JPH04154619A - Raw material for superconductor, its production and production of superconductor using the raw material - Google Patents

Raw material for superconductor, its production and production of superconductor using the raw material

Info

Publication number
JPH04154619A
JPH04154619A JP2275797A JP27579790A JPH04154619A JP H04154619 A JPH04154619 A JP H04154619A JP 2275797 A JP2275797 A JP 2275797A JP 27579790 A JP27579790 A JP 27579790A JP H04154619 A JPH04154619 A JP H04154619A
Authority
JP
Japan
Prior art keywords
superconductor
raw material
mixture
raw materials
weighed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2275797A
Other languages
Japanese (ja)
Inventor
Toranosuke Ashizawa
寅之助 芦沢
Shuichiro Shimoda
下田 修一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2275797A priority Critical patent/JPH04154619A/en
Publication of JPH04154619A publication Critical patent/JPH04154619A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To increase the critical temperature of a superconductor by weighing raw materials containing Ba and/or Sr, Ca and Cu, mixing the weighed materials to obtain a primary mixture, calcining and crushing the mixture and adding a raw material containing Tl and Pb compounds to the crushed product to form a secondary mixture. CONSTITUTION:Raw materials such as oxides, carbonates or oxalates of M (M is Ba and/or Sr), Ca and Cu are weighed to get prescribed weight ratios and mixed with each other. The obtained primary mixture is calcined in air at about 860-980 deg.C and crushed. The obtained powdery mixture is added with specific amounts of a Tl compound (e.g. Tl2O3) and one or more Pb compounds selected from PbO2, Pb2O3 and Pb2O4 and the obtained secondary mixture is crushed to obtain a raw material for a superconductor having high critical temperature and composed of Tl-Pb-M-Ca-Cu-0 composition. As an alternative method, raw materials containing M, Ca, Cu, Tl and Pb are weighed, mixed with each other and calcined to get a raw material for superconductor. The raw material powder is compression-molded and the molded article is baked at 800-900 deg.C in a closed vessel to obtain a superconductor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超電導体用原料及びその製造法並びに該原料を
用いた超電導体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a raw material for a superconductor, a method for producing the same, and a method for producing a superconductor using the raw material.

(従来の技術) Tl −Ba −8r −Ca−Cu −0系の超電導
体は。
(Prior art) Tl-Ba-8r-Ca-Cu-0 type superconductor.

般にタリウム(Tl)、バリウム(Ba)、ストロンチ
ウム(Sr)、 力hシfy ム(Ca )、銅(Cu
)等の出発原料を同時に混合するか又はBa−8r −
Ca −Cu −一〇化合物とTl化合物とを混合して
超電導体用原料とし、これを焼成することにより得るこ
とができる。
Generally, thallium (Tl), barium (Ba), strontium (Sr), silicate metal (Ca), copper (Cu)
), or by simultaneously mixing starting materials such as Ba-8r −
It can be obtained by mixing a Ca-Cu-10 compound and a Tl compound to prepare a raw material for a superconductor, and firing the raw material.

Tl−Ba−8r −Ca−Cu−0系ノiiB 1に
4体d。
Tl-Ba-8r -Ca-Cu-0 system NoiiB 1 and 4 bodies d.

110に以上の高い臨界温度(以下T Re r Oと
する)を有する材料であることは知られている。
It is known that it is a material having a high critical temperature (hereinafter referred to as T Re r O) of 110° C. or higher.

しかし出発原料に用いるTl化合物、詳しくはTl酸化
物はその融点が酸素中で約717℃と低く。
However, the Tl compound used as a starting material, specifically Tl oxide, has a low melting point of about 717°C in oxygen.

Tl−Ba−8r−Ca−Cu−0系の超電導体を得る
ための焼成温度範囲(800〜900℃)で焼成すると
タリウムが揮散し易い。この次め組成ずれが生じ易−く
な5.Tc   も低下し易くなる。
If the firing is performed within the firing temperature range (800 to 900°C) for obtaining a Tl-Ba-8r-Ca-Cu-0 based superconductor, thallium is likely to volatilize. 5. This makes it easy for compositional deviations to occur. Tc also tends to decrease.

焼成時のタリウムの揮散を防止する方法とじてtd、 
Tl−Ba−8r −Ca−Cu−0系の超電導体用原
料を成形した試料を金箔で包み石英管に封入して焼成す
るかアルミナ、マグネシア等のセラミックス製の密閉容
器で焼成する方法等が知られている上ベピに示したセラ
ミックス製の密閉容器で焼成する方法において、容器の
密閉方法としては、容器と蓋の接触面を銀(Ag)ペー
ストでシールドするなどの工夫がなされていた。
Methods for preventing thallium volatilization during firing include td,
Methods include wrapping a molded sample of Tl-Ba-8r -Ca-Cu-0-based superconductor raw material in gold foil and sealing it in a quartz tube and firing it, or firing it in a closed container made of ceramics such as alumina or magnesia. In the known method of firing in a closed ceramic container as shown in the above example, the container was sealed by shielding the contact surface between the container and the lid with silver (Ag) paste. .

(発明が解決しようとする課題) しかしながら上記に示す方法では作業が煩雑で量産性に
乏しい、タリウムの揮散を完全に防止することができな
いという問題がある。
(Problems to be Solved by the Invention) However, the method described above has the problems that the work is complicated, that mass productivity is poor, and that volatilization of thallium cannot be completely prevented.

さらにタリウムが揮散すると組成ずれを起こし超電導性
を示さない不純物相が生成するという問題点がある。
Furthermore, when thallium volatilizes, there is a problem that a composition shift occurs and an impurity phase that does not exhibit superconductivity is generated.

本発明はかかる問題点を解消した超電導体用原料及びそ
の製造法並びに核原料を用いた超電導体の製造法を提供
することを目的とするものである(!1題を解決するた
めの手段) 本発明はTl−Pb −M−Ca−Cu−0(ftだし
MけBa及び/又はSr)の組成系からなる超電導体用
原料において、 Pbの出発原料としてPbO,、Pb
、0゜及びPb、Q4の鉛化合物の1種以上を含有して
なる超電導体用原料、M(ただしMはBa及び/又はS
r)、Ca及びCuを含む%原料を秤量し、一次混合し
た後、仮焼、粉砕し、さらに該粉砕物にTl及び上記の
鉛化合物を含む原料を加えて二次混合するか又は上記に
示す原料を同時に混合し次後仮焼する超電導体用原料の
製造法並びに該超電導体用原料を焼成する超電導体の製
造法に関する。
The object of the present invention is to provide a raw material for superconductors and a method for producing the same, which eliminates such problems, and a method for producing superconductors using nuclear raw materials (Means for Solving Problem 1) The present invention relates to a superconductor raw material having a composition system of Tl-Pb-M-Ca-Cu-0 (ft, M, Ba and/or Sr), in which PbO, Pb is used as a starting material for Pb.
, 0° and Pb, a superconductor raw material containing one or more of the lead compounds of Q4, M (where M is Ba and/or S
r), % raw materials containing Ca and Cu are weighed and mixed first, then calcined and pulverized, and further, a raw material containing Tl and the above-mentioned lead compound is added to the pulverized material and mixed secondarily, or The present invention relates to a method for producing a raw material for a superconductor, in which the raw materials shown below are simultaneously mixed and then calcined, and a method for producing a superconductor, in which the raw material for a superconductor is fired.

本発明において超電導体用原料を構成する成分中17)
Tl、 B、a、 8r、 Ca及びCuを含む原料(
出発原料)Kついては%に制限はないが9例えばこれら
の酸化物、炭酸塩、硝酸塩、蓚酸塩等の1糧又ii2樵
以上が用いられる。
Among the components constituting the raw material for superconductor in the present invention, 17)
Raw materials containing Tl, B, a, 8r, Ca and Cu (
Although there is no limit to the percentage of K (starting material), for example, one or more of these oxides, carbonates, nitrates, oxalates, etc. may be used.

またPb は、 Pb0z、 Pb5Os及びPb、0
4の鉛化合物の1種以上を用いるものとし、他の鉛化合
物。
Moreover, Pb is Pb0z, Pb5Os and Pb,0
One or more of the lead compounds listed in No. 4 shall be used, and other lead compounds.

例えば二価の鉛化合物であるPbO,Pb(OH)、等
を用いるとタリウムの揮散が多く9組成ずれが生じ、不
純物相が生成し易くなる。
For example, when divalent lead compounds such as PbO, Pb(OH), etc. are used, thallium volatilizes a lot, resulting in a compositional deviation, and impurity phases are likely to be generated.

混合方法については%に制限はないが、伺えば合成樹脂
側のボールミル内に合成樹脂で被覆したボール、エタノ
ール、メタノール等の溶媒及び原料を充填し、湿式混合
する方法、該原料をらいかい機で乾式混合することがで
きる。
There is no limit on the percentage of the mixing method, but if you ask, there is a method in which balls coated with synthetic resin, a solvent such as ethanol or methanol, and raw materials are filled in a ball mill on the synthetic resin side, and wet mixing is performed, and the raw materials are mixed in a sieve machine. Can be dry mixed.

仮焼幅1!1jは各原料の配合割合などにより適宜選定
されるが、860〜980℃の範囲が好ましく。
Although the calcination width 1!1j is appropriately selected depending on the blending ratio of each raw material, it is preferably in the range of 860 to 980°C.

また雰囲気は大気中、酸素雰囲気中、真空中、還元雰囲
気中等で行うことができ特に制限はない。
Further, the atmosphere is not particularly limited and can be carried out in the air, oxygen atmosphere, vacuum, reducing atmosphere, etc.

粉砕については寺に制限はな〈従来公知の方法。There are no restrictions on the method of crushing (using conventionally known methods).

例えば乳鉢などを用いて粉砕される。For example, it is ground using a mortar or the like.

焼成は密閉容器内で焼成することが好ましい。Firing is preferably performed in a closed container.

密閉容器としては、アルミナ、マグネシア等のセラミッ
クス製の容器を用いることが好ましい。
As the closed container, it is preferable to use a container made of ceramics such as alumina or magnesia.

焼成温度は各原料の配合割合などによシ適宜選定される
が、SOO〜900℃の範囲で焼成することが好ましい
Although the firing temperature is appropriately selected depending on the blending ratio of each raw material, it is preferable to perform firing in the range of SOO to 900°C.

(作用) 酸素分圧が高いとタリウムは高原子化状態となシ易(、
TI!+よりもTl3+が安定となる。しかもTl3+
化合物はTl+化合物よシも蒸気圧が低いことから、酸
素分圧が高い方がTI計化合物を多く生成し、タリウム
の揮散は抑制される。Tr−Pb−M−Ca −Cu−
0(た九しMはBa及び/又は8r)の組成系からなる
超電導体用原料において、Pbの出発原料としてPbO
,、Pb鵞03及びPb3O4のl攬以上を添加して超
電導体を製造した場合、pbo、。
(Effect) When the oxygen partial pressure is high, thallium tends to become highly atomized (,
TI! Tl3+ is more stable than +. Moreover, Tl3+
Since the vapor pressure of the compound is lower than that of the Tl+ compound, the higher the oxygen partial pressure, the more the TI meter compound is produced, and the volatilization of thallium is suppressed. Tr-Pb-M-Ca-Cu-
0 (M is Ba and/or 8r), PbO is used as the starting material for Pb.
,, pbo, when a superconductor is manufactured by adding more than 100% of PbO3 and Pb3O4.

pb、o、及びpb、o4はそれぞれ290℃、370
℃及び500℃で分解して酸素を発生する。この結果、
#!素分圧が高まり、タリウムの揮散及びそれによる組
成ずれを抑制できるものである。
pb, o, and pb, o4 are 290°C and 370°C, respectively.
decomposes at 500°C and 500°C to generate oxygen. As a result,
#! The elemental partial pressure is increased, and the volatilization of thallium and the resulting composition shift can be suppressed.

(実施列) 以下本発明の詳細な説明する。(Implementation row) The present invention will be explained in detail below.

実施例l BaO(高純度化学研究所製、純度99嘩以上)。Example l BaO (manufactured by Kojundo Kagaku Kenkyusho, purity 99% or higher).

SrO(高純度化学研究所類、純度99%以上)。SrO (High Purity Chemical Research Institute, purity 99% or more).

Cab(高純度化学研究新製、純度99.9L)及びC
ub(高純度化学研究新製、純[99,9ts)を第1
表に示す割合に秤量し出発原料とした。
Cab (Kojundo Kagaku Kenkyushin, purity 99.9L) and C
ub (high purity chemical research new product, pure [99.9ts) is the first
The starting materials were weighed in the proportions shown in the table.

この後上記の出発原料をらいかい機で30分間乾式混合
し、さらに電気炉を用いて大気中で920℃で24時間
仮焼し、ついてらいかい機で30分間粉砕した。
Thereafter, the above starting materials were dry mixed for 30 minutes in a sieve, calcined in the air at 920° C. for 24 hours using an electric furnace, and pulverized for 30 minutes in a sieve.

次にTl、O,(高純度化学研究新製、純度99.9チ
)及び第1表に示す鉛化合物を第1表に示す割合に秤量
して上記の粉砕物中忙添加し、乳鉢で均一に混合、粉砕
して超電導体用原料を得た。
Next, Tl, O, (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9) and the lead compounds shown in Table 1 were weighed in the proportions shown in Table 1 and added to the above pulverized material, and in a mortar. The raw materials for superconductors were obtained by uniformly mixing and pulverizing.

さらに上記で得た超電導体用原料を金型プレスで100
MPaの圧力で成形して厚さ2■の成形体を得た。つい
でこの成形体を密閉したアルミするつぼ中で865℃で
10時間焼成してTj系の超電導体を得た。
Furthermore, the raw material for superconductor obtained above was pressed into a mold press to produce 100%
A molded product having a thickness of 2 cm was obtained by molding at a pressure of MPa. This compact was then fired at 865° C. for 10 hours in a sealed aluminum crucible to obtain a Tj-based superconductor.

次に得られたTr系の超電導体を長さ20mX幅3s+
X厚さ2am+の直方体に加工し、四端子法で抵抗の温
度変化を測定し、Tc   を求めた。その結果を第1
表に示す。
Next, the obtained Tr-based superconductor has a length of 20 m x width of 3 s +
It was processed into a rectangular parallelepiped with a thickness of 2 am+, and the temperature change in resistance was measured using the four-terminal method to determine Tc. The result is the first
Shown in the table.

また得られ念Tl系の超電導体の化学組成をICP発光
分光分析で分析し、結晶相を粉末XIM回折で分析した
。その結果を第1表に示す。
Furthermore, the chemical composition of the obtained Tl-based superconductor was analyzed by ICP emission spectroscopy, and the crystal phase was analyzed by powder XIM diffraction. The results are shown in Table 1.

一方比叡例として鉛化合物KPbO(黄色)(小宗化学
製、試薬−級ンを用い九以外は、実施例と同様の工程を
経てTl系の超電導体を得、実施例1と同様の方法でT
c  e化学組成及び結晶相を求めた。その結果も合わ
せて第1表に示す。
On the other hand, as an example of Hiei, a Tl-based superconductor was obtained using the lead compound KPbO (yellow) (Kosou Chemical Co., Ltd., reagent grade) through the same steps as in Example 1, except for 9. T
c eChemical composition and crystal phase were determined. The results are also shown in Table 1.

なお実施例では鉛化合物としてPbO雪(高純度化学研
究新製、純[99%)及びPb、04(高純度化学研究
所鯛、純度99s)を用いた。
In the examples, PbO snow (manufactured by Kojundo Kagaku Kenkyu Shinsei, pure [99%)] and Pb, 04 (Kojundo Kagaku Kenkyoku Tai, purity 99s) were used as lead compounds.

第1表から明らかなように本発明の実施例に一&る超電
導体用原料を用いた超電導体は9組成ずれがほとんど生
ぜず、Tc  がlloK以上の値を示し9本発明に含
まれない組成の超電導体用原料を用いた超電導体に比軟
して7%、@Toが高いこと力わかる。
As is clear from Table 1, the superconductors using the raw materials for superconductors according to Examples of the present invention have almost no compositional deviation, and have a Tc value of lloK or more, which is not included in the present invention. It can be seen that @To is 7% higher than that of a superconductor using a superconductor raw material with the same composition.

(発明の効果) 本発明によれば、タリウムの揮散を押えeTeの高い超
電導体を得ることができ、また上記の効果を有する超電
導体を提供する超電導体用原料を得ることができる。
(Effects of the Invention) According to the present invention, it is possible to obtain a superconductor with high eTe while suppressing the volatilization of thallium, and it is also possible to obtain a raw material for a superconductor that provides a superconductor having the above-mentioned effects.

代理人 弁理士 若 林 邦 廖 手続補正書(自発) 平成3年 1月29 日Agent Patent Attorney Wakabayashi Bang Liao Procedural amendment (voluntary) January 29, 1991 Day

Claims (3)

【特許請求の範囲】[Claims] 1.Tl−Pb−M−Ca−Cu−O(ただしMはBa
及び/又はSr)の組成系からなる超電導体用原料にお
いて、Pbの出発原料としてPbO_2、Pb_2O_
3及びPb_3O_4の鉛化合物の1種以上を含有して
なる超電導体用原料。
1. Tl-Pb-M-Ca-Cu-O (where M is Ba
and/or Sr), PbO_2, Pb_2O_
A raw material for a superconductor containing one or more of lead compounds of 3 and Pb_3O_4.
2.M(ただしMはBa及び/又はSr)、Ca及びC
uを含む各原科を秤量し、一次混合した後、仮焼、粉砕
し、さらに該粉砕物にTl及び請求項1記載の鉛化合物
を含む原料を加えて二次混合するか又は上記に示す原料
を同時に混合した後仮焼することを特徴とする超電導体
用原料の製造法。
2. M (where M is Ba and/or Sr), Ca and C
Weigh each raw material containing U, and after primary mixing, calcining and pulverizing, further adding to the pulverized material a raw material containing Tl and the lead compound according to claim 1 and secondary mixing, or as shown above. A method for producing raw materials for superconductors, characterized by simultaneously mixing raw materials and then calcining them.
3.請求項2記載の超電導体用原料を焼成することを特
徴とする超電導体の製造法。
3. A method for producing a superconductor, comprising firing the raw material for a superconductor according to claim 2.
JP2275797A 1990-10-15 1990-10-15 Raw material for superconductor, its production and production of superconductor using the raw material Pending JPH04154619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2275797A JPH04154619A (en) 1990-10-15 1990-10-15 Raw material for superconductor, its production and production of superconductor using the raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275797A JPH04154619A (en) 1990-10-15 1990-10-15 Raw material for superconductor, its production and production of superconductor using the raw material

Publications (1)

Publication Number Publication Date
JPH04154619A true JPH04154619A (en) 1992-05-27

Family

ID=17560551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275797A Pending JPH04154619A (en) 1990-10-15 1990-10-15 Raw material for superconductor, its production and production of superconductor using the raw material

Country Status (1)

Country Link
JP (1) JPH04154619A (en)

Similar Documents

Publication Publication Date Title
US5376623A (en) Method to enhance critical temperature of thallium-based superconductors
JPH04154619A (en) Raw material for superconductor, its production and production of superconductor using the raw material
JPH0196055A (en) Superconductive ceramic composition
JPH0365513A (en) Raw material for superconductor, production thereof and production of superconductor using the same raw material
JPH03103321A (en) Raw material for superconductor, production thereof and production of superconductor using same raw material
JP3461654B2 (en) Manufacturing method of oxide superconductor
JPH05229823A (en) Production of oxide superconducting material
JP2556096B2 (en) Superconductor manufacturing method
JPH0292827A (en) Production of bi oxide superconductor
JPH01305845A (en) Production of oxide superconductor
JPH04124025A (en) Oxide superconductor and its production
JPH01219022A (en) Production of bi-ca-sr-cu-o superconducting oxide powder
JPH01126258A (en) Production of oxide high-temperature superconductive material
JPH03261647A (en) Production of sintered y1ba2cu3o7-x oxide superconductor
JPH01141871A (en) Production of superconducting material
JPH04104940A (en) Oxide superconductor and production thereof
JPH04124026A (en) Oxide superconductor and its production
JPH02120226A (en) Superconducting material of oxide
JPH04193718A (en) Oxide superconductor and its production
JPH07115920B2 (en) Oxide superconducting material and method for producing the same
JPH09118522A (en) Oxide superconductor having high critical current density
JPH04124027A (en) Oxide superconductor and its production
JPH01294568A (en) Production of superconductor
JPH01252529A (en) Production of tl-ca-sr-cu-o superconducting oxide powder
JPH02172823A (en) Production of bi-based oxide superconductor