また、必要であれば、得られたチタン合金インゴットを
再び真空アーク溶解法により精製してもよい。このよう
にして得られたチタン合金インゴットは、酸素含有量が
極めて低く、機械的強度等において優れた特性を示すも
のである。
As an example of a titanium alloy in which these deoxygenated master alloys are used, in the case of an Al-V master alloy,
-6Al-4V, Ti-15V-3Cr-3Al-3
Sn, Ti-6Al-6V-2Sn, Ti-3Al-
2.5V, Ti-4Al-3Mo-1V, Ti-13.
5V-11Cr-3Al and the like.
-15V-3Cr-3Al-3Sn is particularly preferred. If the manufacturing example of the Ti-6Al-4V alloy is shown, for example,
90% by weight of titanium sponge, A deoxygenated A
A raw material comprising 4% by weight of an IV master alloy and 6% by weight of Al shot may be uniformly melted by a vacuum arc melting method, then cooled and taken out as a titanium alloy ingot.
If necessary, the obtained titanium alloy ingot may be purified again by the vacuum arc melting method. The titanium alloy ingot thus obtained has an extremely low oxygen content and exhibits excellent properties such as mechanical strength.

【0011】[0011]

【発明の効果】本発明の方法によれば、極めて低酸素の
バナジウム含有母合金を得ることができると共に、脱酸
素処理されたバナジウム含有母合金をインンゴットとし
て取り出す際、熱歪みによる割れを生じることなく、連
続的に取り出すことができる。さらに、脱酸素された精
製母合金(インゴット)は不純物としての鉄の低減も図
れる。また、低酸素のバナジウム含有母合金を用いてチ
タン合金を製造すれば、機械的強度等の特性が一段と優
れたものが得られる。
According to the method of the present invention, a very low oxygen vanadium-containing master alloy can be obtained, and cracks due to thermal strain are generated when the deoxidized vanadium-containing mother alloy is taken out as an ingot. And can be taken out continuously. Further, the deoxidized purified master alloy (ingot) can reduce iron as an impurity. In addition, when a titanium alloy is manufactured using a low oxygen vanadium-containing master alloy, a material having more excellent properties such as mechanical strength can be obtained.

【0012】[0012]

【実施例】次に、実施例を挙げて本発明を更に具体的に
説明するが、これは単に例示であって、本発明を制限す
るものではない。 実施例1 テルミット反応により得られた下記組成を示す2種類の
バナジウム含有合金を原料とし、下記に示す条件の公知
の電子ビーム溶解法により1回目の脱酸素処理を行っ
た。次に、得られた低酸素インゴットを再び同様の条件
により精製した。ただし、図2に示すように、2回目の
精製において、原料のインゴット8の供給はEBR炉1
0の上方より軸9を回転させながら徐々に下降させるよ
うにし、電子ビームは、図2に示すような角度で照射し
た。酸素含有量はJIS H 1620に記載の方法に従った。結
果を表1に示す。
Next, the present invention will be described in more detail with reference to examples, but this is merely an example and does not limit the present invention. Example 1 Two kinds of vanadium-containing alloys having the following compositions obtained by the thermit reaction were used as raw materials, and a first deoxygenation treatment was performed by a known electron beam melting method under the following conditions. Next, the obtained low oxygen ingot was purified again under the same conditions. However, as shown in FIG. 2, in the second purification, the supply of the raw material ingot 8 was performed by the EBR furnace 1.
The electron beam was irradiated at an angle as shown in FIG. 2 while gradually descending while rotating the shaft 9 from above 0. The oxygen content followed the method described in JIS H1620. Table 1 shows the results.

【0013】原料A:85V−15Al(粒径0 .3〜2.
5mm 、GFE社製、組成:V;83.7重量%( 以下、重量%
は省略する) 、Al;15.2 、Fe;0.29 、O;0.
17、N;0.035 、Si;0.12 ) 原料B:50V−50Al(GFE社製、組成:V;52.
O、Al;47 、Fe;0.3〜0.35、O;0.03〜0.04、N;0.02)
Raw material A: 85V-15Al (particle size: 0.3-2.
5 mm, manufactured by GFE, composition: V; 83.7% by weight (hereinafter, weight%
), Al; 15.2, Fe; 0.29, O; 0.
17, N; 0.035, Si; 0.12) Raw material B: 50V-50Al (manufactured by GFE, composition: V; 52.
O, Al; 47, Fe; 0.3-0.35, O; 0.03-0.04, N; 0.02)

【0014】(電子ビーム溶解法試験条件) 真空度;10-4〜10-5Torr EBR炉;ライボルト・ヘラウス社製(図1に概略を示
す) クルーシブル内径;直径180mm 電子銃の数;2基 インゴット鋳造方式;引下げ式
(Electron Beam Melting Method Test Conditions) Degree of vacuum; 10 -4 to 10 -5 Torr EBR furnace; manufactured by Leybold Heraus Co. (shown schematically in FIG. 1) Crucible inner diameter; 180 mm diameter Number of electron guns: 2 Ingot casting method;

【0015】比較例1 電子ビーム法に代えて、真空誘導炉溶解法とする以外は
実施例1と同様の方法に従った。真空誘導炉溶解法(V
IM)の条件は下記に示し、結果は表1に示す。 (真空誘導炉溶解法試験方法) 真空度;10-2〜10-3Torr VIM炉;ライボルト・ヘラウス社製 耐火物ライニング構造;内径500mm
Comparative Example 1 A method similar to that of Example 1 was followed except that a vacuum induction furnace melting method was used instead of the electron beam method. Vacuum induction furnace melting method (V
IM) are shown below, and the results are shown in Table 1. (Test method for vacuum induction furnace melting method) Degree of vacuum: 10 -2 to 10 -3 Torr VIM furnace; Refractory lining structure manufactured by Rybold Heraus Co .;

【0016】[0016]

【表1】 [Table 1]

【0017】表1より、実施例1は50V−50Al及
び85V−15Alのいずれにおいても、著しい低酸素
のバナジウム含有母合金を得ることができた。特に、脱
酸素処理2回目では、極めて著しい酸素の低減効果を示
した。
From Table 1, it can be seen that in Example 1, a vanadium-containing master alloy having a remarkably low oxygen content was obtained in both 50V-50Al and 85V-15Al. In particular, the second time of the deoxidation treatment showed an extremely remarkable oxygen reduction effect.

【0018】参考例1 チタン合金の製造 実施例1及び比較例1で得られた脱酸素2回処理のAl
−V合金の2種を各々用いて、Ti−6Al−4V合金
及びTi−15V−3Cr−3Al−3Sn合金を製造
した。製造は、表2及び表3に示す組成となるよう真空
アーク溶解法により均一溶解し、次いでチタン合金イン
ゴットを得ることにより行った。結果を表2に示す。
Reference Example 1 Production of Titanium Alloy Al deoxidized twice obtained in Example 1 and Comparative Example 1.
A Ti-6Al-4V alloy and a Ti-15V-3Cr-3Al-3Sn alloy were produced using two types of -V alloys, respectively. The production was performed by uniformly dissolving by the vacuum arc melting method so as to have the compositions shown in Tables 2 and 3, and then obtaining a titanium alloy ingot. Table 2 shows the results.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】表2及び表3より、実施例品の母合金を用
いれば、Ti−6Al−4V合金の場合で約16%、β
合金の場合、約50%の酸素含有量を低減することがで
き、これにより、機械的強度等の特性が一層向上する。
From Tables 2 and 3, it can be seen that when the mother alloy of the example was used, about 16% and β
In the case of alloys, the oxygen content can be reduced by about 50%, which further improves properties such as mechanical strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法で使用する電子ビーム溶解炉の概略
図である。
FIG. 1 is a schematic view of an electron beam melting furnace used in the method of the present invention.

【図2】第2回目の脱酸素化処理における、原料の位置
と電子ビームの照射角度を示す図である。
FIG. 2 is a diagram showing a position of a raw material and an irradiation angle of an electron beam in a second deoxygenation process.

【符号の説明】 1 原料供給部 2 水冷銅クルーシブル 3 電子銃 4 インゴット引下げ治具 5 電極 6 フィーダー 7 溶解プール 8 第1回目で得られた精製インゴット 9 軸 10 EBR炉[Description of Signs] 1 Raw material supply unit 2 Water-cooled copper crucible 3 Electron gun 4 Ingot lowering jig 5 Electrode 6 Feeder 7 Melting pool 8 Refined ingot obtained in the first run 9 Shaft 10 EBR furnace

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 バナジウム含有合金を10-3〜10-6
orrの真空下、電子ビームを用いて溶解し、脱酸素す
ることを特徴とするチタン合金製造用バナジウム含有母
合金の製造方法。
1. A vanadium-containing alloy of 10 -3 to 10 -6 T
A method for producing a vanadium-containing master alloy for producing a titanium alloy, wherein the vanadium-containing mother alloy is melted and deoxidized using an electron beam under an orr vacuum.
【請求項2】 前記バナジウム含有合金が、アルミニウ
ムとバナジウムからなる合金である請求項1に記載のチ
タン合金製造用バナジウム含有合金の製造方法。
2. The method according to claim 1, wherein the vanadium-containing alloy is an alloy composed of aluminum and vanadium.
【請求項3】 前記バナジウム含有合金のバナジウム含
有量が75重量%以上である請求項1又は2に記載のチ
タン合金製造用バナジウム含有母合金の製造方法。
3. The method for producing a vanadium-containing master alloy for titanium alloy production according to claim 1, wherein the vanadium-containing alloy has a vanadium content of 75% by weight or more.
JP09019097A 1997-03-25 1997-03-25 Method for producing vanadium-containing master alloy for titanium alloy production Expired - Lifetime JP3632722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09019097A JP3632722B2 (en) 1997-03-25 1997-03-25 Method for producing vanadium-containing master alloy for titanium alloy production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09019097A JP3632722B2 (en) 1997-03-25 1997-03-25 Method for producing vanadium-containing master alloy for titanium alloy production

Publications (2)

Publication Number Publication Date
JPH10265866A true JPH10265866A (en) 1998-10-06
JP3632722B2 JP3632722B2 (en) 2005-03-23

Family

ID=13991574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09019097A Expired - Lifetime JP3632722B2 (en) 1997-03-25 1997-03-25 Method for producing vanadium-containing master alloy for titanium alloy production

Country Status (1)

Country Link
JP (1) JP3632722B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298873C (en) * 2003-12-15 2007-02-07 张忠士 A V-Al-Sn intermediate alloy and process for preparing same
JP2009113060A (en) * 2007-11-02 2009-05-28 Kobe Steel Ltd METHOD FOR PRODUCING INGOT OF TiAl-BASED ALLOY
CN113025831A (en) * 2021-02-26 2021-06-25 西安西工大超晶科技发展有限责任公司 Treatment method for reducing oxygen content of titanium alloy ingot
CN114807646A (en) * 2022-05-10 2022-07-29 山西太钢不锈钢股份有限公司 Nickel-based alloy plate blank and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298873C (en) * 2003-12-15 2007-02-07 张忠士 A V-Al-Sn intermediate alloy and process for preparing same
JP2009113060A (en) * 2007-11-02 2009-05-28 Kobe Steel Ltd METHOD FOR PRODUCING INGOT OF TiAl-BASED ALLOY
CN113025831A (en) * 2021-02-26 2021-06-25 西安西工大超晶科技发展有限责任公司 Treatment method for reducing oxygen content of titanium alloy ingot
CN114807646A (en) * 2022-05-10 2022-07-29 山西太钢不锈钢股份有限公司 Nickel-based alloy plate blank and preparation method thereof
CN114807646B (en) * 2022-05-10 2023-12-05 山西太钢不锈钢股份有限公司 Nickel-based alloy plate blank and preparation method thereof

Also Published As

Publication number Publication date
JP3632722B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
CN113322386B (en) Preparation method of large-size NbTi alloy ingot
CN110527843B (en) Preparation method of high-niobium titanium alloy homogeneous ingot
JP5048222B2 (en) Method for producing long ingots of active refractory metal alloys
CN114934205B (en) Smelting method for nickel-based superalloy with high purity
CN111455219A (en) Electron beam cold hearth smelting method for nickel-based alloy
US4684506A (en) Master alloy for the production of titanium-based alloys and method for producing the master alloy
US8518144B2 (en) ESR melting of NiTi alloys
JP5064974B2 (en) Ingot manufacturing method for TiAl-based alloy
EP3586998B1 (en) Method for producing ti-al alloy
CN112981175B (en) Ti-6Al-4V alloy material and preparation method thereof
CN112921196B (en) Preparation method of corrosion-resistant Ti35 titanium alloy ingot
JPH10265866A (en) Production of vanadium-containing base alloy for producing titanium alloy
US3378671A (en) Nonconsumable arc-melting and arc-welding electrodes
RU2680321C1 (en) Method of obtaining semi-finished product from alloy on basis of niobium
JP7412197B2 (en) Method for manufacturing Ti-Al alloy
JP2010275630A (en) METHOD FOR MANUFACTURING alpha+beta TYPE TITANIUM ALLOY CONTAINING BORON HAVING HIGH FATIGUE STRENGTH, AND METHOD FOR MANUFACTURING TITANIUM ALLOY MATERIAL BEING USED FOR THE SAME
JP2009113061A (en) METHOD FOR PRODUCING INGOT OF TiAl-BASED ALLOY
JP3125393B2 (en) Casting method of titanium-aluminum alloy casting
RU2349657C1 (en) Method of molybdenum of high purity manufacturing
RU2349658C1 (en) Method of manufacturing tungsten of high purity
US3163744A (en) Non-consumable arc-melting and arc-welding electrodes
RU2762460C1 (en) Method for producing special copper ingots
CN115781100B (en) Magnesium alloy welding wire and preparation method and application thereof
JPH05295470A (en) Method for deoxidizing titanium or titanium alloy
JP2708277B2 (en) Method for producing hot rolled titanium alloy bar with excellent forgeability as rolled

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term