JPH04139825A - Method and apparatus for forming silicon oxide film - Google Patents

Method and apparatus for forming silicon oxide film

Info

Publication number
JPH04139825A
JPH04139825A JP26431490A JP26431490A JPH04139825A JP H04139825 A JPH04139825 A JP H04139825A JP 26431490 A JP26431490 A JP 26431490A JP 26431490 A JP26431490 A JP 26431490A JP H04139825 A JPH04139825 A JP H04139825A
Authority
JP
Japan
Prior art keywords
oxide film
substrate
oxygen
silicon oxide
disilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26431490A
Other languages
Japanese (ja)
Inventor
Toru Tatsumi
徹 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26431490A priority Critical patent/JPH04139825A/en
Publication of JPH04139825A publication Critical patent/JPH04139825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To produce, at low temperature, a silicon oxide film equivalent to a thermal oxide film by heating a substrate in a vacuum chamber to remove spontaneous oxide from its surface, and irradiating the substrate with disilane molecules and oxygen molecules under the conditions preventing vapor phase reactions. CONSTITUTION:A substrate 21 is heated in a vacuum chamber 26 to remove spontaneous oxide from its surface. Under the conditions preventing vapor phase reactions, the substrate 21 is irradiated with disilane molecules and oxygen molecules to form silicon oxide film. Specifically, the substrate, kept at a voltage, is irradiated with an Si2H6 beam through a nozzle 27, and simultaneously irradiated with an oxygen beam that contains oxygen ions or a mixture of oxygen ions and oxygen from an ECR oxygen plasma ion source 23. According to this method, it is possible, even at a low temperature of 400 deg.C, to form a silicon oxide that shows the same dielectric strength, leakage current and surface level density as a thermal silicon oxide film does.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分子線をもちいたシリコン酸化膜の形成方法及
びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for forming a silicon oxide film using molecular beams.

〔従来の技術〕[Conventional technology]

従来、シリコン酸化膜の形成方法はシリコン基板の熱酸
化もしくは、気相成長によるものであった。シリコン基
板の熱酸化によれば高品質のシリコン酸化膜が得られ、
また界面はシリコン基板内に形成されるため界面準位密
度も少ない。一方、気相成長によれ低温でのシリコン酸
化膜形成が可能である。
Conventionally, silicon oxide films have been formed by thermal oxidation of a silicon substrate or vapor phase growth. High quality silicon oxide film can be obtained by thermal oxidation of silicon substrate,
Furthermore, since the interface is formed within the silicon substrate, the density of interface states is also low. On the other hand, silicon oxide films can be formed at low temperatures by vapor phase growth.

[発明が解決しようとする課題〕 上述し7なシリコン酸化膜の形成方法のうち熱酸化によ
る方法では、熱酸化のなめに800 ’C以上の高温を
必要とし、熱酸化の過稈て不純物の拡散によって、基板
内に形成した不純物ブlコファイルが崩れてしまうとい
う欠点がある。一方、気相成長法では気相中でシリコン
と酸素の反応か起こりS ] 02粒子となって基板上
に降り積もるなめ、酸化膜中にはボイドが多数存在する
。このなめ、気相成長法によって形成したシリ:7ン酸
化膜は、熱酸化膜に比べて耐圧が低くリーク電流も多い
、、さらに、シリコン表面の清浄化か行われないなめ、
界面準位密度か多く、MO≦のグー1〜酸化膜等高品質
の酸化膜か要求される箇所には使用することができない
という問題点かあつl二。
[Problems to be Solved by the Invention] Among the above-mentioned seven methods for forming silicon oxide films, the method using thermal oxidation requires a high temperature of 800'C or more for thermal oxidation, and the excessive temperature of thermal oxidation causes the formation of impurities. There is a drawback that the impurity brochure formed in the substrate is destroyed by diffusion. On the other hand, in the vapor phase growth method, a reaction between silicon and oxygen occurs in the vapor phase, resulting in S]02 particles that accumulate on the substrate, resulting in a large number of voids in the oxide film. Because of this, the silicon oxide film formed by the vapor phase growth method has a lower breakdown voltage and more leakage current than a thermal oxide film.Furthermore, the silicon surface is not cleaned.
The problem is that it cannot be used in places where a high quality oxide film is required, such as an oxide film with a high interface state density and MO≦.

本発明の目的は、この様な従来の欠点を除去せしめて、
平坦な界面を持つ高品質のシリコン酸化膜の低温形成方
法及びその装置を提供することにある。
The purpose of the present invention is to eliminate such conventional drawbacks,
An object of the present invention is to provide a method and apparatus for forming a high-quality silicon oxide film having a flat interface at a low temperature.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の第1のシリコン酸化膜の形成方法は、真空容器
内に基板を配し、加熱により表面の自然酸化膜を除去し
た後、気相反応が起らない条件で、この基板表面にジシ
ラン分子線と酸素分子線を同時に照射してシリコン酸化
膜を形成するものである。
In the first method of forming a silicon oxide film of the present invention, a substrate is placed in a vacuum container, a natural oxide film on the surface is removed by heating, and then disilane is added to the surface of the substrate under conditions that do not cause a gas phase reaction. A silicon oxide film is formed by simultaneously irradiating a molecular beam and an oxygen molecular beam.

本発明の第2のシリコン酸化膜の形成方法は、真空容器
内に基板を配し、加熱により表面の自然酸化膜を除去し
た後、気相反応が起らない条件で、この基板表面にジシ
ラン分子線を照射しながら、酸素イオンもしくは酸素イ
オンを含む酸素分子線を同時に照射してシリコン酸化膜
を形成するものである。
In the second method of forming a silicon oxide film of the present invention, a substrate is placed in a vacuum container, a natural oxide film on the surface is removed by heating, and then disilane is applied to the surface of the substrate under conditions that do not cause a gas phase reaction. A silicon oxide film is formed by simultaneously irradiating oxygen ions or an oxygen molecular beam containing oxygen ions while irradiating a molecular beam.

発明の第3のシリコン酸化膜の形成方法は、真空容器内
に基板を配し、この基板表面にジシラン分子線を照射し
シリコンエピタキシャルバッファー層を成長した後、同
装置内もしくは、真空内搬送できる別装置内でジシラン
分子線を照射しながら、酸素分子線もしくは酸素イオン
もしくは酸素イオンを含む酸素分子線を同時に照射して
シリコン酸化膜を形成するものである。
In the third method of forming a silicon oxide film of the invention, a substrate is placed in a vacuum container, the surface of the substrate is irradiated with a disilane molecular beam to grow a silicon epitaxial buffer layer, and then transported within the same apparatus or in a vacuum. A silicon oxide film is formed by simultaneously irradiating an oxygen molecular beam, oxygen ions, or an oxygen molecular beam containing oxygen ions while irradiating a disilane molecular beam in a separate device.

本発明のシリコン酸化膜の形成装置は、基板を保持し電
位を印加するための電極と、ジシラン分子線発生用のノ
ズルと、酸素イオン発生用のプラズマイオン源を備えて
なるものである。
The silicon oxide film forming apparatus of the present invention includes an electrode for holding a substrate and applying a potential, a nozzle for generating a disilane molecular beam, and a plasma ion source for generating oxygen ions.

〔作用〕[Effect]

本発明の原理について説明する。02分子は室温近傍の
低温でも容易に清浄表面上に開離吸着する。しかし、従
来の基板熱酸化法では、酸化はSiC2と基板Si結晶
界面において起こっているため、酸素のS i 02中
での拡散と基板結晶Siのバックボンドを切るために多
くのエネルギーを必要とし、これが酸化温度と時間を決
定している。そこで、発明者は基板の表面側から、10
−’Torr以下の真空領域で分子状のSi2H6と0
2を同時に供給したところ、平均自由行程がチャンバー
サイズ(約40cm)より太き・り、気相反応が起らな
いため、酸化はいつも表面に吸着したSiH6と02と
の間で起こり、しがも結晶を組んている基板Sjのハッ
クボンドを切る必要がないため、低温で酸化膜が形成で
きることを見出した。跋な、この方法では気相成長によ
る酸化膜の堆積と異なり、酸化膜の形成が基板表面に照
射された分子線領域内て行なわれるため、気相反応では
なく表面での5j2I−16と02との反応であり、気
相成長に比べてよりちみっな膜の形成が行えることがわ
がっな。
The principle of the present invention will be explained. 02 molecules are easily separated and adsorbed onto clean surfaces even at low temperatures near room temperature. However, in the conventional substrate thermal oxidation method, oxidation occurs at the SiC2 and substrate Si crystal interface, so a lot of energy is required to diffuse oxygen in Si02 and break the back bond of the substrate crystal Si. , which determines the oxidation temperature and time. Therefore, the inventor started from the front side of the board by 10
- Molecular Si2H6 and 0 in the vacuum region below Torr
When 2 and 2 were supplied at the same time, the mean free path was larger than the chamber size (approximately 40 cm) and no gas phase reaction occurred, so oxidation always occurred between SiH6 adsorbed on the surface and 02. It was also discovered that an oxide film can be formed at low temperatures because there is no need to cut the hack bonds of the substrate Sj in which crystals are assembled. Unlike the deposition of an oxide film by vapor phase growth, in this method, the oxide film is formed within the molecular beam region irradiated onto the substrate surface, so 5j2I-16 and 02 It has been found that this reaction allows for the formation of thinner films than in vapor phase growth.

これは、次の様な原理に基つく。第4図< a、 )に
軍ずように、8j02層1]上にS i 21−16分
子線を照射すると、Si2H6分子はS i 02層1
1」二の準安定状態にドラッグされた後、再離脱する。
This is based on the following principle. When Si21-16 molecular beam is irradiated onto the 8j02 layer 1] as shown in Fig.
1” After being dragged to the metastable state of 2, it leaves again.

このとき02分子線も同時に照射すると、第4図(b)
に示すように、準安定状態にトラップされなSi2H6
分子12と02分子が反応し5j02が形成される。成
長中の分圧は10−”〜10−3′rorrであるので
、5j286分子と02分子が表面上で衝突する確率は
十分にある。
At this time, when the 02 molecular beam is also irradiated at the same time, Fig. 4(b)
As shown in
Molecules 12 and 02 molecules react to form 5j02. Since the partial pressure during growth is 10-'' to 10-3'rorr, there is a sufficient probability that 5j286 molecules and 02 molecules will collide on the surface.

このとき、これらの分子が反応して5i02が形成され
る確率は基板温度に依存する。
At this time, the probability that these molecules will react and form 5i02 depends on the substrate temperature.

さらに、SiO3形成前に表面の清浄化を行い、S i
 M B E法でSiのバッファーエピタキシャル層を
成長することによって5i02/Sj界面を原子オーダ
ーで平坦にすることができ、界面の凹凸による電界集中
に起因する耐圧の低下及び界面遷移層に起因する界面準
位密度を減少させることができな。
Furthermore, the surface is cleaned before SiO3 formation, and Si
By growing a Si buffer epitaxial layer using the MBE method, the 5i02/Sj interface can be made flat on the atomic order, reducing the breakdown voltage due to electric field concentration due to the unevenness of the interface and the interface due to the interfacial transition layer. It is not possible to reduce the level density.

以上のようなシリコン酸化膜形成方法では分子流領域を
用いるなめ、Si2H6分子と同時に照射する酸素の分
圧を]、 X 10−3To r r以上に上げること
は難しい。この様に、非常に希薄なジシラン及び酸素雰
囲気中での成長では、基板温度を下げると十分な清澄速
度が得られないという問題点があった。
Since the method for forming a silicon oxide film as described above uses a molecular flow region, it is difficult to increase the partial pressure of oxygen to be irradiated simultaneously with Si2H6 molecules to more than X10-3 Torr. As described above, growth in a very dilute disilane and oxygen atmosphere has the problem that a sufficient refining rate cannot be obtained when the substrate temperature is lowered.

そこで、発明者は第1図に示すように、ジシランガス用
ノズル27からSi2H6分子線を照射すると共に、E
CR酸素酸素プライマイオン源23いて酸素を酸素イオ
ンもしくは酸素イオンと酸素分子線の混合したものとし
て供給し、シリコン基板2]に電圧をかけて酸素イオン
をシリコン基板に打込んだところ、形成されたシリコン
酸化膜の成長速度が飛躍的に増加することを見出した。
Therefore, as shown in FIG. 1, the inventor irradiated Si2H6 molecular beam from the disilane gas nozzle 27, and
When oxygen was supplied as oxygen ions or a mixture of oxygen ions and oxygen molecular beams using the CR oxygen oxygen primer ion source 23 and a voltage was applied to the silicon substrate 2], oxygen ions were implanted into the silicon substrate. It has been found that the growth rate of silicon oxide film increases dramatically.

この様にして成長した膜では成長温度が400℃でも膜
中の酸素濃度は5i02のストイキオメトリ−に一致し
、耐圧、リーク電流、界面準位密度共に熱酸化によって
形成されたシリコン酸化膜と同程度のものを作ることが
できた。これは、酸素を解離した形で供給するため表面
上でのSi2H6分子との反応効率が特に低温で促進さ
れるためである。
In the film grown in this way, even at a growth temperature of 400°C, the oxygen concentration in the film matches the stoichiometry of 5i02, and the breakdown voltage, leakage current, and interface state density are similar to that of a silicon oxide film formed by thermal oxidation. I was able to create something similar. This is because since oxygen is supplied in dissociated form, the reaction efficiency with Si2H6 molecules on the surface is promoted, especially at low temperatures.

本方法は、基板Siを酸化するのではなく、5i02形
成用のSiも基板の表面側がら供給するなめに、基板は
Siである必要はなく、化合物半導体上でも同様なシリ
コン酸化膜が得られた。
In this method, Si for 5i02 formation is also supplied from the surface side of the substrate, rather than oxidizing the Si substrate, so the substrate does not need to be Si, and a similar silicon oxide film can be obtained even on a compound semiconductor. Ta.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を説明するためのシリコン酸
化膜形成装置の構成図である。
FIG. 1 is a block diagram of a silicon oxide film forming apparatus for explaining one embodiment of the present invention.

第1図において、真空容器26内には絶縁板を介してシ
リコン基板21を保持し、かつ加熱するための保持電極
22が設けられている。そしてジシランガスボンベ28
に接続されたジシランガス用ノズル27と、酸素ボンベ
24及び高周波発振器25が接続されなECR酸素プラ
ズマイオン源23とが設けられている。以下本装置を用
いてシリコン基板21上へのシリコン酸化膜の形成方法
について説明する。
In FIG. 1, a holding electrode 22 for holding and heating a silicon substrate 21 is provided in a vacuum container 26 via an insulating plate. And 28 disilane gas cylinders
There are provided a disilane gas nozzle 27 connected to a disilane gas nozzle 27, and an ECR oxygen plasma ion source 23 to which an oxygen cylinder 24 and a high frequency oscillator 25 are connected. A method for forming a silicon oxide film on a silicon substrate 21 using this apparatus will be described below.

試料としては4インチn型5i(100)(111)0
.01〜0.02Ωcm基板を用いた。シリコン基板2
1をRCA洗浄後、形成室内に搬送して保持電極22に
保持し、860℃10分間の清浄化を行い清浄面を出し
、成長温度600℃でバッファ層であるエピタキシャル
層を3000A成長しな。基板温度を成長温度にした後
、酸素ボンベ24とジシランガス用ノズル27から純度
99.9999%の酸素とジシランを形成室内にリーク
し清浄面上にシリコン酸化膜を形成しな。酸素分圧は5
X]、0’Torr一定とし形成温度を400 ’Cか
ら800℃まで変化させた。
The sample is 4 inch n-type 5i (100) (111) 0
.. A 01 to 0.02 Ωcm substrate was used. Silicon substrate 2
After RCA cleaning, the substrate No. 1 was transported into the formation chamber and held on the holding electrode 22, and cleaned at 860° C. for 10 minutes to expose the clean surface, and an epitaxial layer serving as a buffer layer was grown for 3000 A at a growth temperature of 600° C. After the substrate temperature has reached the growth temperature, oxygen and disilane with a purity of 99.9999% are leaked into the formation chamber from the oxygen cylinder 24 and the disilane gas nozzle 27 to form a silicon oxide film on the clean surface. Oxygen partial pressure is 5
X], 0'Torr was kept constant and the formation temperature was varied from 400'C to 800°C.

第2図は形成温度と形成速度との関係を示す図である。FIG. 2 is a diagram showing the relationship between formation temperature and formation rate.

第2図における直線Aに示したように形成温度が600
℃以上では実用的な形成速度が得られるが、形成温度が
400℃では極めて遅いことが分かった。次に本方法で
形成したシリコン酸化膜の電気的特性について調べた。
As shown by straight line A in Fig. 2, the forming temperature is 600°C.
It was found that a practical formation rate can be obtained at a temperature of 400°C or higher, but it is extremely slow at a formation temperature of 400°C. Next, we investigated the electrical properties of the silicon oxide film formed by this method.

第3図はシリコン酸化膜の耐圧と形成温度の関係を示す
図である。第3図の直線Aに示すように、耐圧は形成温
度が高いほど高く、ファイナルブレイクダウンは形成温
度が600℃以上では、IIMV/cmであり熱酸化に
よる酸化膜と同程度であった。しかし、形成温度を40
0’Cまで下けると、耐圧が下がり、リーク電流も増え
た。形成温度を400℃まで下げると、リーク電流及び
耐圧が悪化するのは、低温では、Si2H6と02が十
分に反応できず、SiOx  (x>2)の状態になっ
ているからであると考えられる。
FIG. 3 is a diagram showing the relationship between the breakdown voltage and formation temperature of a silicon oxide film. As shown by straight line A in FIG. 3, the breakdown voltage increases as the formation temperature increases, and the final breakdown was IIMV/cm when the formation temperature was 600° C. or higher, which was comparable to that of an oxide film formed by thermal oxidation. However, the formation temperature is 40
When the temperature was lowered to 0'C, the withstand voltage decreased and the leakage current increased. The reason why leakage current and breakdown voltage worsen when the formation temperature is lowered to 400°C is thought to be because Si2H6 and 02 cannot react sufficiently at low temperatures, resulting in a state of SiOx (x>2). .

さらに、低温でSi2H6と02との反応効率を向上さ
せ、酸素濃度を減少させずにS i 02のストイキオ
メトリ−に合わせるなめ、第1図に示しなECR酸素プ
ラズマイオン源23を用いて酸素をイオン化して供給し
た。この時のイオン化率は約40%であった。ECRプ
ラズマ室の酸素分圧は]、X10−’Torr、シリコ
ン基板21近傍の酸素分圧は5X]、0”To r r
であった。このとき、シリコン基板21に+5000V
の電圧をかけ、酸素イオンをシリコン基板21に低速で
注入した。この様にして成長したシリコン酸化膜の形成
温度と形成速度の関係を第2図の直線Bに、そして形成
温度と耐圧の関係を第3図の直線Bに示す。成長速度、
耐圧共に形成温度が400℃の場合に顕著な改善が見ら
れ、酸素プラズマを送ることが有用であることがわかっ
た。
Furthermore, in order to improve the reaction efficiency of Si2H6 and 02 at low temperatures and to match the stoichiometry of Si02 without reducing the oxygen concentration, oxygen was added using the ECR oxygen plasma ion source 23 shown in FIG. was ionized and supplied. The ionization rate at this time was about 40%. The oxygen partial pressure in the ECR plasma chamber is], X10-'Torr, and the oxygen partial pressure near the silicon substrate 21 is 5X], 0" Torr
Met. At this time, +5000V is applied to the silicon substrate 21.
, and oxygen ions were implanted into the silicon substrate 21 at a low speed. The relationship between the formation temperature and formation rate of the silicon oxide film grown in this manner is shown by the straight line B in FIG. 2, and the relationship between the formation temperature and breakdown voltage is shown by the straight line B in FIG. growth rate,
A remarkable improvement in both the breakdown voltage and the formation temperature was observed when the formation temperature was 400° C., indicating that sending oxygen plasma was useful.

次に、本方法で形成した5i02/Si界面の平坦性を
評価するためにSj (100)面上に500℃で30
00Aのエピタキシャルバッファー層を成長後、成長温
度300℃で酸素イオンを併用して50AのS i 0
2を形成し界面の断面格子像を観察した。MBEでバッ
ファー層を成長しているなめ界面は極めて平坦であり、
界面の乱れは通常の5i(100)基板を用いた場合、
数10OAごとに観察される1原子層ステップだけであ
った。これはもとのMBE成長バッファー層上に存在す
るものである。この1原子層ステップの密度は基板表面
の傾きに依存し、正確に傾きのない面を使った場合、数
1000Aの平坦なテラスを得ることができな。この様
に、MBEでエピタキシャルバッファー層を成長後、S
iO□を形成したMOSキャパシターの界面準位密度を
CV法により測定したところ、10 lOc m””台
であり熱酸化によって得られる界面と同等であった。
Next, in order to evaluate the flatness of the 5i02/Si interface formed by this method, a
After growing an epitaxial buffer layer of 00A, a SiO of 50A was grown using oxygen ions at a growth temperature of 300°C.
2 was formed and the cross-sectional lattice image of the interface was observed. The slanted interface on which the buffer layer is grown by MBE is extremely flat;
When using a normal 5i (100) substrate, the disturbance at the interface is
Only one atomic layer step was observed every few tens of OA. This is what is present on the original MBE growth buffer layer. The density of this one-atomic layer step depends on the slope of the substrate surface, and if a precisely sloped surface is used, a flat terrace of several thousand amps cannot be obtained. In this way, after growing the epitaxial buffer layer by MBE, the S
When the interface state density of the MOS capacitor in which iO□ was formed was measured by the CV method, it was on the order of 10 lOcm'', which was equivalent to the interface obtained by thermal oxidation.

なお、本実施例ではシリコン基板を対象としたが、本発
明の方法は表面にのみシリコンが存在するS OS (
Silicon on 5apphire )基板や更
に一般にS OI (Silicon on In5u
lator)基板等にも当然適用できる。また、本方法
は、基板Siを酸化するのではなく、Siも表面側から
供給するために、本質的に基板はSjである必要はなく
、化合物半導体上でも同様に良質な酸化膜が得られるこ
とを確認した。
Although this example targeted a silicon substrate, the method of the present invention applies to SOS (
Silicon on 5apphire) substrates and more generally SOI (Silicon on In5u) substrates.
Of course, it can also be applied to substrates etc. In addition, this method does not oxidize the substrate Si but also supplies Si from the surface side, so the substrate does not essentially need to be Sj, and a high-quality oxide film can be obtained on a compound semiconductor as well. It was confirmed.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に述べた通り本発明によれば、300°Cか
ら400℃の低い成長温度で、電気的に熱酸化膜と同等
なシリコン酸化膜の形成を行なうことができる。また、
エピタキシャルバッファー層上に形成することによって
、原子オーダーで平坦なシリコン酸化膜とシリコンの界
面を得ることができる。
As described above in detail, according to the present invention, a silicon oxide film electrically equivalent to a thermal oxide film can be formed at a low growth temperature of 300°C to 400°C. Also,
By forming it on the epitaxial buffer layer, it is possible to obtain an interface between the silicon oxide film and silicon that is flat on the atomic order.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するためのシリコン酸
化膜形成装置の構成図、第2図はシリコン酸化膜の形成
速度と形成温度との関係を示す図、第3図はシリコン酸
化膜の耐圧と形成温度との関係を示す図、第4図は本発
明の詳細な説明するためのSin、、層の断面図である
。 11・・・SiO2層、12・・・準安定状態にトラフ
プされたジシラン分子、21・・・シリコン基板、22
・・・保持電極、23・・・ECR酸素プラズマイオン
源、24・・・酸素ボンベ、25・・・高周波発振器、
26・・・真空容器、27・・・ジシランガス用ノズル
、28・・・ジシランガスボンベ。
Fig. 1 is a block diagram of a silicon oxide film forming apparatus for explaining an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between the formation rate and formation temperature of silicon oxide film, and Fig. 3 is a diagram showing the relationship between silicon oxide film formation rate and formation temperature. FIG. 4 is a diagram showing the relationship between film breakdown voltage and formation temperature, and is a cross-sectional view of a Sin layer for explaining the present invention in detail. DESCRIPTION OF SYMBOLS 11... SiO2 layer, 12... Disilane molecule truffled into a metastable state, 21... Silicon substrate, 22
...Holding electrode, 23...ECR oxygen plasma ion source, 24...Oxygen cylinder, 25...High frequency oscillator,
26... Vacuum container, 27... Disilane gas nozzle, 28... Disilane gas cylinder.

Claims (1)

【特許請求の範囲】 1、真空容器内に基板を配し、加熱により表面の自然酸
化膜を除去した後、気相反応が起らない条件で、この基
板表面にジシラン分子線と酸素分子線を同時に照射して
シリコン酸化膜を形成することを特徴とするシリコン酸
化膜の形成方法。 2、真空容器内に基板を配し、加熱により表面の自然酸
化膜を除去した後、気相反応が起らない条件で、この基
板表面にジシラン分子線を照射しながら、酸素イオンも
しくは酸素イオンを含む酸素分子線を同時に照射してシ
リコン酸化膜を形成することを特徴とするシリコン酸化
膜の形成方法。 3、真空容器内に基板を配し、この基板表面にジシラン
分子線を照射しシリコンエピタキシャルバッファー層を
成長した後、同装置内もしくは、真空内搬送できる別装
置内でジシラン分子線を照射しながら、酸素分子線もし
くは酸素イオンもしくは酸素イオンを含む酸素分子線を
同時に照射してシリコン酸化膜を形成することを特徴と
するシリコン酸化膜の形成方法。 4、基板を保持し電位を印加するための電極と、ジシラ
ン分子線発生用のノズルと、酸素イオン発生用のプラズ
マイオン源を備えてなることを特徴とするシリコン酸化
膜の形成装置。
[Claims] 1. After placing a substrate in a vacuum container and removing the natural oxide film on the surface by heating, disilane molecular beams and oxygen molecular beams are applied to the surface of the substrate under conditions that do not cause gas phase reactions. A method for forming a silicon oxide film, characterized by forming a silicon oxide film by simultaneously irradiating with. 2. After placing the substrate in a vacuum container and removing the natural oxide film on the surface by heating, oxygen ions or oxygen ions are added to the substrate surface while irradiating the substrate surface with a disilane molecular beam under conditions that do not cause gas phase reactions. A method for forming a silicon oxide film, comprising simultaneously irradiating oxygen molecular beams containing oxygen to form a silicon oxide film. 3. Place the substrate in a vacuum container, irradiate the surface of the substrate with a disilane molecular beam to grow a silicon epitaxial buffer layer, and then irradiate the substrate with a disilane molecular beam in the same device or in a separate device that can be transported in vacuum. A method for forming a silicon oxide film, characterized in that a silicon oxide film is formed by simultaneously irradiating oxygen molecular beams, oxygen ions, or oxygen molecular beams containing oxygen ions. 4. A silicon oxide film forming apparatus comprising an electrode for holding a substrate and applying a potential, a nozzle for generating a disilane molecular beam, and a plasma ion source for generating oxygen ions.
JP26431490A 1990-10-01 1990-10-01 Method and apparatus for forming silicon oxide film Pending JPH04139825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26431490A JPH04139825A (en) 1990-10-01 1990-10-01 Method and apparatus for forming silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26431490A JPH04139825A (en) 1990-10-01 1990-10-01 Method and apparatus for forming silicon oxide film

Publications (1)

Publication Number Publication Date
JPH04139825A true JPH04139825A (en) 1992-05-13

Family

ID=17401464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26431490A Pending JPH04139825A (en) 1990-10-01 1990-10-01 Method and apparatus for forming silicon oxide film

Country Status (1)

Country Link
JP (1) JPH04139825A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100281979B1 (en) * 1997-03-19 2001-03-02 황철주 Semiconductor Wafer Cleaning Method and Oxide Film Formation Method
US6372670B1 (en) 1999-03-24 2002-04-16 Canon Sales Co., Inc. Method and apparatus for forming an interlayer insulating film, and semiconductor device
US6514855B1 (en) 2000-02-07 2003-02-04 Canon Sales Co., Inc. Semiconductor device manufacturing method having a porous insulating film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197393A (en) * 1988-01-29 1989-08-09 Nec Corp Molecular ray epitaxy method
JPH02172226A (en) * 1988-12-23 1990-07-03 Nec Corp Method and apparatus for forming silicon oxide film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197393A (en) * 1988-01-29 1989-08-09 Nec Corp Molecular ray epitaxy method
JPH02172226A (en) * 1988-12-23 1990-07-03 Nec Corp Method and apparatus for forming silicon oxide film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100281979B1 (en) * 1997-03-19 2001-03-02 황철주 Semiconductor Wafer Cleaning Method and Oxide Film Formation Method
US6372670B1 (en) 1999-03-24 2002-04-16 Canon Sales Co., Inc. Method and apparatus for forming an interlayer insulating film, and semiconductor device
US6514855B1 (en) 2000-02-07 2003-02-04 Canon Sales Co., Inc. Semiconductor device manufacturing method having a porous insulating film

Similar Documents

Publication Publication Date Title
JP2687966B2 (en) Method for manufacturing semiconductor device
JP2762968B2 (en) Method for manufacturing field effect thin film transistor
EP0015694B1 (en) Method for forming an insulating film on a semiconductor substrate surface
JPH07235502A (en) Method of manufacturing semiconductor device
JPH10199831A (en) Method of forming barrier layer
JPH0992804A (en) Manufacture of soi substrate and its manufacturing equipment
US5861059A (en) Method for selective growth of silicon epitaxial film
JPH04139825A (en) Method and apparatus for forming silicon oxide film
JP2595935B2 (en) Surface cleaning method
JPH0473613B2 (en)
JPH0282578A (en) Manufacture of thin film transistor
JPS6246994A (en) Method and apparatus for growing thin film
JP4978544B2 (en) Epitaxial wafer manufacturing method
JP2945234B2 (en) Method of forming semiconductor thin film
JPH05102068A (en) Forming method for electrode of electronic device using diamond
JPH03166726A (en) Method and device for forming silicon oxide
JPH07297151A (en) Fabrication of semiconductor device
JP2720677B2 (en) MIS transistor and method of forming the same
JP2637950B2 (en) Surface cleaning method
JPH02172226A (en) Method and apparatus for forming silicon oxide film
JPH088251B2 (en) Method for forming silicon oxide film
JPH07153702A (en) Thin film forming method and device
JPH05291220A (en) Manufacture of semiconductor device
JPH0644562B2 (en) Surface cleaning method
JPH0653503A (en) Thin film transistor and fabrication thereof