JPH04157733A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04157733A
JPH04157733A JP28317290A JP28317290A JPH04157733A JP H04157733 A JPH04157733 A JP H04157733A JP 28317290 A JP28317290 A JP 28317290A JP 28317290 A JP28317290 A JP 28317290A JP H04157733 A JPH04157733 A JP H04157733A
Authority
JP
Japan
Prior art keywords
gate
forming
metal
etching
spacer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28317290A
Other languages
Japanese (ja)
Inventor
Shinichi Sakamoto
晋一 坂本
Nobuyuki Kasai
笠井 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28317290A priority Critical patent/JPH04157733A/en
Publication of JPH04157733A publication Critical patent/JPH04157733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable increase in parasitic capacity to be controlled and gate length and gate resistance to be reduced by forming a resist pattern for upper electrode, etching a dummy gate, and forming a T-type gate within a gate recess by deposition and shift-off of a gate metal. CONSTITUTION:A spacer layer 6 is eliminated by etching with a resist pattern 7 as a mask. A deposition metal for forming a dummy gate 8 is deposited. An unneeded metal 8 is eliminated by lift-off. A GaAs activation layer 2 is etched from a gap between the spacer layer 6 and the deposition metal for forming a dummy gate 8, thus forming a gate recess 9. The spacer layer 6 and the deposition metal for forming a dummy gate 8 are eliminated by etching. A resist 10 is applied on an entire surface of the wafer and the gate recess 9 is buried again. The resist 10 is made thin by dry etching, thus enabling it to remain within the gate recess 9 only. A resist pattern for forming gate electrode 11 is formed. The dummy gate is eliminated by etching. A metal for gate electrode 5A is deposited with a resist pattern 10A remaining within the recess as a mask. Finally, a T-type gate electrode 5 is obtained and an FET structure is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置の製造方法◆こ関し、*1こG&
人S電界効果トランジスタ(以下FΣTと呼ぶ)、高電
子移動度トランジスタ(以下HEMTと呼ぶ〕等のゲー
ト電極を形成方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to a method for manufacturing a semiconductor device.
The present invention relates to a method for forming gate electrodes of field effect transistors (hereinafter referred to as FΣT), high electron mobility transistors (hereinafter referred to as HEMT), and the like.

〔従来の技術〕[Conventional technology]

一般に高周波FETの高性能化の為にはゲート長(Lg
)、ゲート抵抗(lLg)の低減が求められる。
Generally speaking, in order to improve the performance of high-frequency FETs, the gate length (Lg
), a reduction in gate resistance (lLg) is required.

この為ゲート電極の下部側を細く上部傭を広くしたいわ
ゆる。T形ゲート構造が使用されている。
For this reason, the lower part of the gate electrode is narrower and the upper part is wider. A T-shaped gate structure is used.

又、高耐圧の要求からゲートリセス構造も同時に採用し
た構造が用いられ、その製造を国難にしている。
In addition, due to the requirement for high voltage resistance, a structure that also includes a gate recess structure is used, making its manufacture a national problem.

第2図(a)〜(f)は従来のFETのグー) 13セ
ス内にT修ゲート電極を形成する工程を示す断面図であ
る。図において、 (1)は基板、(2)は活性層、(
3)はソース電極、(4)はドレイン電極、(5)はゲ
ート電極。
FIGS. 2(a) to 2(f) are cross-sectional views showing the process of forming a T gate electrode in the groove of a conventional FET. In the figure, (1) is the substrate, (2) is the active layer, (
3) is a source electrode, (4) is a drain electrode, and (5) is a gate electrode.

(6)、(6)はSiN又はSiONのスペーサ層、 
(6A)。
(6), (6) is a SiN or SiON spacer layer,
(6A).

(12A)はSiN又はSiONのスペーサ層の残り、
 −(7) 。
(12A) is the remainder of the SiN or SiON spacer layer;
-(7).

01はレジストである。01 is a resist.

次に従来の製造工程について説明する。初めに半導体基
板11)上に成長された活性層(2)上にソース電極(
4)及びドレイン電極(5)を形成し、ワエノ・全面に
SiN又はSiONのスペーサ層(6)を形成する。そ
の後、ゲートリセス形成用レジストパターン(7)ヲマ
スクにスペーサ層(6)をエツチング除去するC92図
(a))0次に開孔され1こスペーサ層(6)をマスク
に、活性層(2)をエツチングしゲートリセス(9)形
成する(第21!1(b) ) oさらにレジスト(7
)を除去した後、ゲートリセス(9)が埋まる様にJN
又はSiONのスペーサ層(至)を形成する(8112
図(c) ) oそしてドライエツチングでスペーサ層
@の厚み分除去すると1段差部にスペーサ層(2)の残
り(12A)がゲートリセス(9)の両隅に残る(第2
図(d))。
Next, the conventional manufacturing process will be explained. A source electrode (
4) and a drain electrode (5) are formed, and a spacer layer (6) of SiN or SiON is formed on the entire surface. Then, using the resist pattern (7) for gate recess formation as a mask, the spacer layer (6) is removed by etching. Etch to form gate recess (9) (No. 21!1 (b)) o Further resist (7)
) after removing JN so that the gate recess (9) is filled.
Or form a SiON spacer layer (8112)
Figure (c)) o Then, when the thickness of the spacer layer @ is removed by dry etching, the remainder (12A) of the spacer layer (2) remains at both corners of the gate recess (9) at one step (second
Figure (d)).

ついで、ゲート電極形成用レジストパターン0])を形
成し、ゲート電極用金属(5A)を蒸着で形成する(第
2図(e))。最後壷こリストオフ法により不要金属(
5A)及びレジスト(2)を除去し、ドライエツチング
を行いT形ゲート電極(5)を得てFET構造を形成す
る(第2図(f))。
Next, a resist pattern 0 for forming a gate electrode is formed, and a metal for the gate electrode (5A) is formed by vapor deposition (FIG. 2(e)). Unwanted metal (
5A) and the resist (2) are removed and dry etching is performed to obtain a T-shaped gate electrode (5) to form an FET structure (FIG. 2(f)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のゲートリセス構造でT形ゲートを形成するには第
2図のような製造工程で行われていたので、T形ゲート
形成後スペーサ層(至)の残り(12A)がゲートリセ
ス内に残り、ゲート電極とG&Aa活性層のあいだのS
iN又はSiON等の誘電体膜による寄生容量が増加し
FET等の高周波特性を損ねゲート長短縮の効果を低減
するという問題点があった0 この発明は上記のような問題点を解消するためになされ
Tこもので、ゲート長の短縮とゲート抵抗の低減ができ
る半導体装置の製造方法を得ることを目的とする。
To form a T-shaped gate with a conventional gate recess structure, the manufacturing process shown in Figure 2 was used, so after the T-shaped gate was formed, the remaining spacer layer (12A) remained in the gate recess, and the gate S between the electrode and the G&Aa active layer
There is a problem in that the parasitic capacitance due to the dielectric film such as iN or SiON increases, impairing the high frequency characteristics of FET etc. and reducing the effect of shortening the gate length. This invention is aimed at solving the above problems. An object of the present invention is to obtain a method of manufacturing a semiconductor device that can shorten the gate length and reduce the gate resistance.

〔課題を解決するγこめの手段〕[Gamma method to solve problems]

この発明に係る半導体装置の製造方法は、リセス構造で
のT形ゲートで寄生容量の増加を抑制して、ゲート長短
縮とゲート抵抗の低減ができる半導体装置の製造方法を
得るために、ダミーゲートとゲートリセスを形成し、ゲ
ートリセス内をレジストで埋め戻し、ダミーゲートの頂
部が露出するまでレジストのエツチングバックを行い、
上部電極用レジストパターン形成後壷こダミーゲートを
エツチングし、ゲート金属の蒸着・リフトオフにより、
ゲートリセス内にT形ゲートを形成するようにしたもの
である。
The method for manufacturing a semiconductor device according to the present invention suppresses an increase in parasitic capacitance using a T-shaped gate with a recessed structure, and provides a method for manufacturing a semiconductor device that can shorten the gate length and reduce gate resistance. Then, form a gate recess, backfill the inside of the gate recess with resist, and etch back the resist until the top of the dummy gate is exposed.
After forming the resist pattern for the upper electrode, the dummy gate is etched, and gate metal is deposited and lifted off.
A T-shaped gate is formed within the gate recess.

〔作用〕[Effect]

この発明における半導体装置の製造方法は、リセス構造
でのT形ゲートで寄生容量の、増加を抑制してゲート長
短縮とゲート抵抗の低減ができ高耐圧の電界効果トラン
ジスタを得る。
The method of manufacturing a semiconductor device according to the present invention suppresses an increase in parasitic capacitance in a T-shaped gate having a recessed structure, shortens the gate length and reduces gate resistance, and obtains a field effect transistor with high breakdown voltage.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図(ml−一はこの発明の一実施例である半導体装置の
製造工程を示す断面図で、図において、(1)は基板%
(2)は活性層、(3)はソース電極、(4)はドレイ
ン電極、(5)はゲート電極、(6)はSiN又はS 
iONのスペーサ層i7)、σ0.01はレジスト(8
)はダミーゲート形成用蒸着金属、(9)はゲートリセ
スである。
An embodiment of the present invention will be described below with reference to the drawings. 1st
Figure (ml-1) is a cross-sectional view showing the manufacturing process of a semiconductor device which is an embodiment of the present invention.
(2) is the active layer, (3) is the source electrode, (4) is the drain electrode, (5) is the gate electrode, (6) is SiN or S
iON spacer layer i7), σ0.01 is resist (8
) is the vapor-deposited metal for forming a dummy gate, and (9) is the gate recess.

次に製造工程を二ついて説明する。初めに半導体基板(
1)上に成長された活性層(2)上にソース電極(4)
及びドレづン電極(5)を形成し、ウェハ全面をこSi
N又は5IONのスペーサ層(6)を形成する(第1図
fa))。その後、スペーサ層(6)の加工用レジスト
パターン(7)を形成する(第1図(b))oその後、
レジストパターン(71をマスクにスペーサ層(6)を
エツチング除去する(第1図(c) ) 0ついで、ダ
ミーゲート形成用蒸着金属(8)を蒸着する(第1図(
d))0次に不要金属(7A)をリフトオフ除去する(
第1図(e))。
Next, two manufacturing processes will be explained. First, a semiconductor substrate (
1) Source electrode (4) on the active layer (2) grown on it
A drain electrode (5) is formed, and the entire surface of the wafer is covered with Si.
A spacer layer (6) of N or 5 ION is formed (FIG. 1 fa)). After that, a resist pattern (7) for processing the spacer layer (6) is formed (FIG. 1(b)).
The spacer layer (6) is removed by etching using the resist pattern (71) as a mask (FIG. 1(c)). Then, the vapor-deposited metal (8) for forming a dummy gate is deposited (FIG. 1(c)).
d)) Lift-off removal of unnecessary metal (7A) at 0th order (
Figure 1(e)).

そして、スペーサ層(6)とダミーゲート形成用蒸着金
属(8)との隙間よりcaAs活性層(2)ヲエッチン
グして、ゲートリセス(9)を形成する(第1図げ))
Then, the caAs active layer (2) is etched from the gap between the spacer layer (6) and the dummy gate-forming vapor-deposited metal (8) to form a gate recess (9) (Fig. 1))
.

さらに、スペーサ層(6)とダミーゲート形成用蒸着金
属(8)をエツチング除去する(第1図(g))。次に
ウェハ全面にレジスト(11を塗布しゲートリセス(9
)を埋め戻す(第1図(h))。ついで、レジス) (
11)をドライエツチングにより薄層化し、ゲートリセ
ス(9)内にのみ残す(第1図(t))。次看こ、ゲー
ト電極形成用レジストパターン0υを形成する(l!1
図(j))0次に、ダミーゲートヲエッチング除去する
(第1図(k) ) o ’f: して、リセス内に残
ったレジストパターン(IOA)をマスクとして、ゲー
ト電極用金属(5A)を蒸着するC第1図(1))o最
後に、リフトオフ法により不要金属(5A)及びレジス
) 01 、 (l0A)を除去し、T形ゲート電極(
5)を得てFKTlll造を形成する(第直図−)。
Further, the spacer layer (6) and the deposited metal (8) for forming a dummy gate are removed by etching (FIG. 1(g)). Next, a resist (11) is applied to the entire surface of the wafer, and a gate recess (9) is applied.
) (Figure 1 (h)). Next, Regis) (
11) is thinned by dry etching and left only in the gate recess (9) (FIG. 1(t)). Next, form a resist pattern 0υ for gate electrode formation (l!1
(Fig. 1 (j)) Next, the dummy gate is removed by etching (Fig. 1 (k)) o 'f: Then, using the resist pattern (IOA) remaining in the recess as a mask, the gate electrode metal (5A ) Figure 1 (1)) Finally, remove unnecessary metal (5A) and resist (10A) by lift-off method, and form T-shaped gate electrode (
5) to form an FKTll structure (Fig. 5-).

〔発明の効果〕〔Effect of the invention〕

以上のよう昏ユニの発明によれば、ダミーゲートとゲー
トリセスを形成し、ゲートリセス内をレジストで埋め戻
し、ダミーゲートの頂部が露出するまでレジストのエツ
チングバックを行い、上部電極用レジストパターン形成
後にダミーゲートをエツチングし、ゲート金属の蒸着・
リフトオフによりゲートリセス内にT形ゲートを形成す
るようにしたので、ゲート電極直下に誘電体膜が専在せ
ず。
As described above, according to Kouni's invention, a dummy gate and a gate recess are formed, the inside of the gate recess is backfilled with resist, the resist is etched back until the top of the dummy gate is exposed, and after the resist pattern for the upper electrode is formed, the dummy gate is etched back. Etching the gate and depositing gate metal
Since a T-shaped gate is formed within the gate recess by lift-off, the dielectric film is not exclusively located directly under the gate electrode.

リセス構造でのT形ゲートで寄生容量の増加を抑制して
、高耐圧でゲート長短縮とゲート抵抗の低減ができるの
で高周波領域で高性能なFETを得ることができる効果
がある。
A T-shaped gate with a recessed structure suppresses an increase in parasitic capacitance, and can shorten the gate length and reduce gate resistance with high breakdown voltage, which has the effect of making it possible to obtain a high-performance FET in a high frequency range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)−一はこの発明の一実施例である半導体装
置の製造工程を示す断面図、第2図(a)〜(f)は従
来の半導体装置の製造工程を示す断面図である。 図において、C1)は基板、(2)は活性層、(3)は
ソース電極、(4)はドレイン電極、(5)はゲート電
極、(6)はSiN又はSiONのスペーサ層、(7)
、α1.01はレジス) 、 (8)はダミーゲート形
成用蒸着金属、炙9)はゲートリセス、  (6A)、
 (12A)はSiN又はSiONのスペーサ層の残り
を示す。 なお1図中、同一符号は同一、または相当部分を示す。
FIG. 1(a)-1 is a cross-sectional view showing the manufacturing process of a semiconductor device according to an embodiment of the present invention, and FIGS. 2(a) to (f) are cross-sectional views showing the manufacturing process of a conventional semiconductor device. be. In the figure, C1) is the substrate, (2) is the active layer, (3) is the source electrode, (4) is the drain electrode, (5) is the gate electrode, (6) is the SiN or SiON spacer layer, (7) is the
, α1.01 is the resist), (8) is the evaporated metal for dummy gate formation, 9) is the gate recess, (6A),
(12A) shows the remainder of the SiN or SiON spacer layer. In Figure 1, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板の一方の主面上にソース・ドレイン電極を
形成した後ウェハ全面にSiN又はSiONのスペーサ
層を形成する工程、ダミーゲト電極形成用レジストパタ
ーンを形成する工程、ダミーゲート電極形成用金属を蒸
着する工程、レジストパターン除去後スペーサ層と前記
蒸着金属をマスクとして基板をエッチングする工程、ス
ペーサ層と前記蒸着金属をエッチング除去する工程、ウ
エハ全面にレジストを塗布した後レジストをエッチング
して前記エッチングされた基板の凹部にのみレジストを
残し基板のダミーゲートの頭出しをする工程、前記ダミ
ーゲート電極の上部に前記ダミーゲート電極より幅広の
上部ゲート電極用レジストパターンを形成する工程、基
板のダミーゲートをエッチング除去する工程、ゲート電
極用金属を蒸着する工程、不要金属をリフトオフしてゲ
ート電極を完成させ電界効果トランジスタを形成する工
程を備えたことを特徴とする半導体装置の製造方法。
After forming source/drain electrodes on one main surface of the semiconductor substrate, forming a SiN or SiON spacer layer on the entire surface of the wafer, forming a resist pattern for forming a dummy gate electrode, and vapor depositing metal for forming a dummy gate electrode. a step of etching the substrate using the spacer layer and the deposited metal as a mask after removing the resist pattern; a step of etching and removing the spacer layer and the deposited metal; a step of applying a resist to the entire surface of the wafer and etching the resist to remove the etched metal; forming a resist pattern for an upper gate electrode wider than the dummy gate electrode on the top of the dummy gate electrode; A method for manufacturing a semiconductor device, comprising the steps of removing by etching, depositing metal for a gate electrode, and lifting off unnecessary metal to complete a gate electrode to form a field effect transistor.
JP28317290A 1990-10-19 1990-10-19 Manufacture of semiconductor device Pending JPH04157733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28317290A JPH04157733A (en) 1990-10-19 1990-10-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28317290A JPH04157733A (en) 1990-10-19 1990-10-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04157733A true JPH04157733A (en) 1992-05-29

Family

ID=17662102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28317290A Pending JPH04157733A (en) 1990-10-19 1990-10-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04157733A (en)

Similar Documents

Publication Publication Date Title
US4472872A (en) Method of fabricating a Schottky gate field effect transistor
US5105242A (en) Field effect transistor having schottky contact and a high frequency characteristic
JPH0661266A (en) Semiconductor device and its manufacture
JPS6315475A (en) Manufacture of field effect semiconductor device
JPH04157733A (en) Manufacture of semiconductor device
JP2523985B2 (en) Method for manufacturing semiconductor device
JPH07118482B2 (en) Method for manufacturing semiconductor device
US5200357A (en) Method for the self-alignment of metal contacts on a semiconductor device, and self-aligned semiconductors
JPH065682B2 (en) Method for manufacturing semiconductor device
KR100230744B1 (en) Method of manufacturing a semiconductor device
JP3217714B2 (en) Method for forming gate of field effect transistor
JP3144089B2 (en) Method for manufacturing field effect transistor
JPH01122173A (en) Field-effect transistor
JPS6390171A (en) Manufacture of field effect transistor
JP2591162B2 (en) Method of manufacturing semiconductor device and semiconductor device manufactured thereby
JPS60198869A (en) Manufacture of semiconductor device
JP2709055B2 (en) Method for manufacturing semiconductor device
JPH033337A (en) Manufacture of semiconductor device
JP2657950B2 (en) Method of forming gate electrode
JPS6323366A (en) Manufacture of field-effect transistor
JPS6257257A (en) Manufacture of field effect type semiconductor device
JPH01189176A (en) Field effect transistor
JPH04239733A (en) Semiconductor device and manufacture thereof
JPH04274332A (en) Manufacture of semiconductor device
JPH05335340A (en) Gallium arsenide field-effect transistor