JPS6173849A - Superconductive cu alloy - Google Patents

Superconductive cu alloy

Info

Publication number
JPS6173849A
JPS6173849A JP59196352A JP19635284A JPS6173849A JP S6173849 A JPS6173849 A JP S6173849A JP 59196352 A JP59196352 A JP 59196352A JP 19635284 A JP19635284 A JP 19635284A JP S6173849 A JPS6173849 A JP S6173849A
Authority
JP
Japan
Prior art keywords
alloy
superconducting
phase
superconductive
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59196352A
Other languages
Japanese (ja)
Other versions
JPH045734B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Nobuyoshi Yano
矢野 暢芳
Kunio Matsuzaki
邦男 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP59196352A priority Critical patent/JPS6173849A/en
Publication of JPS6173849A publication Critical patent/JPS6173849A/en
Publication of JPH045734B2 publication Critical patent/JPH045734B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain the titled alloy having superior workability, mechanical characteristics and improved electric conductivity by uniformly dispersing fine metallic particles having the 2nd phase in the matrix phase of a Cu alloy contg. a specified amount of Pb, Bi, Tl, Li or Fe. CONSTITUTION:This superconductive Cu alloy ha a structure contg. fine metallic particles having the 2nd phase dispersed uniformly in the matrix phase of a Cu alloy consisting of 1-10atomic% one or more among Pb, Si, Tl, Li and Fe and the balance essentially Cu. The superconductive Cu alloy can be manufactured by melting an alloy having said composition by heating and by solidifying the molten alloy by rapid cooling. The superconductivity is improved by said structure.

Description

【発明の詳細な説明】 本発明は、母相中に微細な第2相金属粒子が均一に分散
してなる組織を有する超伝導特性に優れたCupu金に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to Cupu gold having excellent superconducting properties and having a structure in which fine second phase metal particles are uniformly dispersed in the matrix.

従来、超伝導材料としては、Ntl:+Sn、 V、l
Ga+ NbTt合金等がよく知られている。しかし、
これらの超伝導化合物は跪く、実用上あるいは製造上程
々の問題点が残されている。その問題点としては9例え
ば線材化の困難性等があげられる。
Conventionally, superconducting materials include Ntl:+Sn, V, l
Ga+NbTt alloys and the like are well known. but,
However, these superconducting compounds still have some practical and manufacturing problems. The problems include, for example, the difficulty in forming wire rods.

すなわち、超伝導特性を利用した種々の用途。In other words, various uses utilizing superconducting properties.

例えば超伝導コイルや機器部品の用途において線材条の
超伝導材料が望まれている現在9M造及び加工等成型が
容易で、かつ超伝導特性の優れた材料が好ましい。
For example, at present, superconducting materials in the form of wire rods are desired for use in superconducting coils and equipment parts, and materials that are easy to mold, such as 9M construction and processing, and have excellent superconducting properties are preferred.

従来、上記の目的を達しようとした試みで、母材の加工
性を利用し、近接効果により超伝導特性を向上させよう
とした材料の報告にシーエッチ1ジェイ、ロー アンド
 イー、ロー;ゼット、フィシツク(ch、 J、 R
aub and E、 Raub ; Z、 Ph1s
ik)186 (1965)、 310がある。この報
告では、鋳造材のTc (超伝導遷移温度)が低いため
、さらに焼入れ時効させ、焼入れ時効により向上したT
cとpb粒子との関係を示している。また、 Cu−N
b合金等においても同様の研究がなされている。しかし
ながら、これらは最適、の熱処理条件を施してはじめて
良好なTcを示しており、しかもpb及びNb粒子が熱
処理によって粒界に析出しており9機械的性質を著しく
劣化させる。すなわち、これらの報告においては、母材
の良好な加工性とpb粒子の近接効果から、加工性に優
れ、さらには超伝導特性にも優れた材料を得ようとした
わけであるが、鋳造材では加工性は優れているが、超伝
導特性は低く、さらに焼入れ時効を行うと、超伝導特性
は向上するが、加工性が非常に低下してしまうというこ
とで所期の目的は全く達せられておらず、またTcが1
〜2に程度では用途は全くなかった。
Previously, in an attempt to achieve the above objective, there were reports on materials that utilized the workability of the base material and tried to improve superconducting properties through the proximity effect, such as CH1 J, R & E, R; Fish (ch, J, R
aub and E, Raub; Z, Ph1s
ik) 186 (1965), 310. In this report, since the Tc (superconducting transition temperature) of the cast material is low, it is further quenched and aged, and the Tc (superconducting transition temperature) is improved by quenching.
It shows the relationship between c and pb particles. Also, Cu-N
Similar research has been conducted on b-alloys and the like. However, these exhibit good Tc only after being subjected to optimal heat treatment conditions, and furthermore, PB and Nb particles precipitate at the grain boundaries due to heat treatment, resulting in significant deterioration of mechanical properties. In other words, these reports attempted to obtain materials with excellent workability and superconducting properties from the good workability of the base material and the proximity effect of PB particles. Although the processability is excellent, the superconducting properties are low, and if the superconducting properties are further quenched and aged, the superconducting properties improve, but the processability decreases significantly, so the intended purpose cannot be achieved at all. and Tc is 1
-2 was of no use at all.

さらに、一般の超伝導材料は超伝導状態が壊れた時に大
電流が流れるために異常に発熱し9周囲の液体lieガ
スを沸騰させ、気化したHeガスにより爆発を起こす等
の危険がある。このような理由により、できるだけ超伝
導材料の導電率は高いことが望ましい。
Furthermore, in general superconducting materials, when the superconducting state is broken, a large current flows, which causes abnormal heat generation, boiling the surrounding liquid Lie gas, and causing an explosion due to the vaporized He gas. For these reasons, it is desirable that the conductivity of the superconducting material be as high as possible.

一方、第2相金属粒子分散型旧−pb系合金を液体急冷
法により急冷凝固して得、得られた合金材料の超伝導特
性を検討した発表がある〔日本金属学会:春朋大会 一
般概要(1984年4月) P2S5)。
On the other hand, there was a presentation that investigated the superconducting properties of the alloy material obtained by rapidly solidifying a second-phase metal particle-dispersed former-PB alloy using a liquid quenching method [Japan Institute of Metals: Shunho Conference General Overview (April 1984) P2S5).

この報告によると、約40nm粒径の微細なpb粒子を
母相中に均一に分散させることが可能で、超伝導特性も
向上していた。しかし、 Al基合金であるために’J
=N率は十分満足すべきものではなかった。
According to this report, it was possible to uniformly disperse fine PB particles with a particle size of about 40 nm in the matrix, and the superconducting properties were also improved. However, since it is an Al-based alloy, 'J
=N rate was not fully satisfactory.

本発明者らは、超伝導状態が壊れた場合にも電流をリー
クしやすい、すなわち導電率が高い合金を提供すること
を目的として鋭意検討した結果5特定の組成からなるC
u基合金を急冷凝固させると。
The present inventors conducted intensive studies with the aim of providing an alloy that easily leaks current even when the superconducting state is broken, that is, has high electrical conductivity.
When a u-based alloy is rapidly solidified.

上記の目的が達成され、微細な第2相金属粒子が均一に
分散してなる組織を有する合金が得られ。
The above objects have been achieved, and an alloy having a structure in which fine second phase metal particles are uniformly dispersed can be obtained.

得られた合金が超伝導特性に優れたCu基合金であるこ
とを見い出し9本発明を完成した。
The present invention was completed based on the discovery that the obtained alloy was a Cu-based alloy with excellent superconducting properties.

すなわち2本発明はPb、 Bi、 Tl、 l、i、
 Feからなる群より選ばれた少な(とも1種が1〜1
0原子%で、残部が実質的にCuよりなり、かつ母相中
に微細な第2相金属粒子が均一に分散してなるU織を有
するCu基超超伝導合金ある。
In other words, the two present inventions are Pb, Bi, Tl, l, i,
A small number selected from the group consisting of Fe (each type is 1 to 1
There is a Cu-based superconducting alloy having a U weave in which the content is 0 atomic %, the remainder is substantially Cu, and fine second phase metal particles are uniformly dispersed in the matrix.

本発明の合金について説明すると、 Pb、 Bi、 
TI。
To explain the alloy of the present invention, Pb, Bi,
T.I.

L+、 Feからなる群より選ばれた少なくとも1種が
1〜10原子%であることが必要であり、特に2〜5原
子%であることが好ましい。Pb、 Bi、 Tl、 
Li。
It is necessary that at least one selected from the group consisting of L+ and Fe is present in an amount of 1 to 10 atom %, and particularly preferably 2 to 5 atom %. Pb, Bi, Tl,
Li.

Feからなる群より選ばれた少なくとも1種が1原子%
未溝の場合には、 Tcが1.5に以下と非常に低く。
At least one selected from the group consisting of Fe is 1 atomic %
In the case of no groove, Tc is very low, less than 1.5.

また10原子%を超える場合には、得られる合金の母相
中の第2相金属粒子が均一に分散しなくなるため、 T
cが非常にばらつくようになり、しかも機械的強度も低
下する。
In addition, if it exceeds 10 atomic %, the second phase metal particles in the matrix of the resulting alloy will not be uniformly dispersed.
c becomes very variable, and mechanical strength also decreases.

また1本発明の合金にAh Si、 Snからなる群よ
り選ばれた1種又は2種以上の元素を4〜17原子%(
Snは3〜15原子%)、好ましくは5〜10原子%添
加すると、第2+目金属粒子の粒径の均−性及び分散状
態は良好のままで、母相を強化し1機械的性質を向上さ
せる効果や耐摩耗性を改善する効果がみられる。特に、
超伝導合金に優れた殿械的性質4例えば高い強度を与え
るということば、リード線、センサーとして利用する場
合にテンションをかけるが、この工程が支障なく、大変
容易に行えるというメリットを有しており、さらに構造
材料として利用することもできる。
In addition, one or more elements selected from the group consisting of Ah, Si, and Sn may be added to the alloy of the present invention in an amount of 4 to 17 atomic % (
When Sn is added (3 to 15 atomic %), preferably 5 to 10 atomic %, the uniformity of the particle size and the dispersion state of the second metal particles remain good, and the matrix is strengthened and the mechanical properties are improved. The effect of improving wear resistance and wear resistance can be seen. especially,
Superconducting alloys have excellent mechanical properties 4.For example, they provide high strength, and when used as lead wires or sensors, tension is applied, but this process has the advantage of being very easy to perform without any problems. It can also be used as a structural material.

本発明の合金を製造するには、前記合金組成を用い、雰
囲気中もしくは真空中で加熱溶融し、これを惣、冷凝固
させればよい。その急冷方法としては種々あるが1例え
ば液体惣冷法として知られる片ロール法、双ロール法及
び回転液中紡糸法等が特に有効である。これら片ロール
法2双ロール法では薄帯材料が9回転液中紡糸法では細
線材料が容易に連続的に、しかも低コストで製造するこ
とが可能である。
In order to produce the alloy of the present invention, the alloy composition described above may be heated and melted in an atmosphere or in a vacuum, and then cooled and solidified. Although there are various methods for rapid cooling, for example, a single roll method, a twin roll method known as a liquid cooling method, a spinning method in a rotating liquid, and the like are particularly effective. In the single roll method and the twin roll method, a thin ribbon material can be produced, whereas in the 9-turn submerged spinning method, a thin wire material can be easily produced continuously and at low cost.

本発明の合金は、溶湯状態では偏析が全くなく。The alloy of the present invention has no segregation in the molten state.

完全に合金化しているが、これを適当な速度で急冷凝固
化することにより1例えば母相中に粒径が1〜1100
n程度の非常に微細で、かつ1〜1100n程度の間隔
に均一に分散した第2相金属粒子を含むm織となる。
Although the alloy is completely alloyed, by rapidly solidifying it at an appropriate rate, the grain size of
It becomes an m-weave containing very fine second phase metal particles of about n size and uniformly dispersed at intervals of about 1 to 1100 n.

具体例をあげると、 94Cu−6Pbの合金組成をを
する本発明の第2相金属粒子分散型合金は、 Cuの母
相中に粒径約20〜40nmでほぼ完全な球形を有する
pb粒子が約50〜80nmの間隔で分散しており、こ
れは従来の粒子分散型合金と比較して粒子の微細さ。
To give a specific example, the second phase metal particle dispersed alloy of the present invention having an alloy composition of 94Cu-6Pb has Pb particles having a particle size of about 20 to 40 nm and an almost perfect spherical shape in a Cu matrix. The particles are dispersed at intervals of about 50 to 80 nm, which is finer than in conventional particle-dispersed alloys.

分散の均一性において非常に優れたものである。It has excellent uniformity of dispersion.

本発明のCu基合金は、、h記の組織を有しているため
、超伝導特性が改善され、特にPb、 Bi、 TI。
Since the Cu-based alloy of the present invention has the structure shown in h, the superconducting properties are improved, especially for Pb, Bi, and TI.

Li、 Felを変化させることによってTcを自由に
コントロールでき、しかも加工性が良く、冷間圧延及び
冷間線引きできることから、液体ヘリウム下で使用する
機器の配線材液面レベル計等各種工業用材料として非常
に有用である。特に、液体ヘリウムの液面レベル計は、
そのレヘルセンサーとしてTcが4.2に付近の材料が
使用され、超伝導から常伝導への遷移がシャープでなけ
ればならず1本発明の合金はそれらの点において特に優
れている。
Tc can be controlled freely by changing Li and Fel, and it has good workability and can be cold rolled and drawn, so it can be used as a wiring material for devices used under liquid helium, and for various industrial materials such as liquid level meters. It is very useful as In particular, liquid helium level meters are
A material with a Tc of around 4.2 is used as the reher sensor, and the transition from superconductivity to normal conduction must be sharp, and the alloy of the present invention is particularly excellent in this respect.

以下1本発明を実施例により具体的に説明する。The present invention will be specifically explained below using examples.

実施例1〜16.比較例1〜18 表=1に示す各種組成のCu基合金をアルゴンガス雰囲
気中で溶融させ、アルゴン噴出圧4.0 kg/cm2
+ 孔径0.12nuwΦのルビー製紡糸ノズルより3
2Orpmで回転している内径500mmΦの円筒ドラ
ム内に形成された温度4℃、深さ2cmの回転冷却液体
中に噴出して急冷凝固させて平均径0.1mmΦの円形
断面を有する細線状材料を得た。
Examples 1-16. Comparative Examples 1 to 18 Cu-based alloys having various compositions shown in Table 1 were melted in an argon gas atmosphere, and the argon injection pressure was 4.0 kg/cm2.
+ 3 from a ruby spinning nozzle with a hole diameter of 0.12 nuwΦ
A thin wire material having a circular cross section with an average diameter of 0.1 mmΦ is produced by ejecting it into a rotating cooling liquid with a temperature of 4°C and a depth of 2 cm formed in a cylindrical drum with an inner diameter of 500 mmΦ rotating at 2 rpm and rapidly solidifying it. Obtained.

これら細線状材料の組織観察を透過電子顕微鏡により測
定した。また1機械的性質は常温においてインストロン
型引張試験機を用いて測定した。
The structure of these thin wire materials was observed using a transmission electron microscope. 1. Mechanical properties were measured using an Instron type tensile tester at room temperature.

なお、超伝導遷移温度(Tc)については、試料をクラ
イオスクノト内部に取り付け、それに希薄なヘリウムガ
スを充填し、液体ヘリウム中に浸漬した後1通常の四端
子法により試料の電気抵抗を測定した。
As for the superconducting transition temperature (Tc), the sample is mounted inside a cryoskunoto, filled with dilute helium gas, and immersed in liquid helium.1The electrical resistance of the sample is measured using the usual four-terminal method. did.

また、加工製を示す線引可能の限界圧下率は。Also, the limit reduction rate that can be drawn to indicate processed products.

急冷凝固線材を各ダイスでの圧下率5%で、連続的に通
常のダイヤモンドダイスを用いて冷間線引きし、切断の
生じた線径から線引可能限界圧下率を求め7圧下率70
%以上冷間線引きができたものを加工性に優れたものと
した。
The rapidly solidified wire is continuously cold-drawn using a normal diamond die at a rolling reduction rate of 5% for each die, and the limit rolling reduction rate that can be drawn is calculated from the wire diameter where the break occurs.
% or more was considered to have excellent workability.

ここで、圧下率とはR5八、(χ)= (1〜−)X1
00R,A、 :圧下率 So;線引前の急冷凝固線材の断面積(mm”)S ;
線引後の伸線材の断面積(mm”)で表される線材の断
面減少率をいう。
Here, the rolling reduction rate is R58, (χ) = (1~-)X1
00R, A, : Reduction ratio So; Cross-sectional area of rapidly solidified wire before drawing (mm”) S;
It refers to the cross-sectional area reduction rate of the wire rod expressed in the cross-sectional area (mm'') of the drawn wire rod after drawing.

また、比較のため、従来技術で述べたch、 J、 R
a++band E、 Raub らの行った実験と同
様にして、 Cu−2pb合金を通常の鋳造法により得
、さらに800°Cから水中に固相焼入れした材料(比
較例−1)、さ表−1−2 表−1−3 表1より明らかなごとく、実施例1.2.5゜7、 8
. 9.10.11.12.13. 14.15.16
はCu中に第2和金属粒子が均一に分散し2加工性の良
好な超伝導材料であるが、比較例3. 8.10.12
゜14、17はPb、 Bi、 Tl、 Fe、 Li
iが少なく、 1.5にテもTcが現れず(測定機器上
1.5に以下の測定はできない)l上l交例4. 9.
 II、 13.15.18はPb、 8i。
Also, for comparison, ch, J, and R described in the prior art
Similar to the experiment conducted by Raub et al., a Cu-2pb alloy was obtained by a normal casting method, and the material was solid-phase quenched in water at 800°C (Comparative Example-1), Table 1- 2 Table-1-3 As is clear from Table 1, Example 1.2.5゜7, 8
.. 9.10.11.12.13. 14.15.16
Comparative Example 3. is a superconducting material with good workability in which secondary metal particles are uniformly dispersed in Cu. 8.10.12
゜14, 17 are Pb, Bi, Tl, Fe, Li
i is small, and Tc does not appear at 1.5 (the following measurements cannot be made at 1.5 on the measuring equipment) L-over-l intersection example 4. 9.
II, 13.15.18 is Pb, 8i.

Tl、 Fe、 Li量か多すぎて第2相金属粒子が均
一に分散しにくくなり、実用に供さない材料であった。
The amounts of Tl, Fe, and Li were too large, making it difficult for the second phase metal particles to be uniformly dispersed, making the material impractical.

また、実施例3〜5はSi、 AI、 Snの添加によ
って、超伝導性質の低下させることな(1機械的性質を
向上させることができている。しかしながら比較例5〜
7.16はSi、 AI、 Snが適正量を超えたため
に、母相がCu固溶体とならず、化合物相が現れ、加工
性を低下させてしまった。
Furthermore, in Examples 3 to 5, the addition of Si, AI, and Sn improved the mechanical properties without deteriorating the superconducting properties. However, in Comparative Examples 5 to
In No. 7.16, Si, AI, and Sn exceeded the appropriate amounts, so the parent phase did not become a Cu solid solution, and a compound phase appeared, reducing workability.

また、比較例1,2は本発明と同様の組成ではあるが、
第2相金属粒子の分数が悪く、特に粒界に析出しており
、加工性、 Tcも低く、超伝導材料としての有用性は
全くなかった。
In addition, although Comparative Examples 1 and 2 have the same composition as the present invention,
The number of second phase metal particles was poor, and they were particularly precipitated at grain boundaries, and the workability and Tc were also low, making it completely useless as a superconducting material.

Claims (1)

【特許請求の範囲】[Claims] (1)Pb、Bi、Tl、Li、Feからなる群より選
ばれた少なくとも1種が1〜10原子%で、残部が実質
的にCuよりなり、かつ母相中に微細な第2相金属粒子
が均一に分散してなる組織を有するCu基超伝導合金。
(1) At least one selected from the group consisting of Pb, Bi, Tl, Li, and Fe is present in an amount of 1 to 10 atomic %, and the remainder is substantially Cu, and a fine second phase metal is present in the matrix. A Cu-based superconducting alloy having a structure in which particles are uniformly dispersed.
JP59196352A 1984-09-19 1984-09-19 Superconductive cu alloy Granted JPS6173849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59196352A JPS6173849A (en) 1984-09-19 1984-09-19 Superconductive cu alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59196352A JPS6173849A (en) 1984-09-19 1984-09-19 Superconductive cu alloy

Publications (2)

Publication Number Publication Date
JPS6173849A true JPS6173849A (en) 1986-04-16
JPH045734B2 JPH045734B2 (en) 1992-02-03

Family

ID=16356410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59196352A Granted JPS6173849A (en) 1984-09-19 1984-09-19 Superconductive cu alloy

Country Status (1)

Country Link
JP (1) JPS6173849A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2613117A1 (en) * 1987-03-25 1988-09-30 Matsushita Electric Works Ltd COMPOSITE CONDUCTIVE MATERIAL, METHOD FOR MANUFACTURING THE SAME AND USE THEREOF IN A MATERIAL FOR ELECTRICAL CONTACTS
WO2005068671A1 (en) * 2004-01-15 2005-07-28 Taiho Kogyo Co., Ltd. Pb FREE COPPER ALLOY SLIDING MATERIAL
US7883588B2 (en) 2004-06-10 2011-02-08 Taiho Kogyo Co., Ltd. Pb-free bearing used for fuel-injection pump
US9028582B2 (en) 2008-01-23 2015-05-12 Taiho Kogyo Co., Ltd. Process for production of sintered copper alloy sliding material and sintered copper alloy sliding material
US9434005B2 (en) 2007-05-15 2016-09-06 Taiho Kogyo Co., Ltd. Pb-free copper-alloy sliding material, and plain bearing
US10041148B2 (en) 2006-08-05 2018-08-07 Taiho Kogyo Co., Ltd. Pb-free copper alloy sliding material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2613117A1 (en) * 1987-03-25 1988-09-30 Matsushita Electric Works Ltd COMPOSITE CONDUCTIVE MATERIAL, METHOD FOR MANUFACTURING THE SAME AND USE THEREOF IN A MATERIAL FOR ELECTRICAL CONTACTS
WO2005068671A1 (en) * 2004-01-15 2005-07-28 Taiho Kogyo Co., Ltd. Pb FREE COPPER ALLOY SLIDING MATERIAL
US7678173B2 (en) 2004-01-15 2010-03-16 Taiho Kogyo Co., Ltd. Pb-free copper-alloy sliding material
US7883588B2 (en) 2004-06-10 2011-02-08 Taiho Kogyo Co., Ltd. Pb-free bearing used for fuel-injection pump
US10041148B2 (en) 2006-08-05 2018-08-07 Taiho Kogyo Co., Ltd. Pb-free copper alloy sliding material
US9434005B2 (en) 2007-05-15 2016-09-06 Taiho Kogyo Co., Ltd. Pb-free copper-alloy sliding material, and plain bearing
US9028582B2 (en) 2008-01-23 2015-05-12 Taiho Kogyo Co., Ltd. Process for production of sintered copper alloy sliding material and sintered copper alloy sliding material
US9669461B2 (en) 2008-01-23 2017-06-06 Taiho Kogyo Co., Ltd. Process for production of sintered copper alloy sliding material and sintered copper alloy sliding material

Also Published As

Publication number Publication date
JPH045734B2 (en) 1992-02-03

Similar Documents

Publication Publication Date Title
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
Verhoeven et al. Strength and conductivity of in situ Cu-Fe alloys
KR20150080011A (en) Aluminum alloy wire and aluminum alloy twisted wire, covered electric wire, and wire harness using same
CN112662915A (en) Aluminum alloy and preparation method and application thereof
US10920306B2 (en) Aluminum alloy wire rod and producing method thereof
JP5589754B2 (en) Dilute copper alloy material and method for producing diluted copper alloy material excellent in hydrogen embrittlement resistance
US5733389A (en) Method of manufacturing a micro-alloy high purity aluminum conductor for use at ultra low temperature
US4082573A (en) High tensile strength aluminum alloy conductor and method of manufacture
CN100478470C (en) Precise resistive Cu-Mn-Ga-Ge alloy and preparation method thereof
JPS6173849A (en) Superconductive cu alloy
CN108823464B (en) Copper alloy material and preparation method thereof
CN115198133B (en) High-strength heat-resistant conductive copper alloy pipe and preparation method thereof
US4395464A (en) Copper base alloys made using rapidly solidified powders and method
JP5524901B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JPS58197241A (en) High strength cu alloy with high electric conductivity and superior resistance to erosion due to molten metal
CN117107093A (en) High-purity aluminum rod material for superconducting cable aluminum stabilizer and preparation method thereof
CN110284025B (en) Aluminum bronze material and preparation method thereof
CN1511970A (en) Copper base lump non-crystalline alloy
CN110218903B (en) ESP continuous casting crystallizer narrow-surface copper plate base metal and machining method thereof, and ESP continuous casting crystallizer narrow-surface copper plate
JP4754158B2 (en) Superconducting conductors containing a low temperature stabilizer based on aluminum
US3107998A (en) Copper-zirconium-arsenic alloys
RU2729281C1 (en) Aluminum alloy for electrical purposes
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JPS6376774A (en) Heat resistant high electrical conductivity copper alloy clad material
JPH05125499A (en) Aluminum-base alloy having high strength and high toughness