JPH0414218A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH0414218A
JPH0414218A JP11718990A JP11718990A JPH0414218A JP H0414218 A JPH0414218 A JP H0414218A JP 11718990 A JP11718990 A JP 11718990A JP 11718990 A JP11718990 A JP 11718990A JP H0414218 A JPH0414218 A JP H0414218A
Authority
JP
Japan
Prior art keywords
wafer
boron
boat
gas
boron glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11718990A
Other languages
Japanese (ja)
Other versions
JP2730262B2 (en
Inventor
Koji Abe
浩司 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2117189A priority Critical patent/JP2730262B2/en
Publication of JPH0414218A publication Critical patent/JPH0414218A/en
Application granted granted Critical
Publication of JP2730262B2 publication Critical patent/JP2730262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent the generation of boron particles of a large crystalline form by a method wherein a semiconductor substrate is left to stand in a nitrogen atmosphere for prescribed hours or longer after a doping process. CONSTITUTION:A silicon wafer 1 is erected on a groove in a quartz boat, is heated at about 750 deg.C in carrier gas, such as N2 gas or the like, along with a PBN plate to perform a doping process and a high-concentration boron glass layer 4 is adhered on the surface of the wafer. The wafer is stored in an atmosphere, in which N2 gas is made to flow at a flow rate of 10l/minute, for 1.5 hours or longer along with the boat. The wafer is detached from the boat under a clean booth of 30% of lower of a humidity and is erected on a groove in another boat. This boat is moved to a diffusion furnace, in which such carrier gas an N2 gas or the like is made to flow, and a drive process at 1000 deg.C or higher is performed to form a p-type region 5 of a prescribed depth. It may be though that in case boron glass comes into contact to a moisture containing atmosphere and there is a boron crystal in the vicinity of the boron glass, the boron glass is adhered on the crystal to recrystallize and large crystal grains are generated. Accordingly, when the wafer is left to stand in the nitrogen atmosphere for 1.5 hours after the doping process, a large crystallization of the wafer due to the reaction of the wafer to water is prevented from being generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体基板表面に硼素ガラス層を形成したの
ち熱処理により硼素を基体内部へ拡散させる工程を含む
半導体素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, which includes a step of forming a boron glass layer on the surface of a semiconductor substrate and then diffusing boron into the interior of the substrate by heat treatment.

C従来の技術〕 半導体素子の製造のためのウェーハプロセスにおいて、
深さ40tna以上のp型拡散領域を形成する場合、不
純物濃度を高くしかつライフタイムの低下を防止する拡
散法を再現性良〈実施するには、BNの焼結体であり、
PBNと略されるパイロリテノクBN  (無性BN)
を拡散源として用いるのが最良とされている。拡散工程
は、ドープとドライブとに大別できる。ドープ時にはP
BN板より8.03がウェーハに向かって飛び、ウェー
ハ面の酸化膜マスクに覆われない領域がらウェーハ内に
硼素が拡散されると同時にウェーハ面上に高硼素濃度の
硼素ガラス層ができる。ドライブ時には、表面に硼素ガ
ラス層を有するウェーハをそのまま熱処理して所定の深
さまで硼素を拡散させる。水洗あるいは薬液処理などを
行ってウェーハ上の硼素ガラス層を除去すると、高濃度
で深いp型領域を得ることができないので、そのまま拡
散を行う。
C. Prior Art] In a wafer process for manufacturing semiconductor devices,
When forming a p-type diffusion region with a depth of 40 tna or more, a diffusion method that increases the impurity concentration and prevents a decrease in lifetime is performed with good reproducibility.
Pyrolitenoch BN (asexual BN) abbreviated as PBN
It is considered best to use this as a diffusion source. Diffusion processes can be broadly divided into doping and driving. P when doping
8.03 flies toward the wafer from the BN plate, and boron is diffused into the wafer from the area not covered by the oxide film mask on the wafer surface, and at the same time a boron glass layer with a high boron concentration is formed on the wafer surface. During driving, the wafer having a boron glass layer on its surface is directly heat-treated to diffuse boron to a predetermined depth. If the boron glass layer on the wafer is removed by water washing or chemical treatment, it is not possible to obtain a deep p-type region with high concentration, so diffusion is performed as is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような方法で硼素の拡散を行うと、ドライブ工程
前にウェーハ面上に粒径2o〜100 tera程度の
結晶状の硼素粒が発生しているのが見られる。
When boron is diffused by the method described above, crystalline boron grains with a grain size of about 20 to 100 tera are seen to be generated on the wafer surface before the drive process.

この粒が存在すると、ドライブ工程で硼素がフォトリソ
グラフィでバターニングされた酸化膜でマスフされた部
分を突き抜け、必要でない部分にp型頭域をつくる。こ
れにより、n型領域の抵抗値が異常となる。また、粒が
マスクの細かいパターンの上に発生すると、ドライブ工
程で生ずる両側のp型頭域を電気的に短絡してしまう。
If these grains are present, boron during the drive process penetrates through the masked part of the oxide film patterned by photolithography, creating a p-type head region in unnecessary parts. As a result, the resistance value of the n-type region becomes abnormal. Furthermore, if grains are generated on a fine pattern of the mask, they will electrically short-circuit the p-type head regions on both sides produced in the drive process.

このように大きい結晶状の硼素粒の発生は製造工程にお
ける半導体素子の良品率の低下の原因となる。このドー
プ後に発生する結晶状の硼素粒は、水洗により簡単に除
去できる。しかし、それと同時に前述のように高濃度硼
素ガラス層も除去されてしまうため、水洗いを行うこと
ができない。
The occurrence of such large crystalline boron grains causes a decrease in the yield rate of semiconductor devices during the manufacturing process. Crystalline boron particles generated after doping can be easily removed by washing with water. However, at the same time, as mentioned above, the high concentration boron glass layer is also removed, so washing with water cannot be performed.

本発明の目的は、上記の問題の解決のための根本的な対
策として大きい結晶状の硼素粒の発生を阻止してドープ
を行う半導体素子の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device in which doping is performed while preventing the formation of large crystalline boron grains as a fundamental measure to solve the above-mentioned problems.

〔課題を解決するための手段〕 上記の目的を達成するために、本発明は、半導体基板を
酸化硼素を含む雰囲気中で加熱して半導体基板表面に硼
素ガラス層を付着させるドープ工程と、硼素ガラス層の
付着した半導体基板を加熱して基板内に硼素を拡散させ
るドライブ工程とを含む半導体素子の製造方法において
、ドープ工程の後半導体基板を窒素雰囲気中で1.5時
間以上放置し、次いでドライブ工程に移るものとする。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a doping process in which a semiconductor substrate is heated in an atmosphere containing boron oxide to deposit a boron glass layer on the surface of the semiconductor substrate, and a boron glass layer is deposited on the surface of the semiconductor substrate. In a method of manufacturing a semiconductor device, which includes a drive step of heating a semiconductor substrate to which a glass layer is attached to diffuse boron into the substrate, the semiconductor substrate is left in a nitrogen atmosphere for 1.5 hours or more after the doping step, and then Let's move on to the drive process.

〔作用〕[Effect]

硼素ガラスが水分を含む雰囲気に接触すると、B2O3
+ HtO−2HB(hの反応が起こることが知られて
おり、水が多いと水溶液になるが、近傍に硼素結晶があ
る場合にはその結晶に付着して再結晶し、大きな結晶粒
が発生すると考えられる。実際に観察した結果では、大
結晶化した硼素粒の近傍には小さい硼素粒は見られなか
った。そしてドープ工程後、窒素雰囲気中に1.5時間
放置すると、水との反応による大結晶化が防止され、大
きな結晶粒の発生は100%抑えることができることが
確認された。
When boron glass comes into contact with an atmosphere containing moisture, B2O3
+HtO-2HB (h) reaction is known to occur, and if there is a lot of water, it will become an aqueous solution, but if there is a boron crystal nearby, it will attach to the crystal and recrystallize, producing large crystal grains. According to actual observation results, small boron grains were not observed near large crystallized boron grains.After the doping process, when left in a nitrogen atmosphere for 1.5 hours, the reaction with water occurred. It was confirmed that large crystallization caused by the above was prevented and the generation of large crystal grains could be suppressed by 100%.

〔実施例〕〔Example〕

第1図fat〜(C1は本発明の一実施例におけるp型
領域形成工程を概念的に示す、先ず、n型シリコンウェ
ーハ1の表面上に全面的に酸化#2を形成した後、フォ
トリソグラフィでバターニングして開口部3を開けた 
(図〈δ))0次に、この複数枚のウェーハを石英ボー
トの溝に立て、PBN板と共にN2などのキャリアガス
中で約750℃に加熱してドープ工程を行い、表面に高
濃度の硼素ガラス層4を付着させた(図(bl)、つづ
いて、ウェーハをボートと共に1011分の流量でN、
ガスを流した雰囲気中に1.5時間以上保管する。この
あと、湿度30Vo以下のクリーンブースの下でウェー
ハをボートからはずし、別のボートの溝に立てる。この
ボートをN2などのキャリアガスを流す拡散炉に移し、
1000℃以上でのドライブ工程を行って所定の深さの
p型領域5を形成した く図(el)、このような工程
でp型頭域を形成したときには、付着硼素粒からの拡散
による望ましくない位置でのp型頭域の形成は認められ
なかった。
Figure 1 fat~(C1 conceptually shows the p-type region forming step in one embodiment of the present invention. First, oxide #2 is formed on the entire surface of the n-type silicon wafer 1, and then photolithography is performed. I buttered it and opened opening 3.
(Fig. δ)) Next, these multiple wafers are placed in the groove of a quartz boat, and a doping process is performed by heating them together with a PBN plate to about 750°C in a carrier gas such as N2, to coat the surface with a high concentration. A boron glass layer 4 was deposited (Fig.
Store in a gas atmosphere for at least 1.5 hours. Thereafter, the wafers are removed from the boat in a clean booth with a humidity of 30 Vo or less, and placed in a groove in another boat. Transfer this boat to a diffusion furnace that flows a carrier gas such as N2,
The p-type region 5 with a predetermined depth is formed by performing a drive process at a temperature of 1000°C or higher (see Figure 1). No formation of a p-type head region was observed in positions where no p-type head was present.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ドープ工程で形成した硼素ガラス層か
らの大きな結晶状の硼素粒の発生を、ドープ工程後半導
体基板を窒素雰囲気中に放置することにより抑制し、マ
スクを通り抜ける拡散によって生ずる望ましくない硼素
拡散工程の形成を防止することができた。これにより、
硼素拡散工程での不良品の発生を大幅に低減することが
でき、良品率を高いレベルで維持することが可能になっ
た。
According to the present invention, the generation of large crystalline boron grains from the boron glass layer formed in the doping process is suppressed by leaving the semiconductor substrate in a nitrogen atmosphere after the doping process, and the generation of large crystalline boron grains due to diffusion through the mask is suppressed. It was possible to prevent the formation of no boron diffusion process. This results in
The occurrence of defective products during the boron diffusion process has been significantly reduced, making it possible to maintain a high rate of non-defective products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の硼素拡散工程をfatない
しくC1の順に概念的に示す断面図である。 ■=シリコンウェーハ、2:#I化膜、4:硼素ガラス
層、5:p型頭域。 代j!人弁理士 山 口  巖
FIG. 1 is a cross-sectional view conceptually showing the boron diffusion process according to an embodiment of the present invention in the order of fat or C1. ■ = silicon wafer, 2: #I film, 4: boron glass layer, 5: p-type head area. Daij! Personal patent attorney Iwao Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 1)半導体基板を酸化硼素を含む雰囲気中で加熱して半
導体基板表面に硼素ガラス層を付着させるドープ工程と
、硼素ガラス層の付着した半導体基板を加熱して基板内
に硼素を拡散させるドライブ工程とを含む半導体素子の
製造方法において、ドープ工程の後半導体基板を窒素雰
囲気中で1.5時間以上放置し、次いでドライブ工程に
移ることを特徴とする半導体素子の製造方法。
1) A doping process in which the semiconductor substrate is heated in an atmosphere containing boron oxide to deposit a boron glass layer on the surface of the semiconductor substrate, and a drive process in which the semiconductor substrate with the boron glass layer attached is heated to diffuse boron into the substrate. 1. A method for manufacturing a semiconductor device, comprising: leaving the semiconductor substrate in a nitrogen atmosphere for 1.5 hours or more after the doping step, and then proceeding to a drive step.
JP2117189A 1990-05-07 1990-05-07 Method for manufacturing semiconductor device Expired - Fee Related JP2730262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2117189A JP2730262B2 (en) 1990-05-07 1990-05-07 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2117189A JP2730262B2 (en) 1990-05-07 1990-05-07 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0414218A true JPH0414218A (en) 1992-01-20
JP2730262B2 JP2730262B2 (en) 1998-03-25

Family

ID=14705610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2117189A Expired - Fee Related JP2730262B2 (en) 1990-05-07 1990-05-07 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2730262B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057088A (en) * 2007-08-31 2009-03-19 Yada Seisakusho:Kk Standing posture retaining apparatus for tray packing with chinese meat dumpling

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847769A (en) * 1971-10-18 1973-07-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847769A (en) * 1971-10-18 1973-07-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057088A (en) * 2007-08-31 2009-03-19 Yada Seisakusho:Kk Standing posture retaining apparatus for tray packing with chinese meat dumpling

Also Published As

Publication number Publication date
JP2730262B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
JP3464285B2 (en) Method for manufacturing semiconductor device
TW399227B (en) Method of manufacturing a crystalline semiconductor
JPH0414218A (en) Manufacture of semiconductor element
JPH02277244A (en) Manufacture of semiconductor device
JPH01184927A (en) Manufacture of large area semiconductor substrate
KR100305255B1 (en) Method for manufacturing a poly-crystal silicon thin film
JPS61135128A (en) Manufacture of semiconductor device
JPS6362326A (en) Manufacture of semiconductor device
JPS60148127A (en) Manufacture of semiconductor substrate
JPS5925220A (en) Manufacture of semiconductor device
KR920007193B1 (en) Anealing method of semiconductor elements
JP5004838B2 (en) A method for forming a semiconductor film, and a semiconductor device and a display device using the semiconductor film.
JPH0266946A (en) Intrinsic gettering method
JPH033326A (en) Formation of polycrystalline silicon film in semiconductor device
JPH1167751A (en) Method and device for manufacturing silicon wafer having protecting film
JPS61201414A (en) Manufacture of semiconductor single crystal layer
RU2029410C1 (en) Method of gettering of structures of integrated microcircuits
JPS63278323A (en) Manufacture of semiconductor device
JPH02192722A (en) Manufacture of semiconductor device material
JPH0494120A (en) Manufacture of semiconductor device
JPS58101478A (en) Manufacture of polycrystalline silicon solar battery
JPS61150325A (en) Manufacture of semiconductor device
JPH0461321A (en) Method for diffusing deposited impurity into semiconductor wafer
JPS58182275A (en) Manufacture of semiconductor substrate
JPH01112769A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees