JPS60245235A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60245235A
JPS60245235A JP59102192A JP10219284A JPS60245235A JP S60245235 A JPS60245235 A JP S60245235A JP 59102192 A JP59102192 A JP 59102192A JP 10219284 A JP10219284 A JP 10219284A JP S60245235 A JPS60245235 A JP S60245235A
Authority
JP
Japan
Prior art keywords
epitaxial layer
type
substrate
layer
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59102192A
Other languages
Japanese (ja)
Inventor
Toshihiro Kuriyama
俊寛 栗山
Shigenori Matsumoto
松本 茂則
Yoshimitsu Hiroshima
広島 義光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP59102192A priority Critical patent/JPS60245235A/en
Publication of JPS60245235A publication Critical patent/JPS60245235A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Abstract

PURPOSE:To avoid deterioration in quality of epitaxial layer through high temperature heat processing by forming an N type impurity layer on a semiconductor substrate and executing, after forming an N type epitaxial layer thereon, the heat processings at a low and an intermediate temperature. CONSTITUTION:An N<+> type impurity diffusion layers 2a, 2b are formed on a CZ, N type semiconductor substrate 1 by thermal diffusion of Sb and an N type epitaxial layer 3 is formed thereon in the thickness of 15mum by the epitaxial growth method. A fault 4 is formed by executing heat processings for 30hr at 700 deg.C (low temperature) and 6hr at 1,000 deg.C (intermediate temperature). Such heat processings at low and intermediate temperature lowers oxygen concentration on the substrate 1 and reduces surface diffusion of oxygen by high temperature heat processing. As a result, oxygen concentration of epitaxial layer 3 does not exceed a critical value for generation of fault and the epitaxial layer is held as the faultfree region showing lesser change of resistivity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法に関し、高品質N型エビ
ウェーハを提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing semiconductor devices, and provides a high quality N-type shrimp wafer.

従来例の構成とその問題点 一般にN型Si基板は−eMos等に多く用いられてい
る。しかし通常のC2法による基板は、結晶引き上げ時
に、原料融液の対流が原因となシ。
Conventional Structure and Problems Generally, N-type Si substrates are often used in -eMos and the like. However, in the case of substrates manufactured using the normal C2 method, convection of the raw material melt occurs during crystal pulling.

ウェーハ面内で同心円状の不純物濃度ムラが生じている
。このパラつきは、S、R,法によると±8%程度であ
る。現状において、ゲート長が2μm以上のデバイスで
は、それ程問題となっていないが、近い将来、デバイス
の集積度が上がシ、ゲート長がサブミクロンになると、
しきい値電圧のバラつきに影響する等1問題が表面化し
てくるであろう。しかし、この程度の比抵抗バラつきで
あっても、Si結晶品質に敏感な固体撮像装置において
は、固定パターン雑音として観原され1画質劣化の一要
因ともなっている。
Concentric impurity concentration unevenness occurs within the wafer surface. This variation is about ±8% according to the S, R, method. Currently, this is not so much of a problem for devices with gate lengths of 2 μm or more, but in the near future, as device integration increases and gate lengths become submicron.
Problems such as affecting variations in threshold voltage will likely come to light. However, even this degree of resistivity variation is perceived as fixed pattern noise in solid-state imaging devices that are sensitive to Si crystal quality, and is a factor in deteriorating image quality.

この解決には、基板面内に周期的不純物分布を有しない
エビウェー・・が最適である。しかし2通′常−0MO
8に用いられているラッチアップ対策用としてのN/N
 エビウェーハ10MOsプロセスに適用すると1表面
に欠陥が生じ、デバイスの特性劣化を引き起こす。特に
固体撮像装置においては、上記欠陥は白傷となシ、歩留
りを著しく低下させる原因となる。これは、エビ基板中
に含まれる過飽和酸素が高温熱処理により、エピタキシ
ャル層中に拡散してくることによる。この対策としては
、エビ基板にいわゆるイントリンシック。
To solve this problem, Ebiwa, which has no periodic impurity distribution within the substrate plane, is optimal. But 2 normal - 0 MO
N/N as a latch-up countermeasure used in 8.
When applied to the shrimp wafer 10 MOs process, defects occur on one surface, causing deterioration of device characteristics. Particularly in solid-state imaging devices, the above-mentioned defects become white scratches and cause a significant decrease in yield. This is because supersaturated oxygen contained in the shrimp substrate diffuses into the epitaxial layer due to the high temperature heat treatment. As a countermeasure for this, we use the so-called intrinsic on the shrimp board.

ゲッタリング(IC)処理を施し、基板の酸素濃#を低
下させれば良いことがわかっている。
It has been found that it is sufficient to perform gettering (IC) treatment to lower the oxygen concentration of the substrate.

しかし、現状では、CZ、N型基板において。However, at present, in CZ and N type substrates.

不純物濃度が高いもの、特にsb高ドープ基板では、十
分な工0が効きにくいという実験結果が得られている。
Experimental results have shown that sufficient treatment is difficult for substrates with high impurity concentrations, especially highly doped sb substrates.

つまpIcrが効率良く効く、すなわち簡単に高密度の
バルク欠陥の発生が可能なN型基板は、比抵抗が1〜数
10Ω儂、Pドープのものである。
An N-type substrate on which pIcr is effective, that is, on which a high density of bulk defects can be easily generated, has a resistivity of 1 to several tens of ohms and is P-doped.

そのため、cmosに要求されるラッテアップ対策用と
しての高温熱処理にも品質の劣化しない隅品質N/N+
エビウェーハが望まれている。
Therefore, the corner quality N/N+ does not deteriorate even with high-temperature heat treatment to prevent latte-up required for CMOS.
Shrimp wafers are desired.

発明の目的 本発明は上記欠点を解消するためになされたもので、基
板に高濃度の不純物層を有し、なおかつ高温熱処理によ
るエピタキシャル層の品質劣化をまねくことのない半導
体装置の製造方法を提供するものである。
Purpose of the Invention The present invention has been made in order to eliminate the above-mentioned drawbacks, and provides a method for manufacturing a semiconductor device that has a highly concentrated impurity layer on the substrate and does not cause quality deterioration of the epitaxial layer due to high-temperature heat treatment. It is something to do.

発明の構成 本発明は、比抵抗1〜数100αのCZ 、N型半導体
基板上に、高濃度N2!!!不純物層を形成し。
Structure of the Invention The present invention provides a high concentration N2! ! ! Forms an impurity layer.

その上に、N型エピタキシャル層を形成した後、600
〜80o0Cで1〜数10時間、1.OOo’cで数時
間以上の処理を行う工程をそなえた半導体装置の製造方
法である。
After forming an N-type epitaxial layer thereon, 600
1 to several tens of hours at ~80o0C, 1. This is a method for manufacturing a semiconductor device that includes a step of performing OOo'c processing for several hours or more.

実施例の説明 以下本発明の一実施例について、図面を参照しながら説
明する。第1図は本発明による半導体装置の断面模式図
である。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a semiconductor device according to the present invention.

CZ 、N型半導体基板1上に、SbO熱拡散によ+ すN不純物拡散層2a 、 2b、あるいはイオン注+ 人等によりN不純物拡散層2a’iz形成し、その上に
N型エピタキシャル層3を16μm成長させる。
CZ, N-type semiconductor substrate 1 is formed with N-impurity diffusion layers 2a, 2b by SbO thermal diffusion, or by ion implantation, and an N-type epitaxial layer 3 is formed thereon. is grown to 16 μm.

そして−700’C,30時間(低温)と1000°C
16時間(中温)の熱処理を施こすことにより、欠陥4
を形成する。なお低温処理条件は温度1時間共に、格子
間酸素濃度やウェーッ・の引き上げ条件等の履歴に支配
され、流動的である。
and -700'C, 30 hours (low temperature) and 1000°C
Defect 4 was removed by heat treatment for 16 hours (medium temperature).
form. Note that the low-temperature treatment conditions are fluid, as they are controlled by the history of the interstitial oxygen concentration, the wax pulling conditions, etc., as well as the temperature for one hour.

そして、上記半導体装置に対し一1200°C26時間
の熱処理を行なっても、従来例で問題となった、高温熱
処理後エピタキシャル層3の表面近傍にみられた欠陥は
2もはや発生しない。なぜならば、低温と中温の熱処理
を施すことにより、半導体基板1にのみ酸素を析出させ
た欠陥4を形成し格子間酸素濃度を低下させたからであ
る。7.方。
Even if the semiconductor device is subjected to heat treatment at 11200 DEG C. for 26 hours, the defects found near the surface of the epitaxial layer 3 after high-temperature heat treatment, which were a problem in the conventional example, no longer occur. This is because by performing the heat treatment at low and medium temperatures, defects 4 in which oxygen is precipitated only in the semiconductor substrate 1 are formed, thereby reducing the interstitial oxygen concentration. 7. direction.

十 H不純物領域2aでは、基板1内部より欠陥が発生しに
くいが厚さが6〜10μmと薄いため基板1に比べると
そこに含まれる酸素量は少ない。以上より2基板1の酸
素濃度は低下させられ、高温熱処理による酸素の表面拡
散量を減少させることができた。その結果、エピタキシ
ャル層3の酸素濃度は、欠陥発生臨界値以上にはならず
、エピタキシャル層3は抵抗率変化の少ない、無欠陥領
域として保持される。
In the 10H impurity region 2a, defects are less likely to occur than in the inside of the substrate 1, but since the thickness is as thin as 6 to 10 μm, the amount of oxygen contained therein is smaller than that in the substrate 1. As described above, the oxygen concentration of the two substrates 1 was lowered, and the amount of surface diffusion of oxygen due to the high-temperature heat treatment was able to be reduced. As a result, the oxygen concentration in the epitaxial layer 3 does not exceed the defect generation critical value, and the epitaxial layer 3 is maintained as a defect-free region with little change in resistivity.

なお、断面構造としてfd N/N /N という型に
なるが、CMOSラッチアップ対策としては、N/Nエ
ヒウェーハとなんらかわることけない。
Although the cross-sectional structure is fd N/N /N, it is no different from an N/N Ehiwafer as a measure against CMOS latch-up.

また、エピタキシャル層3下に、高濃度不純物層を有し
、またその下の欠陥領域と相まって、大きなゲッタリン
グ効果が期待できる。その高濃度不純物層の濃度は、デ
バイスの特性、エビ膜厚に合せて自由に制御可能である
。さらに、CZ、N型ウェーハやN/N エビウェーハ
に比べて一活性層であるエビ層と基板の間にN不純物拡
散層2aによるポテンシャルバリヤができることにより
In addition, a high concentration impurity layer is provided below the epitaxial layer 3, and in combination with the defect region therebelow, a large gettering effect can be expected. The concentration of the high concentration impurity layer can be freely controlled according to the characteristics of the device and the thickness of the shrimp film. Furthermore, compared to CZ, N-type wafers, and N/N shrimp wafers, a potential barrier is created between the shrimp layer, which is one active layer, and the substrate by the N impurity diffusion layer 2a.

バルクからの凝似信号が混入しにくくなる。また。It becomes difficult for condensed signals from the bulk to mix in. Also.

第2図に示すように、裏面コンタクト電極7にダイスポ
ンドを行なう時に、導電性ペースト6が半導体装置6の
側面にまでまわり込んで、鹸不純物層2aに接触する様
にすれば、N/N エビウェーハ等に比べ、電気的コン
タクトが改善される。なお、N不純物層はAs ’(H
用いて形成した場合も同様の効果が得られる。
As shown in FIG. 2, when performing die pounding on the back contact electrode 7, if the conductive paste 6 wraps around the side surface of the semiconductor device 6 and comes into contact with the soapy impurity layer 2a, N/N Electrical contact is improved compared to shrimp wafers, etc. Note that the N impurity layer is As'(H
A similar effect can be obtained when forming using the same method.

発明の効果 以上のように本発明の半導体装置の製造方法は活性層の
比抵抗の周期的分布を除去し、エビ基板に含有する酸素
による影響を防止し、なおかっ、基板の高濃度不純物効
果をも期待でき、素子の高密度化に際し要求される半導
体装置の品質を十分に保障するものである。
Effects of the Invention As described above, the method for manufacturing a semiconductor device of the present invention eliminates the periodic distribution of resistivity in the active layer, prevents the influence of oxygen contained in the shrimp substrate, and furthermore eliminates the effect of high concentration impurities in the substrate. This can also be expected to sufficiently ensure the quality of semiconductor devices required when increasing the density of elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体装置の断面模式し第2図は
本発明による半導体装置をダイスボンlした時の断面模
式図である。 1・・・・・・CZ、N型半導体基板−2a、2b・・
・・十 N不純物層、3・・・・・・N型エピタキシャル層、4
・・・・バルク欠陥、5・・・・・・導電性ペースト、
6・・・・・舛導体装置、7・・・・・・裏面コンタク
ト電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 1゜ 第2図
FIG. 1 is a schematic cross-sectional view of a semiconductor device according to the present invention, and FIG. 2 is a schematic cross-sectional view when the semiconductor device according to the present invention is mounted on a die. 1...CZ, N-type semiconductor substrate-2a, 2b...
...1N impurity layer, 3...N type epitaxial layer, 4
... Bulk defect, 5 ... Conductive paste,
6...Crunchy conductor device, 7...Back contact electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1゜Figure 2

Claims (1)

【特許請求の範囲】[Claims] 比抵抗1〜数10Ω儂のCZ 、N型半導体基板上に高
濃度N型不純物層を形成する工程と、前記半導体基板と
同一導電型のエピタキシャル層を形成する工程と、前記
半導体基板に600〜800°Cで1〜数10時間程度
の処理を行う工程と、1000°C程度で数時間以上の
処理を行う工程をそなえた半導体装置の製造方法。
A step of forming a highly concentrated N-type impurity layer on an N-type semiconductor substrate with a CZ having a specific resistance of 1 to several tens of Ω; a step of forming an epitaxial layer of the same conductivity type as the semiconductor substrate; A method for manufacturing a semiconductor device, comprising a process of processing at 800°C for one to several tens of hours, and a process of processing at about 1000°C for several hours or more.
JP59102192A 1984-05-21 1984-05-21 Manufacture of semiconductor device Pending JPS60245235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59102192A JPS60245235A (en) 1984-05-21 1984-05-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59102192A JPS60245235A (en) 1984-05-21 1984-05-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60245235A true JPS60245235A (en) 1985-12-05

Family

ID=14320799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59102192A Pending JPS60245235A (en) 1984-05-21 1984-05-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60245235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151984A (en) * 2001-11-19 2003-05-23 Shin Etsu Handotai Co Ltd Silicon epitaxial wafer and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984432A (en) * 1982-11-05 1984-05-16 Nec Corp Silicon substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984432A (en) * 1982-11-05 1984-05-16 Nec Corp Silicon substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151984A (en) * 2001-11-19 2003-05-23 Shin Etsu Handotai Co Ltd Silicon epitaxial wafer and manufacturing method thereof
WO2003044845A1 (en) * 2001-11-19 2003-05-30 Shin-Etsu Handotai Co.,Ltd. Silicon epitaxial wafer and manufacturing method thereof
JP4656788B2 (en) * 2001-11-19 2011-03-23 信越半導体株式会社 Manufacturing method of silicon epitaxial wafer

Similar Documents

Publication Publication Date Title
JPH06232141A (en) Manufacture of semiconductor substrate and solid-state image pick up device
JP2735407B2 (en) Semiconductor device and manufacturing method thereof
JP3276500B2 (en) Silicon wafer and manufacturing method thereof
JPH1050715A (en) Silicon wafer and manufacture thereof
JPS60245235A (en) Manufacture of semiconductor device
JPH11204534A (en) Manufacture of silicon epitaxial wafer
JPS6120337A (en) Manufacture of semiconductor device
JPS60245234A (en) Manufacture of semiconductor device
JPS6189623A (en) Manufacture of semiconductor device
JPS60198735A (en) Manufacture of semiconductor device
JPH023539B2 (en)
JPS60148127A (en) Manufacture of semiconductor substrate
JPH11288942A (en) Manufacture of semiconductor device
JPH10247731A (en) Semiconductor wafer, and manufacture thereof, and semiconductor integrated circuit device and manufacture thereof
JPH05152306A (en) Semiconductor substrate and manufacture thereof
JPS60176241A (en) Manufacture of semiconductor substrate
JPH059942B2 (en)
JP3297091B2 (en) Semiconductor device
JP3215729B2 (en) Semiconductor device
JPS59150431A (en) Manufacture of semiconductor device
JPS6089916A (en) Manufacture of semiconductor device
JPH11345971A (en) Manufacture of semiconductor device
JP2808933B2 (en) Method for manufacturing semiconductor device
JP2783123B2 (en) Semiconductor substrate and method of manufacturing the same
JP3282265B2 (en) Method for manufacturing semiconductor device