RU2762460C1 - Method for producing special copper ingots - Google Patents

Method for producing special copper ingots Download PDF

Info

Publication number
RU2762460C1
RU2762460C1 RU2021123335A RU2021123335A RU2762460C1 RU 2762460 C1 RU2762460 C1 RU 2762460C1 RU 2021123335 A RU2021123335 A RU 2021123335A RU 2021123335 A RU2021123335 A RU 2021123335A RU 2762460 C1 RU2762460 C1 RU 2762460C1
Authority
RU
Russia
Prior art keywords
ingots
remelting
copper
consumable electrode
strips
Prior art date
Application number
RU2021123335A
Other languages
Russian (ru)
Inventor
Евгений Владимирович Шильников
Илья Викторович Кабанов
Александр Евгеньевич Шильников
Андрей Александрович Сисев
Алексей Игоревич Ильинский
Владимир Викторович Волков
Борис Владимирович Троянов
Original Assignee
Акционерное общество "Металлургический завод "Электросталь"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Металлургический завод "Электросталь" filed Critical Акционерное общество "Металлургический завод "Электросталь"
Priority to RU2021123335A priority Critical patent/RU2762460C1/en
Application granted granted Critical
Publication of RU2762460C1 publication Critical patent/RU2762460C1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

FIELD: non-ferrous metallurgy.
SUBSTANCE: invention relates to the field of non-ferrous metallurgy, specifically to the production of high-purity copper ingots for superconducting materials. Strips of cathode copper are used as starting materials, the stage of preparation of starting materials is carried out by cutting sheets of cathode copper into strips 150±10 mm wide, straightening and milling at the ends, the production of a consumable electrode is carried out by welding the strips together, with one of the ends. The electrode is prepared for fastening to the furnace rod, after which a sequential triple electron-beam remelting of the obtained consumable electrode is carried out, with intermediate machining of the surface of the welded ingots to a depth of 3-7 mm after all stages of remelting.
EFFECT: invention makes it possible to weld ingots of high-purity copper with an oxygen content of no more than 0.0015% and a minimum level of impurities of non-ferrous metals.
3 cl, 2 tbl, 2 dwg

Description

1. Область техники1. Field of technology

Изобретение относится к области цветной металлургии, конкретно к способам получения слитков особочистой меди для сверхпроводящих материалов. Способ включает стадию подготовки исходных материалов, путем рубки листов катодной меди на полосы шириной 150±10 мм, их правку и фрезеровку по торцам, изготовление расходуемого электрода, путем сварки полос между собой, при этом один из торцов сваренного электрода готовят под крепление на шток печи, после чего осуществляют последовательный тройной электронно-лучевой переплав полученного расходуемого электрода, с промежуточной механической обработкой поверхности наплавляемых слитков после всех этапов переплава. Способ позволяет наплавлять слитки особочистой меди с содержанием кислорода не более 0,0015% и минимальным уровнем примесей цветных металлов.The invention relates to the field of non-ferrous metallurgy, specifically to methods for producing ingots of high-purity copper for superconducting materials. The method includes the stage of preparing the starting materials by cutting sheets of cathode copper into strips 150 ± 10 mm wide, straightening and milling them at the ends, making a consumable electrode by welding the strips together, while one of the ends of the welded electrode is prepared for fastening to the furnace rod followed by a sequential triple electron-beam remelting of the obtained consumable electrode, with intermediate machining of the surface of the welded ingots after all stages of remelting. The method allows surfacing ingots of high-purity copper with an oxygen content of no more than 0.0015% and a minimum level of impurities of non-ferrous metals.

2. Предшествующий уровень техники2. Prior art

Известен «Способ получения высококачественной меди вакуумной дуговой плавкой» (Патент RU 2 156 822 (С22 В 15/14), 2000), включающий плавку медных катодов в графитовом тигле нерасходуемым графитовым электродом при удельной мощности электрической дуги в пределах 4⋅106 - 6⋅106 Вт на 1 м2 внутреннего поперечного сечения тигля в течение времени, продолжительность которого определяют по выражению: 8,1 cth/10-9⋅q/≤τ≤8,9cth/10-9⋅q/, где cth - функция гиперболического котангенса; τ - продолжительность плавки, с; q - удельная мощность электрической дуги, Вт/м2. Известный способ не обеспечивает получения слитков особочистой меди для сверхпроводящих материалов требуемой чистоты и установленных требований к электротехническим свойствам из-за недостаточной степени рафинирования расплава.The known "Method for producing high-quality copper by vacuum arc melting" (Patent RU 2 156 822 (C22 B 15/14), 2000), including melting copper cathodes in a graphite crucible with a non-consumable graphite electrode with a specific power of an electric arc within 4⋅10 6 - 6 ⋅10 6 W per 1 m 2 of the inner cross-section of the crucible during the time, the duration of which is determined by the expression: 8.1 cth / 10 -9 ⋅q / ≤τ≤8.9cth / 10 -9 ⋅q /, where cth - hyperbolic cotangent function; τ is the duration of the melting, s; q is the specific power of the electric arc, W / m 2 . The known method does not provide for obtaining ingots of high-purity copper for superconducting materials of the required purity and the established requirements for electrical properties due to the insufficient degree of refining of the melt.

Известен «Способ получения в вакууме слитков особочистой меди» (Патент RU 2 407 815 (С22В 15/14), 2010), включающий получение расплава меди, рафинирование расплава от летучих окислов и других примесей, раскисление углеродом, рафинирование в раскисленном состоянии, разливку металла в слитки и кристаллизацию, причем перед расплавлением шихтовые материалы из меди подвергают поверхностному травлению и плавят их в графитовом тигле, на дно которого помещают куски графита в количестве, составляющем 0,15-0,6% от массы шихты из меди. Недостатком известного способа является отсутствие эффективных операций, обеспечивающих содержание кислорода в слитках особочистой меди менее 0,003%.There is a known "Method of obtaining in vacuum high-purity copper ingots" (Patent RU 2 407 815 (С22В 15/14), 2010), including obtaining copper melt, refining the melt from volatile oxides and other impurities, deoxidizing with carbon, refining in a deoxidized state, casting metal into ingots and crystallization, and before melting, copper charge materials are subjected to surface etching and melted in a graphite crucible, on the bottom of which graphite pieces are placed in an amount of 0.15-0.6% of the copper charge weight. The disadvantage of this method is the lack of effective operations, providing the oxygen content in the ingots of high-purity copper less than 0.003%.

Известен «Способ получения заготовки из меди или ее сплавов» (Патент RU 2 247 162 (С22В 09/18, С22В 15/00), 2005), который включает изготовление расходуемого электрода из шихтовых материалов, его электрошлаковый переплав в кристаллизатор на поддон, формирование слитка и его деформацию с получением заготовки, при этом расходуемый электрод изготавливают путем расплавления шихтовых материалов в 6-12-тонном тигле в вакуумной индукционной печи, электрошлаковый переплав расходуемого электрода ведут в кристаллизатор диаметром 500-700 мм, при этом электрический режим переплава выбирают в зависимости от диаметра кристаллизатора, на поддон устанавливают семь затравок, одну - по центру и шесть - по периферии у стенки кристаллизатора, и производят рассредоточение электрического контакта на затравки, а после деформации заготовку охлаждают на воздухе. Недостатком технического решения является то, что оно не позволяет получить слитки меди с низким содержанием кислорода менее 0,040%.The known "Method of obtaining a workpiece from copper or its alloys" (Patent RU 2 247 162 (C22B 09/18, C22B 15/00), 2005), which includes the manufacture of a consumable electrode from charge materials, its electroslag remelting into a mold on a pallet, the formation the ingot and its deformation to obtain a billet, while the consumable electrode is made by melting the charge materials in a 6-12-ton crucible in a vacuum induction furnace, the electroslag remelting of the consumable electrode is carried out into a crystallizer with a diameter of 500-700 mm, while the electric remelting mode is selected depending on from the diameter of the mold, seven seeds are placed on the pallet, one - in the center and six - along the periphery at the wall of the mold, and the electrical contact is dispersed onto the seeds, and after deformation the workpiece is cooled in air. The disadvantage of the technical solution is that it does not allow to obtain copper ingots with a low oxygen content of less than 0.040%.

Известен также принятый заявителем за наиболее близкий аналог - способ вакуумно-дугового переплава («Электрические промышленные печи. Дуговые печи и установки специального назначения» под ред. А.Д. Свенчанского, 2 изд., М., Энергоиздат, 1981 г., с. 217), при котором расходуемый электрод крепится к электрододержателю вакуумной дуговой печи механическим способом с помощью муфты с цанговым или клиновым зажимом. Недостатком способа является то, что достичь содержания кислорода в слитках меди менее 0,003% не представляется возможным.It is also known accepted by the applicant for the closest analogue - the method of vacuum-arc remelting ("Electric industrial furnaces. Arc furnaces and special-purpose installations" edited by A.D. Svenchansky, 2nd ed., M., Energoizdat, 1981, p. . 217), in which the consumable electrode is mechanically attached to the electrode holder of the vacuum arc furnace using a collet or wedge clutch. The disadvantage of this method is that it is not possible to achieve an oxygen content in copper ingots of less than 0.003%.

3. Сущность изобретения3. The essence of the invention

3.1. Постановка технической задачи3.1. Formulation of a technical problem

Технический результат, на достижение которого направлено изобретение, заключается в получении слитков особочистой меди с содержанием кислорода не более 0,0015% и минимальным уровнем примесей цветных металлов.The technical result, which the invention is aimed at, consists in obtaining ingots of high-purity copper with an oxygen content of no more than 0.0015% and a minimum level of impurities of non-ferrous metals.

Результат решения технической задачиThe result of solving a technical problem

Задача решена за счет того, что выплавку слитков особочистой меди осуществляют в электронно-лучевой печи с использованием расходуемого электрода, предварительно изготовленного путем сварки полос катодной меди между собой.The problem is solved due to the fact that the smelting of high-purity copper ingots is carried out in an electron-beam furnace using a consumable electrode pre-fabricated by welding strips of cathode copper to each other.

3.2. Отличительные признаки3.2. Features

В отличие от известного технического решения, включающего подготовку исходных материалов, изготовление из них расходуемого электрода и его переплав с получением слитка; в заявленном техническом решении в качестве исходных материалов используют полосы катодной меди, стадию подготовки исходных материалов осуществляют путем рубки листов катодной меди на полосы шириной 150±10 мм, их правку и фрезеровку по торцам, изготовление расходуемого электрода осуществляют путем сварки полос между собой, при этом один из торцов сваренного электрода готовят под крепление на шток печи, после чего осуществляют последовательный тройной электронно-лучевой переплав полученного расходуемого электрода, с промежуточной механической обработкой поверхности наплавляемых слитков после всех этапов переплава.In contrast to the known technical solution, which includes the preparation of raw materials, the manufacture of a consumable electrode from them and its remelting to obtain an ingot; in the claimed technical solution, strips of cathode copper are used as starting materials, the stage of preparing the starting materials is carried out by cutting sheets of cathode copper into strips with a width of 150 ± 10 mm, their straightening and milling at the ends, the manufacture of a consumable electrode is carried out by welding the strips together, while one of the ends of the welded electrode is prepared for fastening to the furnace rod, after which sequential triple electron-beam remelting of the obtained consumable electrode is carried out, with intermediate machining of the surface of the welded ingots after all stages of remelting.

Электронно-лучевой переплав производят на скорости порядка 4÷7 мм/мин и мощности 150÷170 кВт, при этом вакуум поддерживают на уровне (3,0÷5,0)×10-4 мм рт.ст.Electron beam remelting is carried out at a speed of the order of 4-7 mm / min and a power of 150-170 kW, while the vacuum is maintained at a level of (3.0-5.0) × 10 -4 mm Hg.

Наплавленные слитки меди после всех этапов электроннолучевого переплава подвергают механической обработке на глубину 3÷7 мм.After all stages of electron-beam remelting, the deposited copper ingots are machined to a depth of 3–7 mm.

3.3. Перечень фигур чертежей3.3. List of drawing figures

На фиг. 1 представлен подготовленный расходуемый электрод для электроннолучевого переплава, где 1 - внешний вид расходуемого электрода после сварки полос катодной меди между собой; 2 - приваренная дугообразная скоба к одному из торцов расходуемого электрода, в виде изогнутой металлической полосы или арматуры, для его перемещения и крепления на шток печи для последующего электроннолучевого переплава; 3 - противоположный торец сварного расходуемого электрода.FIG. 1 shows a prepared consumable electrode for electron beam remelting, where 1 is the appearance of a consumable electrode after welding of cathode copper strips to each other; 2 - a welded arc-shaped bracket to one of the ends of the consumable electrode, in the form of a curved metal strip or reinforcement, for its movement and attachment to the furnace rod for subsequent electron-beam remelting; 3 - opposite end of the welded consumable electrode.

На фиг. 2 представлен обработанный слиток особочистой меди после тройного электроннолучевого переплава.FIG. 2 shows a processed high-purity copper ingot after triple electron-beam remelting.

4. Описание изобретения4. Description of the invention

Рафинирование металла при электроннолучевом переплаве (ЭЛП) основано, как и при вакуумном дуговом переплаве (ВДП), на капельном наплавлении слитка в условиях вакуумирования плавильного пространства печи, однако взаимодействие металла с разреженной газовой фазой в условиях ЭЛП отличается.Refining of metal in electron beam remelting (EBR) is based, as in vacuum arc remelting (VAR), on the drop melting of an ingot under conditions of evacuating the melting chamber of the furnace, however, the interaction of the metal with a rarefied gas phase under EBR conditions is different.

Независимый источник теплоты при ЭЛП дает возможность в широких пределах регулировать скорость наплавления слитка и, соответственно, продолжительность пребывания металла в жидком состоянии. В ходе электроннолучевого переплава уровень металлической ванны сохраняет неизменное положение вблизи верхнего края кристаллизатора, а расходуемый электрод, подаваемый сверху, не препятствует удалению выделяющихся из расплава газов и паров. Высокая концентрация энергии электронного луча позволяет обеспечить существенный перегрев поверхности металлической ванны, который превышает этот показатель для условий ВДП примерно на 100÷150°С.An independent heat source with EBM makes it possible to regulate the rate of deposition of the ingot and, accordingly, the duration of the metal's stay in the liquid state, within a wide range. In the course of electron beam remelting, the level of the metal bath remains unchanged near the upper edge of the mold, and the consumable electrode supplied from the top does not prevent the removal of gases and vapors released from the melt. The high energy concentration of the electron beam allows for a significant overheating of the surface of the metal bath, which exceeds this indicator for VAR conditions by about 100 ÷ 150 ° C.

Как известно, при переплавах расходуемого электрода металл подвергается рафинированию на трех этапах существования его в жидком состоянии: в пленке на оплавляющемся торце электрода, в каплях и на поверхности жидкой металлической ванны. При сопоставимых условиях (производительность, диаметр используемого кристаллизатора) площадь межфазной поверхности газ - металл на двух последних этапах соответственно одинакова для обоих методов переплава. Площади оплавляющегося торца электрода при этом могут отличаться в несколько раз. Так, в ходе ВДП торец расходуемого электрода обычно плоский и, следовательно, площадь этой поверхности примерно равна поперечному сечению переплавляемого электрода. При ЭЛП, с вертикальной подачей расходуемого электрода, его оплавляющийся конец приобретает коническую форму (с углом при вершине от 30 до 60°), за счет чего площадь этой поверхности в 2-4 раза превышает площадь поперечного сечения электрода. В сочетании с более высокой температурой жидкого металла, более глубоким вакуумом в рабочем пространстве это создает благоприятные условия для лучшей дегазации металла, испарения цветных металлов и диссоциации неметаллических включений. Удаление примесей происходит в пленке жидкого металла на конце оплавляемого расходуемого электрода.As you know, when a consumable electrode is remelted, the metal is refined at three stages of its existence in a liquid state: in a film at the melting end of the electrode, in drops and on the surface of a liquid metal bath. Under comparable conditions (productivity, diameter of the mold used), the gas - metal interface area at the last two stages is, respectively, the same for both remelting methods. In this case, the areas of the melted end of the electrode may differ several times. So, during the VAR, the end face of the consumable electrode is usually flat and, therefore, the area of this surface is approximately equal to the cross section of the remelted electrode. With EBM, with a vertical feed of the consumable electrode, its melted end acquires a conical shape (with an apex angle from 30 to 60 °), due to which the area of this surface is 2-4 times greater than the cross-sectional area of the electrode. In combination with a higher liquid metal temperature, a deeper vacuum in the working space, this creates favorable conditions for better metal degassing, evaporation of non-ferrous metals and dissociation of non-metallic inclusions. Removal of impurities occurs in the liquid metal film at the end of the consumable electrode being melted.

В заявленном техническом решении на стадии подготовки исходных материалов, полос катодной меди, осуществляют рубку листов катодной меди, их правку и фрезеровку по торцам, изготовление расходуемого электрода и электронно-лучевой переплав, при этом последовательно выполняют следующие операции:In the claimed technical solution, at the stage of preparation of raw materials, strips of cathode copper, sheets of cathode copper are cut, they are straightened and milled at the ends, manufacture of a consumable electrode and electron-beam remelting, while the following operations are sequentially performed:

- рубку листов катодной меди на полосы шириной 150±10 мм;- cutting of cathode copper sheets into strips 150 ± 10 mm wide;

- сварку полос катодной меди между собой (Фиг. 1);- welding of strips of cathode copper to each other (Fig. 1);

- приварку дугообразной скобы, в виде изогнутой металлической полосы или арматуры, к одному из торцов сваренного электрода для его перемещения и крепления на шток печи для последующего электроннолучевого переплава (Фиг. 1);- welding of an arcuate bracket, in the form of a curved metal strip or reinforcement, to one of the ends of the welded electrode to move it and attach it to the furnace rod for subsequent electron beam remelting (Fig. 1);

- последовательный тройной электронно-лучевой переплав полученного расходуемого электрода. Расходуемый электрод при ЭЛП подается сверху. Затвердевание слитка происходит в водоохлаждаемом кристаллизаторе. В качестве затравочной пластины используется пластина железа. Электронно-лучевой переплав производят на скорости порядка 4÷7 мм/мин и мощности 150÷170 кВт, при этом вакуум поддерживают на уровне (3,0÷5,0)×10-4 мм рт.ст.;- sequential triple electron-beam remelting of the obtained consumable electrode. The consumable electrode for EBM is fed from the top. The solidification of the ingot takes place in a water-cooled crystallizer. An iron plate is used as a seed plate. Electron beam remelting is carried out at a speed of the order of 4 ÷ 7 mm / min and a power of 150 ÷ 170 kW, while the vacuum is maintained at a level of (3.0 ÷ 5.0) × 10 -4 mm Hg;

- наплавленные слитки меди после всех этапов электронно-лучевого переплава подвергают механической обработке на глубину 3÷7 мм (Фото 2).- deposited copper ingots after all stages of electron-beam remelting are subjected to machining to a depth of 3 ÷ 7 mm (Photo 2).

Использование предлагаемого способа позволяет наплавлять слитки особочистой меди с содержанием кислорода не более 0,0015%, а также снизить уровень примесей цветных металлов.The use of the proposed method allows the deposition of high-purity copper ingots with an oxygen content of no more than 0.0015%, and also to reduce the level of impurities of non-ferrous metals.

5. Пример конкретного выполнения (реализация способа)5. An example of a specific implementation (implementation of the method)

Производство слитков особочистой меди осуществляли методом многократного электроннолучевого переплава в кристаллизатор диаметром 250 мм по следующей схеме:The production of high-purity copper ingots was carried out by the method of multiple electron-beam remelting into a mold with a diameter of 250 mm according to the following scheme:

подготовка исходных материалов (рубка, правка, фрезеровка полос) → изготовление расходуемого электрода (сварка полос в пакет) → первый электронно-лучевой переплав → механическая обработка слитка → второй электронно-лучевой переплав → механическая обработка слитка → третий электронно-лучевой переплав → механическая обработка слитка.preparation of raw materials (cutting, straightening, milling of strips) → production of a consumable electrode (welding of strips into a batch) → first electron-beam remelting → machining of an ingot → second electron-beam remelting → machining of an ingot → third electron-beam remelting → machining ingot.

Электронно-лучевой переплав осуществляли в электронно-лучевой печи У-254 в кристаллизатор ∅250 мм. Стартовая мощность на уровне 150÷170 кВт. Скорость подачи электрода на режиме 4÷7 мм/мин. На всех плавках режим проходил стабильно. После окончания плавки произвели выдержку слитка в печи под вакуумом, после чего произвели напуск воздуха. Параметры наплавленных и обработанных слитков меди приведены в таблице 1.Electron-beam remelting was carried out in an U-254 electron-beam furnace into a crystallizer with a diameter of 250 mm. Starting power at the level of 150 ÷ 170 kW. Electrode feed rate in the 4 ÷ 7 mm / min mode. The mode was stable on all swimming trunks. After the end of the melting, the ingot was held in a furnace under vacuum, after which air was puffed in. The parameters of deposited and processed copper ingots are given in Table 1.

Figure 00000001
Figure 00000001

От каждого наплавленного слитка были отобраны образцы для определения химического состава по системе «Г-Х». Результаты химического анализа приведены в таблице 2.Samples were taken from each deposited ingot to determine the chemical composition according to the "G-X" system. The results of the chemical analysis are shown in Table 2.

Figure 00000002
Figure 00000002

Figure 00000003
Figure 00000003

Таким образом, использование предлагаемого способа позволяет наплавлять слитки особочистой меди с содержанием кислорода не более 0.0015% и минимальным уровнем примесей цветных металлов.Thus, the use of the proposed method allows the deposition of high-purity copper ingots with an oxygen content of no more than 0.0015% and a minimum level of impurities of non-ferrous metals.

Claims (3)

1. Способ получения слитков особочистой меди, включающий подготовку исходных материалов, изготовление из них расходуемого электрода и его переплав с получением слитка, отличающийся тем, что в качестве исходных материалов используют полосы катодной меди, стадию подготовки исходных материалов осуществляют путем рубки листов катодной меди на полосы шириной 150±10 мм, их правку и фрезеровку по торцам, изготовление расходуемого электрода осуществляют путем сварки полос между собой, при этом один из торцов сваренного электрода готовят под крепление на шток печи, после чего осуществляют последовательный тройной электроннолучевой переплав полученного расходуемого электрода, с промежуточной механической обработкой поверхности наплавляемых слитков после всех этапов переплава.1. A method of obtaining ingots of high-purity copper, including the preparation of starting materials, making a consumable electrode from them and remelting it to obtain an ingot, characterized in that strips of cathode copper are used as starting materials, the stage of preparing starting materials is carried out by cutting sheets of cathode copper into strips width 150 ± 10 mm, their straightening and milling at the ends, the manufacture of a consumable electrode is carried out by welding the strips together, while one of the ends of the welded electrode is prepared for fastening to the furnace rod, after which a sequential triple electron-beam remelting of the obtained consumable electrode is carried out, with an intermediate by mechanical treatment of the surface of the welded ingots after all stages of remelting. 2. Способ по п. 1, отличающийся тем, что электронно-лучевой переплав производят на скорости порядка 4÷7 мм/мин и мощности 150÷170 кВт, при этом вакуум поддерживают на уровне (3,0÷5,0)×10-4 мм рт.ст.2. The method according to claim 1, characterized in that the electron-beam remelting is performed at a speed of the order of 4-7 mm / min and a power of 150-170 kW, while the vacuum is maintained at a level of (3.0-5.0) × 10 -4 mm Hg 3. Способ по п. 1, отличающийся тем, что наплавленные слитки меди после всех этапов электронно-лучевого переплава подвергают механической обработке на глубину 3÷7 мм.3. The method according to claim 1, characterized in that the deposited copper ingots after all stages of electron beam remelting are machined to a depth of 3–7 mm.
RU2021123335A 2021-08-05 2021-08-05 Method for producing special copper ingots RU2762460C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021123335A RU2762460C1 (en) 2021-08-05 2021-08-05 Method for producing special copper ingots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021123335A RU2762460C1 (en) 2021-08-05 2021-08-05 Method for producing special copper ingots

Publications (1)

Publication Number Publication Date
RU2762460C1 true RU2762460C1 (en) 2021-12-21

Family

ID=80039014

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021123335A RU2762460C1 (en) 2021-08-05 2021-08-05 Method for producing special copper ingots

Country Status (1)

Country Link
RU (1) RU2762460C1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2247162C1 (en) * 2004-01-15 2005-02-27 ОАО Челябинский металлургический комбинат "МЕЧЕЛ" Method of production of blanks from copper or its alloys
RU2407815C1 (en) * 2009-08-03 2010-12-27 Открытое акционерное общество "Чепецкий механический завод" Procedure for production of ingots of super-pure copper in vacuum
CN101199988B (en) * 2007-11-13 2011-06-22 北京有色金属研究总院 Ultrahigh pure copper ingot preparing process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2247162C1 (en) * 2004-01-15 2005-02-27 ОАО Челябинский металлургический комбинат "МЕЧЕЛ" Method of production of blanks from copper or its alloys
CN101199988B (en) * 2007-11-13 2011-06-22 北京有色金属研究总院 Ultrahigh pure copper ingot preparing process
RU2407815C1 (en) * 2009-08-03 2010-12-27 Открытое акционерное общество "Чепецкий механический завод" Procedure for production of ingots of super-pure copper in vacuum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЭЛЕКТРИЧЕСКИЕ ПРОМЫШЛЕННЫЕ ПЕЧИ.ДУГОВЫЕ ПЕЧИ И УСТАНОВКИ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ. Под ред.А.Д.Свенчанского,2 изд.,М., Энергоиздат,1981, с.217. *

Similar Documents

Publication Publication Date Title
US7381366B2 (en) Apparatus for the production or refining of metals, and related processes
CN114318109B (en) Method for smelting high-nitrogen die steel by using vacuum induction furnace and pressurized electroslag furnace
EP3586998B1 (en) Method for producing ti-al alloy
CN112301230B (en) Hollow electroslag remelting consumable electrode, preparation method thereof and electroslag remelting method
JP5513389B2 (en) Silicon purification method
RU2762460C1 (en) Method for producing special copper ingots
CN212645338U (en) Single or multi-electrode vacuum consumable arc melting device for titanium and titanium alloy
RU2346221C1 (en) Method of vacuum-plasma melting of metals and alloys in skull furnace and facility for its implementation
JP7412197B2 (en) Method for manufacturing Ti-Al alloy
RU2630157C2 (en) Method to produce electrodes of alloys based on titanium aluminide
JPH02236232A (en) Method for melting and casting titanium and titanium alloy
RU2770807C1 (en) Method for producing blanks from low-alloy copper-based alloys
CN1335925A (en) Method and device for melting rare earth magnet scrap and primary molten alloy of rare earth magnet
RU2209842C2 (en) Metal melting and pouring method
JP3632722B2 (en) Method for producing vanadium-containing master alloy for titanium alloy production
Nair et al. Production of tantalum metal by the aluminothermic reduction of tantalum pentoxide
JP4209964B2 (en) Method for melting and casting metal vanadium and / or metal vanadium alloy
RU2783993C1 (en) Method for producing high purity niobium ingots
RU2716326C1 (en) Method of obtaining high-alloy heat resistant alloys on nickel base with titanium and aluminium content in narrow range
RU2807237C1 (en) Method for smelting heat-resistant copper base alloys
RU2792515C1 (en) Method for smelting nickel-titanium alloys
CN113481393A (en) Vanadium-chromium-titanium alloy and preparation method thereof
RU2238992C1 (en) Niobium ingot preparation method
RU2204617C1 (en) Method for refining metals and alloys by multiple electron-beam refining
RU2349658C1 (en) Method of manufacturing tungsten of high purity