JPH04160099A - Method for growing inp single ctystal - Google Patents

Method for growing inp single ctystal

Info

Publication number
JPH04160099A
JPH04160099A JP28144390A JP28144390A JPH04160099A JP H04160099 A JPH04160099 A JP H04160099A JP 28144390 A JP28144390 A JP 28144390A JP 28144390 A JP28144390 A JP 28144390A JP H04160099 A JPH04160099 A JP H04160099A
Authority
JP
Japan
Prior art keywords
crystal
inp
grown
melt
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28144390A
Other languages
Japanese (ja)
Inventor
Kiyoteru Yoshida
清輝 吉田
Shoichi Ozawa
小沢 章一
Toshio Kikuta
俊夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP28144390A priority Critical patent/JPH04160099A/en
Priority to EP19910114547 priority patent/EP0476389A3/en
Publication of JPH04160099A publication Critical patent/JPH04160099A/en
Priority to US08/063,344 priority patent/US5379717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To inhibit the formation of a twin due to a facet at the shoulder of a crystal and to enhance the yield of single crystallization by adopting a specified method when an InP single crystal is grown by a flat top system with a liq. sealed pulling device. CONSTITUTION:When an InP single crystal of 2 in diameter is grown by a flat top system with a liq. sealed pulling device, polycrystalline InP as starting material is melted in a crucible, the tip of a seed is immersed in the resulting melt and crystal growth is started. A crystal is grown on the seed while controlling the dropping of temp. and the number of rotations of the crucible and the grown crystal is further grown in the transverse direction. At the time when the crystal attains to 30-40mm square, the rate of dropping of temp. is regulated to 0.13-0 deg.C/min and crystal growth in the transverse direction is stopped. After a meniscus appearing at the interface between the crystal and melt becomes stable, the crystal is pulled up at >=7mm/hr rate of pulling to obtain an InP single crystal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化合物半導体単結晶成長の内、特に双晶の発
生しゃすいInP単結晶成長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for growing a compound semiconductor single crystal, particularly an InP single crystal growth method that is less likely to generate twins.

〔従来の技術〕[Conventional technology]

一般にInP単結晶は、液体封止引上法(以下LEC法
という)4こよって引上げられている。
Generally, InP single crystals are pulled by a liquid confinement pulling method (hereinafter referred to as LEC method)4.

InP単結晶は、積層欠陥エネルギーが小さく、非常に
双晶が発生しやすい材料であるが、本発明者等は、In
PをLEC装置を使って引上げる際に、引上げ結晶の上
端面をフラットにして結晶を円柱状として引上げれば双
晶の発生を抑えられることを提案した。即ちフラットト
ップで結晶を引上げればInP単結晶を得ることは容易
であることを提案した。この方法はシードをInP融液
につけた後、融液温度を6〜10℃程度ステップダウン
し、結晶をシードに対して横方向に正方形状に成長せし
め、更に温度降下レートを0.2〜0,9℃/winと
して、温度を一定の割合で下げ、正方形状の結晶を更に
大きくし、所定の直径に達した時点で結晶を引上げるも
のである。
InP single crystal has a small stacking fault energy and is a material that is very likely to generate twins.
When pulling P using an LEC device, we proposed that the generation of twins could be suppressed by flattening the upper end surface of the pulled crystal and pulling the crystal in a cylindrical shape. That is, it was proposed that it would be easy to obtain an InP single crystal by pulling the crystal with a flat top. In this method, after a seed is immersed in an InP melt, the temperature of the melt is stepped down by about 6 to 10 degrees Celsius, the crystal is grown in a square shape laterally to the seed, and the temperature drop rate is further reduced by 0.2 to 0. , 9° C./win, the temperature is lowered at a constant rate, the square crystal is further enlarged, and the crystal is pulled up when it reaches a predetermined diameter.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

フラットトップ方法の成長では、成長初期に結晶形状を
横方向に正方形状に広げていくことが重要であるという
ことを既に述べたが、結晶引上げ開始時における引上げ
結晶の上端面と側面との境界部である肩部の形状に関し
ては明確に規定しなかった。しかし結晶肩部にわずかで
もP又はInの安定成長面であるファセット面を出すと
双晶が発生しやすく、単結晶化歩留りが悪くなる。従っ
て結晶肩部における形状制御方法が、単結晶化歩留りを
高めるのに重要な課題となっている。
In growth using the flat top method, we have already mentioned that it is important to expand the crystal shape laterally into a square shape at the initial stage of growth. The shape of the shoulder, which is the main part of the body, was not clearly defined. However, if even a small amount of facet planes, which are stable growth planes for P or In, are exposed at the crystal shoulders, twins are likely to occur, and the single crystallization yield will be poor. Therefore, a method for controlling the shape of the crystal shoulder is an important issue for increasing the single crystallization yield.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討の結果、結晶の肩部からの
双晶発生を抑止し、単結晶化歩留りを向上させることが
できるInP単結晶成長方法を開発したものである。
In view of this, and as a result of various studies, the present invention has developed an InP single crystal growth method that can suppress the generation of twins from the shoulder of the crystal and improve the single crystallization yield.

即ち本発明は、LEC法を用いてフラットトップ方式に
より直径2インチのInP単結晶を成長させる際に、成
長初期における結晶をInP融液表面の横方向に成長せ
しめ、該融液表面での結晶サイズが30〜40mm角に
達した時点で、融液の温度降下レートを0.13〜bし
て結晶の横方向への成長を止め、さらに固液界面でのメ
ニスカスが融液表面の全周にわたって見えるようになっ
た時点で、7mm/h+以上の引上げ速度で結晶を引上
げることにより、結晶の肩部でファセットがでないよう
にして単結晶を引上げる事を特徴とするものである。
That is, in the present invention, when growing an InP single crystal with a diameter of 2 inches by a flat top method using the LEC method, the crystal at the initial stage of growth is grown in the lateral direction of the surface of the InP melt, and the crystal on the surface of the melt is grown. When the size reaches 30 to 40 mm square, the temperature drop rate of the melt is set to 0.13 to b to stop the lateral growth of the crystals, and the meniscus at the solid-liquid interface grows all around the melt surface. The single crystal is pulled up at a pulling speed of 7 mm/h+ or more at the point when the entire area becomes visible, thereby preventing facets from forming at the shoulders of the crystal.

〔作 用〕[For production]

本発明は上記の如く、LEC装置を用いたフラットトッ
プ方式による直径2インチのInP単結晶成長において
、InPポリ原料を溶融し、これにシード先端を浸し、
15分間はどこの状態で保持した後、結晶成長を開始す
る。このとき温度降下とルツボ回転数を制御して結晶を
シードに成長させ、この結晶を横方向に成長させる。
As described above, the present invention involves growing an InP single crystal with a diameter of 2 inches by a flat top method using an LEC device, by melting an InP poly raw material and immersing a seed tip in it.
After holding this state for 15 minutes, crystal growth begins. At this time, a crystal is grown as a seed by controlling the temperature drop and crucible rotation speed, and this crystal is grown laterally.

結晶サイズが30〜40mm角に達したところで温度降
下レートを0.13〜b 結晶成長が止まるようにする。横方向への成長が止まり
始めると結晶と融液の界面にメニスカス(融液の結晶と
接する界面の界面張力による凹形状)が現われてくる。
When the crystal size reaches 30 to 40 mm square, the temperature drop rate is set to 0.13 to b to stop crystal growth. When the lateral growth begins to stop, a meniscus (a concave shape due to interfacial tension at the interface between the melt and the crystal) appears at the interface between the crystal and the melt.

このメニスカス形状が安定した所で結晶の引上げを開始
する。
When this meniscus shape becomes stable, crystal pulling is started.

しかして結晶径を止めるときの温度降下レートに、0.
13〜O℃7m1nと幅をもたせたのは、結晶径が止ま
るときの融液温度が高めにおちついたときは温度降下レ
ートを大きくして、引上げ開始後に結晶径が細くなるの
を防止する。また融液温度が低目におちついたときは温
度降下レートをより小さくして0℃/minに近づける
ようにする。このようにしてメニスカス形状が安定した
所で結晶を7mm/br以上の引上げ速度で引上げるこ
とにより、引上げた結晶は肩部でファセット面が出ず単
結晶となる。
Therefore, the temperature drop rate when stopping the crystal diameter is 0.
The reason for having a width of 13° C. to 7 m1n is to increase the temperature drop rate when the melt temperature reaches a high level when the crystal diameter stops, thereby preventing the crystal diameter from becoming thinner after the start of pulling. Furthermore, when the melt temperature has settled down to a low level, the temperature drop rate is made smaller so that it approaches 0° C./min. When the meniscus shape is stabilized in this way, the crystal is pulled at a pulling speed of 7 mm/br or more, so that the pulled crystal becomes a single crystal without facets appearing at the shoulders.

〔実施例〕〔Example〕

以下本発明を実施例について説明する。 The present invention will be described below with reference to Examples.

第1図に示すLEC装置を用いて、InP単結晶成長を
行った。図において、(1)は高圧チャンバー、(2)
はホットゾーン、(3)はヒータ、(4)はルツボ、(
5)は引上げ軸、(6)は不活性ガス、(7)はシード
、(8)はB2O3、(91はInPポリ原料、(11
はルツボ軸、(1υは熱電対、(12)は電極を示し、
チャージしたInPポリ原料−は1.2kg1B203
は200 g 、ルツボは4インチサイズの石英ルツボ
を用い、InPシードは(001)方位のシードを用い
た。またヒータはワインカップヒータ、高圧チャンバー
内に導入した不活性ガスはArまたはN2、ガス圧は3
5kg/cdである。
InP single crystal growth was performed using the LEC apparatus shown in FIG. In the figure, (1) is a high pressure chamber, (2)
is the hot zone, (3) is the heater, (4) is the crucible, (
5) is the pulling shaft, (6) is the inert gas, (7) is the seed, (8) is B2O3, (91 is the InP poly raw material, (11)
is the crucible axis, (1υ is the thermocouple, (12) is the electrode,
Charged InP poly raw material - 1.2kg1B203
was 200 g, a 4-inch quartz crucible was used, and an InP seed with a (001) orientation was used. The heater is a wine cup heater, the inert gas introduced into the high pressure chamber is Ar or N2, and the gas pressure is 3.
It is 5 kg/cd.

初めにInPポリ原料(9)をルツボ(4)内で溶融(
融液温度は約1070℃)し、InPの融液ができた後
、シード(7)の先端を融液の中に浸し、15分間程こ
の状態で保持した後、結晶成長を開始する。この時の温
度の降下の仕方とルツボ回転数の経時変化を第2図に示
す。即ち最初に融液温度を8℃(7〜10℃が適当であ
る)下げ、過冷却を作った後、結晶をシードに成長させ
る。
First, the InP poly raw material (9) is melted (
The melt temperature is about 1070° C.), and after an InP melt is formed, the tip of the seed (7) is immersed in the melt and held in this state for about 15 minutes, after which crystal growth is started. Figure 2 shows how the temperature decreases and the crucible rotational speed changes over time. That is, first, the melt temperature is lowered by 8° C. (7 to 10° C. is suitable) to create supercooling, and then crystals are grown as seeds.

この結晶が正方形状に成長していくように温度降下レー
トを与え、ルツボ回転数を徐々に増加していく。結晶の
サイズが30〜40閣角に達したところで温度降下レー
トを013〜b にコントロールして融液表面での横方向への結晶が止ま
る様にした。そしてこのときすてにルツボ回転数は−1
5「pmで一定とした。
A temperature drop rate is applied so that the crystals grow in a square shape, and the crucible rotation speed is gradually increased. When the size of the crystals reached 30 to 40 degrees, the temperature drop rate was controlled to 0.13 to 0.05 mm to stop crystallization in the lateral direction on the melt surface. And at this time, the crucible rotation speed is -1
5 It was assumed to be constant at pm.

このように融液表面での結晶の横方向への成長が止まり
始めると第3図に示すように結晶(14)と融液(13
)の界面にメニスカス(四が現われてくる(融液温度を
8℃下げた時点から25〜35分後)。
When the horizontal growth of the crystal on the surface of the melt begins to stop, the crystal (14) and the melt (13) start to stop as shown in Figure 3.
) A meniscus (4) appears at the interface (25 to 35 minutes after the melt temperature is lowered by 8°C).

メニスカス形状が融液表面での結晶の全周にわたって安
定して見られるようになった時点で8mm / h r
の速度で結晶の引上げを開始した。
8 mm/hr when the meniscus shape can be seen stably over the entire circumference of the crystal on the melt surface.
The pulling of the crystal was started at a speed of .

このようにして引上げた結晶は第4図に示すようにフラ
ットトップ形状で、かつ肩部(16)にファセット面が
出ず、双晶が入りに(い単結晶64)となった。
The crystal pulled in this manner had a flat top shape as shown in FIG. 4, had no facets on the shoulder (16), and had twin crystals (single crystal 64).

なお成長初期の過冷却度が大きい場合(成長初期の温度
のステップダウンの幅が15°〜10℃)は温度降下レ
ートを初めからゼロのままとしてこれが安定したところ
で引上げる。逆に過冷却度が小さい場合は約0.2℃/
minの温度降下レートを与えlOwn/h+程度の引
上げ速度で結晶を引上げるとよい。
Note that when the degree of supercooling at the initial stage of growth is large (the step-down width of the temperature at the initial stage of growth is 15° to 10° C.), the temperature drop rate is kept at zero from the beginning and is raised when it becomes stable. On the other hand, if the degree of supercooling is small, it will be approximately 0.2℃/
It is preferable to give a temperature drop rate of min and pull the crystal at a pulling rate of about 1Own/h+.

以上1nP単結晶について説明したが、この方法はGa
rb、In Sb等異方性の強い半導体の単結晶成長に
応用できる。
Although the above explanation was made for a 1nP single crystal, this method
It can be applied to single crystal growth of strongly anisotropic semiconductors such as rb and InSb.

〔発明の効果〕〔Effect of the invention〕

フラットトップ方式での単結晶化の最大の問題の一つは
、肩部での双晶発生を抑えることにあるが、本発明によ
れば肩部でファセットの発生を抑えることができ、双晶
の発生確率が非常に少なくなりInPの単結晶化歩留り
を大巾に向上することができる顕著な効果を奏する。
One of the biggest problems in single crystallization using the flat top method is to suppress the generation of twins at the shoulder, but according to the present invention, the generation of facets at the shoulder can be suppressed, and twin crystals can be prevented. This has the remarkable effect of significantly improving the yield of InP single crystallization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いたLEC装置の説明図、
第2図は本発明の結晶成長開始時の溶融温度の下げ方と
ルツボ回転の経時変化を示す説明図、第3図は本発明に
より結晶径が安定したときに固液界面に現われるメニス
カスを示す斜視図、第4図は本発明で結晶をフラットト
ップで引上げたときの肩部付近を示す側面図である。 1・・・高圧チャンバー  2・・・ホットゾーン3・
・・ヒータ      4・・・ルツボ5・・・引上げ
軸     6・・・不活性ガス7・・・シード   
   8・・・B2039・・・InPポリ原料  1
G・・・ルツボ軸11・・・熱電対      12・
・・電 極13・・・融 液      14・・・結
 晶15・・・メニスカス    16・・・肩 部第
1図 重量検出
FIG. 1 is an explanatory diagram of the LEC device used in the embodiment of the present invention,
Figure 2 is an explanatory diagram showing how to lower the melting temperature at the start of crystal growth according to the present invention and changes in crucible rotation over time. Figure 3 shows the meniscus that appears at the solid-liquid interface when the crystal diameter is stabilized according to the present invention. The perspective view and FIG. 4 are side views showing the vicinity of the shoulder when the crystal is pulled up with a flat top according to the present invention. 1... High pressure chamber 2... Hot zone 3.
... Heater 4 ... Crucible 5 ... Pulling shaft 6 ... Inert gas 7 ... Seed
8...B2039...InP poly raw material 1
G... Crucible axis 11... Thermocouple 12.
... Electrode 13 ... Melt 14 ... Crystal 15 ... Meniscus 16 ... Shoulder part Figure 1 Weight detection

Claims (1)

【特許請求の範囲】[Claims] 液体封止引上法を用いてフラットトップ方式により直径
2インチのInP単結晶を成長させる際に、成長初期に
おける結晶をInP融液表面の横方向に成長せしめ、該
融液表面での結晶サイズが30〜40mm角に達した時
点で、融液の温度降下レートを0.13〜0℃/min
として結晶の横方向への成長を止め、さらに固液界面で
のメニスカスが融液表面の全周にわたって見えるように
なった時点で、7mm/hr以上の引上げ速度で結晶を
引上げることにより、結晶の肩部でファセットがでない
ようにして単結晶を引上げる事を特徴とするInP単結
晶成長方法。
When growing an InP single crystal with a diameter of 2 inches using the flat top method using the liquid-sealed pulling method, the crystal at the initial stage of growth is grown in the lateral direction of the InP melt surface, and the crystal size on the melt surface is When the area reaches 30 to 40 mm square, the temperature drop rate of the melt is reduced to 0.13 to 0°C/min.
When the lateral growth of the crystal is stopped and the meniscus at the solid-liquid interface becomes visible over the entire circumference of the melt surface, the crystal is pulled at a pulling speed of 7 mm/hr or more. A method for growing an InP single crystal, which is characterized in that the single crystal is pulled up without facets at the shoulders of the crystal.
JP28144390A 1990-08-30 1990-10-19 Method for growing inp single ctystal Pending JPH04160099A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28144390A JPH04160099A (en) 1990-10-19 1990-10-19 Method for growing inp single ctystal
EP19910114547 EP0476389A3 (en) 1990-08-30 1991-08-29 Method of growing single crystal of compound semiconductors
US08/063,344 US5379717A (en) 1990-08-30 1993-05-18 Method of growing single crystal of compound semiconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28144390A JPH04160099A (en) 1990-10-19 1990-10-19 Method for growing inp single ctystal

Publications (1)

Publication Number Publication Date
JPH04160099A true JPH04160099A (en) 1992-06-03

Family

ID=17639248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28144390A Pending JPH04160099A (en) 1990-08-30 1990-10-19 Method for growing inp single ctystal

Country Status (1)

Country Link
JP (1) JPH04160099A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106083A1 (en) * 2004-04-28 2005-11-10 Nippon Mining & Metals Co., Ltd. InP SINGLE CRYSTAL WAFER AND InP SINGLE CRYSTAL MANUFACTURING METHOD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106083A1 (en) * 2004-04-28 2005-11-10 Nippon Mining & Metals Co., Ltd. InP SINGLE CRYSTAL WAFER AND InP SINGLE CRYSTAL MANUFACTURING METHOD
US8815010B2 (en) 2004-04-28 2014-08-26 Nippon Mining & Metals Co., Ltd. InP single crystal wafer and method for producing InP single crystal

Similar Documents

Publication Publication Date Title
US4040895A (en) Control of oxygen in silicon crystals
KR101997565B1 (en) Method for producing monocrystalline silicon
WO2003091483A1 (en) Method for producing silicon single crystal and, silicon single crystal and silicon wafer
JPH0321515B2 (en)
JPH04160099A (en) Method for growing inp single ctystal
US5379717A (en) Method of growing single crystal of compound semiconductors
JPH1087392A (en) Production of compound semiconductor single crystal
JPS63252989A (en) Production of semiconductor single crystal by pull-up method
JPH10167881A (en) Method for pulling semiconductor single crystal
JP3840683B2 (en) Single crystal pulling method
JP3473477B2 (en) Method for producing silicon single crystal
JP3885245B2 (en) Single crystal pulling method
JP2834558B2 (en) Compound semiconductor single crystal growth method
JP4755740B2 (en) Method for growing silicon single crystal
JPH11302094A (en) Production of compound semiconductor single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2739556B2 (en) Method for manufacturing piezoelectric crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JP3018429B2 (en) Method and apparatus for producing single crystal
JPH02212395A (en) Production of compound semiconductor crystal and producing device
JPH10212192A (en) Method for growing bulk crystal
JPH07206584A (en) Production of compound semiconductor single crystal
JPH04321590A (en) Growing method of single crystal
JPH10279382A (en) Production of signal crystal
JPS62235292A (en) Method for pulling compound single crystal