JPH04155963A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH04155963A
JPH04155963A JP2282487A JP28248790A JPH04155963A JP H04155963 A JPH04155963 A JP H04155963A JP 2282487 A JP2282487 A JP 2282487A JP 28248790 A JP28248790 A JP 28248790A JP H04155963 A JPH04155963 A JP H04155963A
Authority
JP
Japan
Prior art keywords
oxide film
gate
film
layer
control gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2282487A
Other languages
Japanese (ja)
Inventor
Akihiro Honma
本間 章博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP2282487A priority Critical patent/JPH04155963A/en
Publication of JPH04155963A publication Critical patent/JPH04155963A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To improve the reflow shape of a layer insulation film to prevent unnecessary aluminum from remaining by providing a normal pressure CVD insulating film being a sidewall on both sides of floating gate and control gate. CONSTITUTION:After a gate oxide film 2 is formed on a P-type silicon substrate 1 and then a floating gate 3, second gate oxide film 4 and control gate 5 are patterned to form a polysilicon oxide film 6, N<+>-layer 7 is formed by arsenic ion implantation. Subsequently, a CVD oxide film 8 to be a sidewall is grown on the whole surface of a wafer. At that time, the CVD oxide film in the stepped part of the control gate is thicker than that in the flat part thereof. Therefore, when anisotropic etching is conducted for the film thickness of the flat part, the desired side wall of CVD oxide film 8 is formed on both sides of the floating gate and control gate. After that, BPSG film 9, silicon oxide film 10 and BPSG film 11 are formed successively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路装置に関し、特にEPROML
S I等において、良好なりフロー形状を有する層間絶
縁膜を有する半導体集積回路装置の表面構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor integrated circuit device, and in particular to an EPROML device.
SI et al., relates to the surface structure of a semiconductor integrated circuit device having an interlayer insulating film having a good flow shape.

〔従来の技術〕[Conventional technology]

最近の半導体集積回路装置は、高集積化、高速化の要求
に伴ない、その中に含まれる素子の寸法はますます微細
化が進んでおり、層間絶縁膜においても微細かつ信頼性
の優れた構造をもつことが強く望まれている。従来のE
PROMにおいては、第2図(a)に示す様にフローテ
ィングゲートとコントロールゲートを形成したのちに、
層間絶縁膜として常圧CVD絶縁膜、薄いシリコン窒化
膜および常圧CVD絶縁膜を形成していた。従ってフロ
ーティングゲート、コントロールゲートとしてポリシリ
コンが2段になっている分2通常のMO8LSIのゲー
トポリシリコンより高くなり層間絶縁膜のりフロー形状
が悪くなっていた。
In recent years, semiconductor integrated circuit devices have become increasingly smaller due to the demand for higher integration and higher speed, and the dimensions of the elements included in them have become increasingly finer. It is strongly desired to have a structure. Conventional E
In PROM, after forming the floating gate and control gate as shown in Figure 2(a),
A normal pressure CVD insulating film, a thin silicon nitride film, and a normal pressure CVD insulating film were formed as interlayer insulating films. Therefore, since the floating gate and the control gate are made of polysilicon in two stages, the gate polysilicon is higher than that of a normal MO8LSI, and the flow shape of the interlayer insulating film is poor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のEPROM半導体集積回路装置では、第
2図(b)に示す様に層間絶縁膜のりフロー形状が悪い
ため、層間絶縁膜を形成した次に、金属配線となる例え
ばアルミニウムをスパッタリングして、アルミニウムを
パターニングする際のドライエツチングにおいて、アル
ミニウムを本来エツチングしなければならない箇所にア
ルミニウムが残りショートする不良が発生する危険性を
持っていた。
In the conventional EPROM semiconductor integrated circuit device described above, the flow shape of the interlayer insulating film is poor as shown in FIG. In dry etching when patterning aluminum, there was a risk that aluminum would remain in areas where aluminum should originally be etched, resulting in defects such as short circuits.

この様な不安定な構造のため、量産レベルでは、製造工
程等のばらつきにより、歩留の低下を招いていた。
Due to such an unstable structure, at the mass production level, variations in the manufacturing process, etc. have caused a decrease in yield.

本発明の目的は、層間絶縁膜形成工程の製造ばらつきの
影響をうけず、安定したりフロー形状を形成することが
でき、その結果アルミニウム配線形成工程において、ア
ルミニウムスパッタのカバレッジを良くすることができ
、またアルミニウムドライエツチング時、不要なアルミ
ニウムが残るこがない構造を有する半導体集積回路装置
を提供することにある。
An object of the present invention is to be able to form a stable flow shape without being affected by manufacturing variations in the interlayer insulating film forming process, and as a result, to improve aluminum sputter coverage in the aluminum wiring forming process. Another object of the present invention is to provide a semiconductor integrated circuit device having a structure in which no unnecessary aluminum remains during aluminum dry etching.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体集積回路装置は、半導体基板の一主面の
複数の素子活性領域上に第1のゲート酸化膜と、そのゲ
ート酸化膜上に形成されたフローティングゲートとなる
第1層目のポリシリコンと、その第2のゲート酸化膜上
に形成されたコントロールゲートとなる第2層目のポリ
シリコンとを有する半導体集M回路において、前述の第
1層目のフローティングゲートと第2層目のコントロー
ルゲートの両サイドに層間絶縁膜のりフロー形状を良く
するためのサイドウオールである常圧CVD絶縁膜を備
え、第1層目のフローティングゲート、第2層目のコン
トロールゲートおよびサイドウオールの形成された半導
体基板の表面に層間絶縁膜としての常圧CVD絶縁膜、
薄いシリコン窒化膜および常圧CVD絶縁膜とが形成さ
れていることを特徴として構成される。
The semiconductor integrated circuit device of the present invention includes a first gate oxide film on a plurality of element active regions on one principal surface of a semiconductor substrate, and a first layer of polyester, which becomes a floating gate, formed on the gate oxide film. In a semiconductor integrated M circuit having silicon and a second layer of polysilicon serving as a control gate formed on the second gate oxide film, the above-mentioned first layer floating gate and second layer A normal pressure CVD insulating film is provided on both sides of the control gate as a sidewall to improve the flow shape of the interlayer insulating film, and the first layer of floating gate, second layer of control gate and sidewall are formed. A normal pressure CVD insulating film as an interlayer insulating film on the surface of the semiconductor substrate,
The structure is characterized in that a thin silicon nitride film and an atmospheric pressure CVD insulating film are formed.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図<a)、(b)は本発明の一実施例のEPROM
半導体集積回路装置の工程順に示した断面図である。
FIG. 1<a) and (b) are EPROMs of one embodiment of the present invention.
FIG. 3 is a cross-sectional view showing the steps of the semiconductor integrated circuit device.

第1図(a)に示す様に従来と同じ工程によって、P型
シリコン基板1上にゲート酸化膜2を形成し、次にフロ
ーティングゲート3.第2ゲート酸化膜4.コントロー
ルゲート5のバターニングを行ない、ポリシリコン酸化
膜6を形成したのち、ヒ素イオン注入により、N+層7
を形成する0次にサイドウオールとなるべきCVD酸化
膜をウェーハ全面に成長させる。この時、コントロール
ゲートの段部においては、平坦部に比べCVD酸化膜厚
が厚くなるため、平坦部の膜厚分だけ異方性エツチング
を行うと、フローティングゲートとコントロールゲート
の両サイドに、所望のCVD酸化膜のサイドウオールが
形成される0次にBPSGg9.シリコン酸化膜10.
BPSG膜11全11する。
As shown in FIG. 1(a), a gate oxide film 2 is formed on a P-type silicon substrate 1 by the same process as in the conventional method, and then a floating gate 3. Second gate oxide film 4. After patterning the control gate 5 and forming a polysilicon oxide film 6, an N+ layer 7 is implanted by arsenic ion implantation.
A CVD oxide film, which is to become a zero-order sidewall, is grown over the entire surface of the wafer. At this time, the thickness of the CVD oxide film is thicker in the step part of the control gate than in the flat part, so if anisotropic etching is performed by the thickness of the flat part, the desired thickness will be formed on both sides of the floating gate and the control gate. 0-order BPSGg9. on which CVD oxide film sidewalls are formed. Silicon oxide film 10.
The entire BPSG film 11 is made 11.

第1図(b)はアルミニウム配線12をパターニングし
た後の断面図であるが層間絶縁膜のリフロー形状が良い
ためアルミニウム残りは発生せず、問題無くエツチング
される。
FIG. 1(b) is a cross-sectional view after patterning the aluminum wiring 12. Since the reflow shape of the interlayer insulating film is good, no aluminum remains and the etching is performed without any problem.

〔発明の効果〕〔Effect of the invention〕

以上説明したように従来のEPROM半導体集積回路で
はフローティングゲートとコントロールゲートとしてポ
リシリコンが2段になっている分、通常のMO3LSI
のゲートポリシリコンより高くない層間絶縁膜のりフロ
ー形状が悪くなっていたが、本発明では、フローティン
グゲートとコントロールゲートの両サイドにCVD酸化
膜のサイドウオールを形成したので、層間絶縁膜形成工
程のばらつきの影響をうけず、安定したりフロー形状を
形成することができる。これによりアルミニウム配線形
成工程において、アルミニウムスパッタのカバレッジを
良くすることができ、またアルミニウムドライエツチン
グ時、不要なアルミニウムが残るという開題を解決する
ことができるという効果を有する。
As explained above, conventional EPROM semiconductor integrated circuits have two layers of polysilicon as floating gates and control gates, so ordinary MO3LSI
However, in the present invention, CVD oxide film sidewalls are formed on both sides of the floating gate and control gate, so that the interlayer insulation film forming process is not as high as the gate polysilicon. It is not affected by variations and can form stable flow shapes. This has the effect that it is possible to improve the coverage of aluminum sputtering in the step of forming aluminum wiring, and it is also possible to solve the problem of unnecessary aluminum remaining during aluminum dry etching.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は本発明の一実施例の工程断面図
、第2図<a)、(b)は従来の半導体集積回路装置の
一例の工程断面図である。 1・・・P型シリコン基板、2・・・ゲート酸化膜、3
・・・フローティングゲート、4・・・第2ゲート酸化
膜、5・・・コントロールゲート、6・・・ポリシリコ
ン酸化膜、7・・・N+層、8・・・CVD酸化膜(サ
イドウオール)、9.11・・・BPSGM、10・・
シリコン窒化膜、12・・アルミニウム配線、13・・
・アルミニウム残り。
FIGS. 1(a) and 1(b) are process sectional views of an embodiment of the present invention, and FIGS. 2(a) and 2(b) are process sectional views of an example of a conventional semiconductor integrated circuit device. 1...P-type silicon substrate, 2...gate oxide film, 3
...Floating gate, 4...Second gate oxide film, 5...Control gate, 6...Polysilicon oxide film, 7...N+ layer, 8...CVD oxide film (side wall) , 9.11... BPSGM, 10...
Silicon nitride film, 12... Aluminum wiring, 13...
・Remaining aluminum.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の一主面の複数の素子活性領域上に形成され
た第1のゲート酸化膜と、該第1のゲート酸化膜上に形
成されたフローティングゲートとなる第1層目のポリシ
リコンと、該第1層目のポリシリコン上に形成された第
2のゲート酸化膜と、該第2のゲート酸化膜上に形成さ
れたコントロールゲートとなる第2層目のポリシリコン
とを有する半導体集積回路装置において、前記第1層目
のフローティングゲートと前記第2層目のコントロール
ゲートの両サイドに形成されたテーパーを持ったサイド
ウォールである常圧CVD絶縁膜を備え、前記第1層目
のフローティングゲート、第2層目のコントロールゲー
トおよびサイドウォールの形成された半導体基板の表面
に層間絶縁膜としての常圧CVD絶縁膜、薄いシリコン
窒化膜および常圧CVD絶縁膜とが形成されていること
を特徴とする半導体集積回路装置。
a first gate oxide film formed on a plurality of device active regions on one main surface of a semiconductor substrate; a first layer of polysilicon forming a floating gate formed on the first gate oxide film; A semiconductor integrated circuit having a second gate oxide film formed on the first layer polysilicon, and a second layer polysilicon serving as a control gate formed on the second gate oxide film. In the device, an atmospheric pressure CVD insulating film is provided as a tapered sidewall formed on both sides of the first layer floating gate and the second layer control gate, and the first layer floating gate A normal pressure CVD insulating film as an interlayer insulating film, a thin silicon nitride film, and a normal pressure CVD insulating film are formed on the surface of the semiconductor substrate on which the gate, second-layer control gate, and sidewalls are formed. Features of semiconductor integrated circuit devices.
JP2282487A 1990-10-19 1990-10-19 Semiconductor integrated circuit device Pending JPH04155963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2282487A JPH04155963A (en) 1990-10-19 1990-10-19 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2282487A JPH04155963A (en) 1990-10-19 1990-10-19 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH04155963A true JPH04155963A (en) 1992-05-28

Family

ID=17653081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2282487A Pending JPH04155963A (en) 1990-10-19 1990-10-19 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH04155963A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972743A (en) * 1982-10-20 1984-04-24 Toshiba Corp Wiring method for semiconductor device
JPS6245165A (en) * 1985-08-23 1987-02-27 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JPH02239625A (en) * 1989-03-13 1990-09-21 Sharp Corp Semiconductor device
JPH03248462A (en) * 1990-02-26 1991-11-06 Nec Corp Manufacture of mos semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972743A (en) * 1982-10-20 1984-04-24 Toshiba Corp Wiring method for semiconductor device
JPS6245165A (en) * 1985-08-23 1987-02-27 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JPH02239625A (en) * 1989-03-13 1990-09-21 Sharp Corp Semiconductor device
JPH03248462A (en) * 1990-02-26 1991-11-06 Nec Corp Manufacture of mos semiconductor device

Similar Documents

Publication Publication Date Title
US6130168A (en) Using ONO as hard mask to reduce STI oxide loss on low voltage device in flash or EPROM process
US5600170A (en) Interconnection structure of semiconductor device
KR0169279B1 (en) Semiconductor device and a method for manufacturing thereof
JPS63173340A (en) Manufacture of semiconductor device
JPH04155963A (en) Semiconductor integrated circuit device
JPH0513535B2 (en)
JP3134324B2 (en) Method for manufacturing semiconductor device
JP2001110782A (en) Method of manufacturing semiconductor device
US20030176036A1 (en) Method of manufacturing MOS semiconductor device having PIP capacitor
JP2701332B2 (en) Manufacturing method of floating gate type nonvolatile semiconductor memory device
JP2695812B2 (en) Semiconductor device
JPH04314366A (en) Semiconductor integrated circuit device
JPS63299142A (en) Manufacture of semiconductor device having multilayer interconnection structure
JPH10326896A (en) Semiconductor device and manufacture thereof
JP3132847B2 (en) Method for manufacturing semiconductor device
JPH0897212A (en) Manufacture of semiconductor device
JP2950620B2 (en) Semiconductor device
KR100575361B1 (en) Method for fabricating flash gate and high voltage gate
JP3015425B2 (en) Method for manufacturing semiconductor device
JPH0669152A (en) Semiconductor device and fabrication thereof
JPH07249634A (en) Gettering and semiconductor integrated circuit device
JPS6149439A (en) Manufacture of semiconductor device
JPH06169093A (en) Semiconductor device and manufacture thereof
JPH0251227A (en) Manufacture of semiconductor device
JPH02307222A (en) Semiconductor device