JPH01294568A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPH01294568A
JPH01294568A JP63123642A JP12364288A JPH01294568A JP H01294568 A JPH01294568 A JP H01294568A JP 63123642 A JP63123642 A JP 63123642A JP 12364288 A JP12364288 A JP 12364288A JP H01294568 A JPH01294568 A JP H01294568A
Authority
JP
Japan
Prior art keywords
powder
product
vessel
molded body
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63123642A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Yoshiyuki Kashiwagi
佳行 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63123642A priority Critical patent/JPH01294568A/en
Publication of JPH01294568A publication Critical patent/JPH01294568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To suppress the impurity content and the scattering of Bi and to stabilize ths composition of the product by pulverizing a preliminarily calcined product of a powdery mixture of O compounds of Bi, Sr, Ca and Cu, forming the powder, preliminarily calcining the formed article at a specific temperature and subjecting the product to main calcination in a closed vessel. CONSTITUTION:Powders of compounds such as Bi2O3, SrCO3, CaCO3 and CuO are mixed at ratios to give atomic ratios of each metal component satisfying a prescribed relationship to obtain a mixed powder 1. The mixed powder is charged into a top-opened vessel 2 made of alumina ceramic and subjected to preliminary calcination to release gases. The preliminarily calcined powder is thoroughly crushed and the obtained processed fine powder is formed to obtain a formed article 3. The article 3 is set in the vessel 2 and preliminarily calcined. The product 6 is put into the vessel 2. The vessel containing the product is covered with a lid 7, introduced into a calcination furnace and heated in an oxidizing atmosphere to obtain a sintered material (ceramics).

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、一定の温度で電気抵抗がゼロになるいわゆる
超電導体に係り、特に液体窒素温度以上で超電導特性を
示すB i−S r−Ca−Gu−0系の超電導体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field The present invention relates to so-called superconductors whose electrical resistance becomes zero at a certain temperature, and in particular to B i-S r- which exhibits superconducting properties above liquid nitrogen temperature. The present invention relates to a method for producing a Ca-Gu-0 based superconductor.

B1発明の概要 本発明は、各々酸素と化合した、ビスマス(Bi)。Summary of B1 invention The present invention relates to bismuth (Bi), each of which is combined with oxygen.

ストロンチウム(Sr)、カルシウム(Ca)。Strontium (Sr), calcium (Ca).

銅(Cu)の粉末を出発原料とし、これら粉末の混合粉
末を仮焼成し、更に仮焼成後の粉末の成形体を仮焼成し
、最後の本焼成を閉鎖容器にて行うこと1こより、ビス
マスの飛散減少を防止した、B t−S r−Ca−C
u−0系の超電導体の製造方法であり、焼結体が液体窒
素温度以上(絶対温度77℃)以上で超電導を示す超電
導体の製造方法にある。
Copper (Cu) powder is used as a starting material, a mixed powder of these powders is calcined, a compact of the powder after calcining is calcined, and the final firing is performed in a closed container.1 From this, bismuth B t-S r-Ca-C
This is a method for manufacturing a u-0 type superconductor, in which a sintered body exhibits superconductivity at a temperature higher than liquid nitrogen temperature (absolute temperature 77°C) or higher.

C1従来の技術 1911年にカメリング・オンネスにより超電導現象が
発見されて以来、実用化に向けてさまざまな研究開発か
進められている。実用化には、臨海温度(Tc)か高け
れば高い程、冷却コストが安くて済むため、より高温で
の超電導の可能性をめぐってその超電導材料の激しい開
発競争が展開されている。
C1 Conventional technology Since the discovery of superconductivity by Kamerling Onnes in 1911, various research and development efforts have been made toward practical application. For practical application, the higher the critical temperature (Tc), the lower the cooling cost, so there is intense competition to develop superconducting materials with the potential for superconductivity at higher temperatures.

最近、液体窒素の温度77に以上の温度にて超電導現象
を生じるものとして、イツトリウム系銅酸化物が発見さ
れ、更には安価な材料でしかもTcが!05に程度を示
すB1−5r−Ca−Cu−0系の超電導体が発見され
るに至っている。
Recently, yttrium-based copper oxide has been discovered as a material that exhibits superconductivity at temperatures higher than the temperature of liquid nitrogen, which is 77°C, and it is also an inexpensive material that has Tc! A B1-5r-Ca-Cu-0-based superconductor showing a grade of 0.05 has been discovered.

D1発明が解決しようとする課題 前述のような材料は、液体窒素の温度以上の温度で超電
導現象を生じることから、この超電導を利用した具体的
な適用範囲が拡大してきた。
D1 Problems to be Solved by the Invention Since the above-mentioned materials exhibit superconductivity at temperatures higher than the temperature of liquid nitrogen, the specific scope of application utilizing this superconductivity has expanded.

しかし、上述のようなり i−9r−Ca−Cu−0系
の超電導体は、出発物質にビスマス(13i)を含むた
めに、混合成形体等を焼成炉で直接に焼成すると、熱負
荷によってBiが飛散し、出発混合時の組成と最終生成
物の組成との間で1ずれ」が生じる問題がある。
However, as mentioned above, since the i-9r-Ca-Cu-0-based superconductor contains bismuth (13i) as a starting material, when a mixed molded body is directly fired in a firing furnace, the heat load causes Bi There is a problem in that the composition of the starting mixture and the composition of the final product differ by 1.

発明者らの実験によれば、温度830〜880℃で数時
間焼成した場合に、ビスマスの含有量は混合時の量に対
して、7〜8%減少していることが判った。
According to experiments conducted by the inventors, it has been found that when firing at a temperature of 830 to 880° C. for several hours, the content of bismuth is reduced by 7 to 8% compared to the amount at the time of mixing.

これを解決するには、ビスマスの飛散減少を見込んだ量
のビスマスを用いればよいが、そうするとビスマス過剰
となって所定の超電導現象を生じない場合が発生するこ
とが判った。
To solve this problem, it is possible to use bismuth in an amount that takes into account the reduction in bismuth scattering, but it has been found that if this is done, there will be an excess of bismuth and the desired superconducting phenomenon will not occur.

また、所定の粉末を混合して直ちに焼成すると焼結体に
割れが生じたりして品質が不安定な場合があった。
Furthermore, if a predetermined powder is mixed and fired immediately, cracks may occur in the sintered body, resulting in unstable quality.

従って、ビスマスを含有した超電導体の場合にあっては
、超電導性能の低下、不安定を招来しやすく、量産化し
た場合には品質にバラツキを生じるおそれがある。
Therefore, in the case of a superconductor containing bismuth, the superconducting performance tends to deteriorate and become unstable, and when mass-produced, there is a risk of variations in quality.

これらの点に鑑み、本発明は、品質の安定したB1−3
r−Ca−Cu−0系の超電導体の製造方法を提供しよ
うとするものである。
In view of these points, the present invention provides B1-3 with stable quality.
The present invention aims to provide a method for producing an r-Ca-Cu-0-based superconductor.

E1課題を解決するための手段 本発明は、各々酸素と化合したビスマス、ストロンチウ
ム、カルシウム、銅の化合物粉末を混合した混合粉末を
作り、これをビスマス化合物の融点以下の温度で仮焼成
し、この仮焼成物を粉砕して加工粉末を作り、そして造
粒して造粒粉を得る。
E1 Means for Solving the Problems The present invention prepares a mixed powder of bismuth, strontium, calcium, and copper compound powders each combined with oxygen, and pre-sinters this at a temperature below the melting point of the bismuth compound. The calcined product is pulverized to produce processed powder, and then granulated to obtain granulated powder.

この造粒粉を加圧して成形体を作り、そして含有するビ
スマス化合物の融点以下の温度で仮焼成し、この仮焼成
後の成形体を閉鎖容器に収納して、これら容器と成形体
とを酸化性雰囲気中で且つ830〜880℃の範囲の温
度で本焼成して焼結体、すなわち超電導体を得るもので
ある。
This granulated powder is pressurized to make a molded body, which is then calcined at a temperature below the melting point of the bismuth compound contained.The calcined molded body is stored in a closed container, and these containers and the molded body are combined. The main firing is performed in an oxidizing atmosphere at a temperature in the range of 830 to 880°C to obtain a sintered body, that is, a superconductor.

なお、 ■混合粉体の時点での焼成は、焼結体(超電導体)に悪
影響を及ぼす、反応1分解によって発生するガス(例え
ばco!ガス)を除去するものであり、例えば800〜
900°Cの温度で焼成する。
Incidentally, ■Calcination at the time of mixed powder is to remove gases generated by reaction 1 decomposition (e.g. CO! gas) that have an adverse effect on the sintered body (superconductor).
Fire at a temperature of 900°C.

ただ、含有するビスマスの飛散を極力防止するためには
、含有するビスマス化合物の融点以下の温度にて焼成す
るのが好ましい。例えば、ビスマスをBi、03の形で
使用する場合は、これの融点(約820℃)以下の80
0〜820℃で焼成する。
However, in order to prevent the contained bismuth from scattering as much as possible, it is preferable to perform firing at a temperature below the melting point of the contained bismuth compound. For example, when bismuth is used in the form of Bi,03, 80
Calculate at 0-820°C.

また、焼成はガス放出の点から周囲が開放された状態で
行う。
In addition, firing is performed in an open environment from the viewpoint of gas release.

例えば、混合粉末を容器に入れて焼成する場合は、蓋は
しないか、又は隙間を置いて蓋をする。
For example, if mixed powder is placed in a container and fired, either do not cover it or cover it with a gap.

■成形体の焼成は、含まれるバイダ等の有機物の反応9
分解によって発生するガスを除去するものであり、上記
の■の場合と同様な条件で焼成する。ただし、組成成分
に起因する発生ガスは除去しているので温度は低温(例
えば約600℃)であっても差し支えない。
■ Firing of the molded body is a reaction 9 of organic matter such as binder contained in it.
This is to remove the gas generated by decomposition, and is fired under the same conditions as in case ① above. However, since gases generated due to the composition components are removed, the temperature may be low (for example, about 600° C.).

■閉鎖容器は、略閉鎖容器でよく、例えば自然に置いた
蓋を有する容器で差し支えない。また、アルミナセラミ
ックスで形成する。
■The closed container may be a substantially closed container, for example, a container with a naturally placed lid. Also, it is made of alumina ceramics.

■出発物質は、各々酸素と化合したBi、Sr。(2) The starting materials are Bi and Sr, each combined with oxygen.

Ca、Cuの粉末、例えば、酸化物、炭酸化物、水酸化
物、の様な化合物粉末を用いる。
A compound powder such as Ca or Cu powder, such as oxide, carbonate, or hydroxide, is used.

例えば、ビスマス酸化物(B i to 3)、銅酸化
物(Cub)、 ストロンチウム炭酸化物(SrCO3)、ストロンチウ
ム酸化物(SrO)、 ストロンチウム水酸化物(S r (OH)y)、カル
シウム炭酸化物(Ca CO3)、カルシウム酸化物(
Cab)、 カルシウム水酸化物(Ca(014)t)、が該当する
For example, bismuth oxide (B i to 3), copper oxide (Cub), strontium carbonate (SrCO3), strontium oxide (SrO), strontium hydroxide (S r (OH)y), calcium carbonate ( Ca CO3), calcium oxide (
This includes calcium hydroxide (Ca(014)t).

■焼結体のBi、Sr、Ca、Cuの成分原子比の関係
を出発時(混合時)換算で、 同じアルカリ土類であるSr、Caの関係が、S r 
: Ca= 1 : 0.3〜3゜他のBi、Cuの関
係が、 B i : Cu= 1 + 1.8〜4゜そしてこれ
ら両者の関係が、 (Sr+Ca)+(Bi+Cu)−1: l〜2゜の範
囲であれば、液体窒素で超電導現象(抵抗ゼロ又は極微
小値)が生じる焼結体を得ることができる。
■The relationship between the component atomic ratios of Bi, Sr, Ca, and Cu in the sintered body at the time of starting (at the time of mixing), and the relationship between Sr and Ca, which are the same alkaline earths, is S r
: Ca= 1 : 0.3~3° The relationship between other Bi and Cu is: B i : Cu= 1 + 1.8~4° And the relationship between these two is (Sr+Ca)+(Bi+Cu)-1: If the angle is in the range of 1 to 2 degrees, a sintered body in which a superconducting phenomenon (resistance of zero or extremely small value) occurs can be obtained in liquid nitrogen.

F9作用 ビスマスを含む原料を、初期の混合粉末の時点と、成形
体の時点の2回仮焼成しているので、反応1分解により
発生するガスは、この時点で殆ど除去され、本焼成の際
のガスの発生は僅かである。
Since the raw material containing F9 action bismuth is pre-calcined twice, once as an initial mixed powder and once as a compact, most of the gas generated by reaction 1 decomposition is removed at this point, and the gas generated during the main firing is removed. The amount of gas generated is small.

従って、本焼成は、成形体を閉鎖容器内に収納して行う
ことができるので、ビスマスの飛散は抑制できる。
Therefore, since the main firing can be carried out with the molded body housed in a closed container, scattering of bismuth can be suppressed.

G、実施例 以下、本発明を実施例に基づいて説明する。G. Example Hereinafter, the present invention will be explained based on examples.

先ず、混合粉末の生成について説明する。First, generation of mixed powder will be explained.

出発原料として粒径10μR以下のビスマス酸化物(B
iyOs)の粉末、ストロンチウム炭酸化物(SrCO
s)の粉末、カルシウム炭酸化物(CaC03)の粉末
、銅酸化物(Cub)の粉末を各々11.11mo 1
%、22.22mo1%、22.22mo1%、44.
44mo1%となるように秤量する。
As a starting material, bismuth oxide (B
iyOs) powder, strontium carbonate (SrCO
s) powder, calcium carbonate (CaC03) powder, and copper oxide (Cub) powder at 11.11 mo 1 each.
%, 22.22 mo1%, 22.22 mo1%, 44.
Weigh it so that it becomes 44mo1%.

次に、これらの粉末をボールミルで、アルコール(又は
原料粉末と反応しない溶媒)と玉石を入れ数時間充分に
混合し、得られたスラリーを約100℃の温度で乾燥し
て混合粉末を得る。
Next, these powders are thoroughly mixed in a ball mill with alcohol (or a solvent that does not react with the raw material powder) and cobblestones for several hours, and the resulting slurry is dried at a temperature of about 100° C. to obtain a mixed powder.

次に、この混合粉末Iを、第1図に示す上部が開口した
アルミナセラミックスからなる容器2に入れ、約800
°Cで2時間の条件で焼成(仮焼成)する。この際に、
例えば混合成分のSrCO3゜Ca COsに含まれる
CO,ガス等が発生放出する。
Next, this mixed powder I was put into a container 2 made of alumina ceramics with an open top as shown in FIG.
Calcinate (preliminary firing) at °C for 2 hours. At this time,
For example, CO, gas, etc. contained in the mixed components SrCO3°CaCOs are generated and released.

次に、得られた焼成粉を充分に粉砕し微細化した加工粉
末を得る。
Next, the obtained fired powder is sufficiently pulverized to obtain a fine processed powder.

次に、この加工粉末をボールミルで、アルコール(又は
原料粉末と反応しない溶媒)と玉石を入れ数時間充分に
混合し、得られたスラリーを約100℃の温度で乾燥す
る。
Next, this processed powder is thoroughly mixed in a ball mill with alcohol (or a solvent that does not react with the raw material powder) and cobblestones for several hours, and the resulting slurry is dried at a temperature of about 100°C.

そして、バインダーとしてポリビニルアルコールを、原
料粉末に対して1重量%となるようにポリビニルアルコ
ール溶液の形で添加する。
Then, polyvinyl alcohol is added as a binder in the form of a polyvinyl alcohol solution to 1% by weight based on the raw material powder.

更にアルコールを加え充分に混練した後、乾燥し5、ふ
るいにて150メツシユ以下の顆粒状の造粒粉を得る。
After further adding alcohol and thoroughly kneading, the mixture is dried and passed through a sieve to obtain granulated powder having a size of 150 mesh or less.

次に、この造粒粉を金型に充填した後、1〜2Ton/
cm″程度の圧力で圧縮成形して、外径40■、厚み約
6M11の成形体3を作る。
Next, after filling this granulated powder into a mold, 1 to 2 tons/
A molded body 3 having an outer diameter of 40 mm and a thickness of about 6 mm is made by compression molding at a pressure of about 1.5 cm.

次に、この成形体3を容器2にセットする際には、第2
図のように、まずアルミナ板から成るスペーサ4を容器
底部に置き、その上にこの成形体3と同じ組成の粉末を
敷粉5として薄く置く。そして、この敷粉5の上に成形
体3を載せる。
Next, when setting this molded body 3 in the container 2, the second
As shown in the figure, first, a spacer 4 made of an alumina plate is placed on the bottom of the container, and a thin layer of powder having the same composition as the molded body 3 is placed thereon as a bed powder 5. Then, the molded body 3 is placed on this bed powder 5.

この状態において、約600℃で2時間の条件で成形体
3を焼成(仮焼成)する。この際に、成形体3に残存し
ている有機物のバインダが分解ガスとなって放出される
In this state, the molded body 3 is fired (preliminary firing) at approximately 600° C. for 2 hours. At this time, the organic binder remaining in the molded body 3 is released as a decomposed gas.

次に、仮焼成した成形体6を、第3図に示すように容器
2内に(前述の第2図の場合と同様にして)収納し、容
器2の開口部を塞ぐために、M7を載せ、この状態の閉
鎖容器を焼成炉内に設置して、酸化性雰囲気で、且つ8
30〜880℃の温度で数時間加熱して焼結体(セラミ
ックス)を得る。
Next, the pre-fired molded body 6 is stored in the container 2 as shown in FIG. 3 (in the same manner as in the case of FIG. , the closed container in this state is placed in a firing furnace, and is heated in an oxidizing atmosphere.
A sintered body (ceramics) is obtained by heating at a temperature of 30 to 880°C for several hours.

上記の製造方法により得られた焼結体を、幅4肩肩、厚
さ4m肩、長さ40肩貢の形状に切り出して第4図に示
すように電極を設けて4端子法により、焼結体の抵抗を
測定した。
The sintered body obtained by the above manufacturing method was cut into a shape with a width of 4 mm, a thickness of 4 m, and a length of 40 mm. Electrodes were provided as shown in Figure 4, and sintered by the 4-terminal method. The resistance of the body was measured.

即ち第4図は、抵抗値を測定するための説明図で、焼結
体Sの長方向の両端側に電流を流すための端子 、a/
を設け、その内側に抵抗値を測定するための電圧端子す
、b’を設け、これを液体窒素の低温槽に入れ、端子a
、a’に1アンペアの安定化電流を流して端子す、b’
間の電圧を電圧計(V)で測定して端子す、b’間の電
圧降下によって抵抗値を測定する。なお、Aは電流計を
示す。
That is, FIG. 4 is an explanatory diagram for measuring the resistance value, and shows terminals for passing current through both ends of the sintered body S in the longitudinal direction, a/
, and voltage terminals A and B' for measuring the resistance value are provided inside the terminal.
, a' with a stabilized current of 1 ampere flowing through the terminals, b'
Measure the voltage between terminals A and B with a voltmeter (V), and measure the resistance value by the voltage drop between terminals A and B'. Note that A indicates an ammeter.

その結果、絶対温度的110にで超電導現象が始まり約
85Kに至って電気抵抗がゼロになることが確認された
As a result, it was confirmed that the superconducting phenomenon begins at an absolute temperature of 110 K and the electrical resistance becomes zero when the temperature reaches about 85 K.

また、焼成後のビスマス量を測定した結果、混合時の量
に対して2〜3%の減少に留どまっていた。
Further, as a result of measuring the amount of bismuth after firing, it was found that the amount decreased by only 2 to 3% compared to the amount at the time of mixing.

H0発明の効果 以上のように本発明による超電導体は、液体窒素温度(
77K)において超電導状態となる。
Effects of the H0 Invention As described above, the superconductor of the present invention has a liquid nitrogen temperature (
It becomes superconducting at 77K).

しかも、従来のイツトリウムを用いたものは、Tcが9
0に程度であったが、本発明のものにあっては、約10
5にであり、より高温度で超電導現象を生じることから
安定した超電導状態を維持できるものである。
Moreover, the conventional one using yttrium has a Tc of 9
However, in the case of the present invention, it was about 10
5, and since the superconducting phenomenon occurs at higher temperatures, a stable superconducting state can be maintained.

その上、原料の混合粉末を予め焼成(仮焼成)してガス
を放出させており、更に成形体を焼成して残存する有機
物を除去した後に、これを本焼成しているので、 ■焼結体に残存する不純物は極めて少なくなる。
In addition, the mixed powder of the raw materials is pre-fired (preliminary firing) to release gas, and the compact is fired after removing residual organic matter, which is then subjected to main firing. ■ Sintering Very few impurities remain in the body.

■仮焼成を行った原料を使用するので本焼成時の反応が
ゆるやかになる。
■Since raw materials that have been pre-fired are used, the reaction during main firing is slower.

■成形体の本焼成を閉鎖容器内で行えるので、含有する
ビスマスの飛散を防止でき、ビスマスの減少は初期混合
時の2〜3%の減少に留どまる。
(2) Since the main firing of the molded body can be carried out in a closed container, it is possible to prevent the contained bismuth from scattering, and the reduction in bismuth is limited to 2 to 3% at the time of initial mixing.

といった効果があり、この結果、組成が安定化し、品質
の安定した超電導体を得ることができる。
As a result, the composition is stabilized, and a superconductor with stable quality can be obtained.

しかも安価な原材料にて超電導体を形成でき、その上液
体窒素温度での冷却でよいことから、−層実用化に近付
き、特に電力、運輸等に関連した電気抵抗、及び精密計
器素子、その他エネルギー変換などの分野に利用可能と
なる等極めて侵れた効果を発揮する。
Moreover, since superconductors can be formed using inexpensive raw materials and only need to be cooled at liquid nitrogen temperatures, they are close to practical application, especially for electric resistance related to power, transportation, etc., precision instrument elements, and other energy sources. It can be used in fields such as conversion, and has extremely powerful effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における混合粉末の仮焼成の説明図、第
2図は本発明における成形体の仮焼成の説明図、第3図
は本発明における本焼成の説明図、第4図は本発明の焼
結体の抵抗値測定の方法を説明するための説明図である
。 ■・・・混合粉末、2・・・容器、3・・・成形体、6
・・・仮焼成した成形体、7・・・蓋、a、a’中電流
供給用端子、b、b’・・・電圧測定端子、S・・・焼
結体。 第1図 混合粉末の仮焼成の説明図 3・成形体 6・・仮焼成した成形体 成形体の仮焼成の説明図 第3図 本焼成の説明図
FIG. 1 is an explanatory diagram of the preliminary firing of the mixed powder in the present invention, FIG. 2 is an explanatory diagram of the preliminary firing of the compact in the present invention, FIG. 3 is an explanatory diagram of the main firing in the present invention, and FIG. 4 is an explanatory diagram of the present invention. FIG. 3 is an explanatory diagram for explaining a method of measuring the resistance value of a sintered body according to the invention. ■...mixed powder, 2...container, 3...molded body, 6
... Temporarily fired molded body, 7... Lid, a, a' medium current supply terminal, b, b'... Voltage measurement terminal, S... Sintered compact. Figure 1: Explanation of preliminary firing of mixed powder Figure 3: Molded body 6... Temporarily fired compact Figure 3: Explanation of final firing of the molded body

Claims (1)

【特許請求の範囲】[Claims] (1)各々酸素と化合したビスマス,ストロンチウム,
カルシウム、及び銅の化合物粉末を混合した混合粉末を
得る工程と、 該混合粉末を(ビスマス化合物の融点以下の温度で)仮
焼成してガス放出させる工程と、 該仮焼成物を粉砕して加工粉末を得ると共に造粒して造
粒粉を得ると共に該造粒粉を加圧して成形体を得る工程
と、 該成形体を後工程の本焼成温度以下の温度で仮焼成する
工程と、 該仮焼成後の成形体を閉鎖容器に収納すると共に、これ
ら容器と成形体とを830〜880℃の範囲の温度で本
焼成して焼結体を得る工程と、からなることを特徴とし
た超電導体の製造方法。
(1) Bismuth, strontium, each combined with oxygen,
A step of obtaining a mixed powder of calcium and copper compound powders, a step of calcining the mixed powder (at a temperature below the melting point of the bismuth compound) to release gas, and pulverizing and processing the calcined product. a step of obtaining a powder and granulating it to obtain a granulated powder and pressurizing the granulated powder to obtain a molded body; a step of pre-firing the molded body at a temperature below the main firing temperature in a subsequent step; A superconductor characterized by comprising the steps of storing the pre-fired molded body in a closed container and main firing the container and the molded body at a temperature in the range of 830 to 880°C to obtain a sintered body. How the body is manufactured.
JP63123642A 1988-05-20 1988-05-20 Production of superconductor Pending JPH01294568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63123642A JPH01294568A (en) 1988-05-20 1988-05-20 Production of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63123642A JPH01294568A (en) 1988-05-20 1988-05-20 Production of superconductor

Publications (1)

Publication Number Publication Date
JPH01294568A true JPH01294568A (en) 1989-11-28

Family

ID=14865647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63123642A Pending JPH01294568A (en) 1988-05-20 1988-05-20 Production of superconductor

Country Status (1)

Country Link
JP (1) JPH01294568A (en)

Similar Documents

Publication Publication Date Title
JPH01294568A (en) Production of superconductor
JPH02199055A (en) Production of superconductor
JPH01294564A (en) Production of superconductor
JPH01294567A (en) Production of superconductor
JPH01278452A (en) Superconductor and production thereof
JPH01278458A (en) Production of superconductor
JPH01278464A (en) Production of superconductor
JPH01278467A (en) Production of superconductor
JPS63291853A (en) Production of superconductor
JPH01278465A (en) Production of superconductor
JPH01278420A (en) Superconductor and production thereof
JPS63288951A (en) Production of superconductor
JPH01278421A (en) Superconductor and production thereof
JPH01294566A (en) Production of superconductor
JPS63291852A (en) Production of superconductor
JPH02199054A (en) Production of superconductor
JPH01278461A (en) Production of superconductor
JPH01278462A (en) Production of superconductor
JPH01278466A (en) Production of superconductor
JPH01278468A (en) Production of superconductor
JPH01278454A (en) Superconductor and production thereof
JPH01278455A (en) Superconductor and production thereof
JPS63291851A (en) Production of superconductor
JPH02196059A (en) Production of superconductor
JPS63291850A (en) Production of superconductor