JPH02172226A - Method and apparatus for forming silicon oxide film - Google Patents

Method and apparatus for forming silicon oxide film

Info

Publication number
JPH02172226A
JPH02172226A JP32680888A JP32680888A JPH02172226A JP H02172226 A JPH02172226 A JP H02172226A JP 32680888 A JP32680888 A JP 32680888A JP 32680888 A JP32680888 A JP 32680888A JP H02172226 A JPH02172226 A JP H02172226A
Authority
JP
Japan
Prior art keywords
oxide film
substrate
oxygen
silicon
molecular beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32680888A
Other languages
Japanese (ja)
Inventor
Toru Tatsumi
徹 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32680888A priority Critical patent/JPH02172226A/en
Publication of JPH02172226A publication Critical patent/JPH02172226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To facilitate formation of a high quality silicon oxide film which can be made to grow under a low temperature and has a flat boundary surface by a method wherein a substrate is placed in a vacuum chamber in which a molecular beam can be formed and a silicon molecular beam and an oxygen molecular beam are simultaneously applied to the substrate surface to form the silicon oxide film. CONSTITUTION:Oxygen is supplied as oxygen ions or mixture of oxygen ions and an oxygen molecular beam by using an ECR plasma ion source while an Si molecular beam is applied by using an electron gun type evaporator 5 and a voltage is applied to a substrate to implant the oxygen ions into the substrate 3 and a silicon oxide film is formed. With this constitution, a high quality oxide film electrically equivalent to a thermal oxide film can be formed under a growth temperature as a low as 300-400 deg.C. Moreover, by forming the oxide film on an epitaxial buffer layer, the boundary surface between the oxide film and silicon which has a flatness of an atomic order can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は分子線をもちいたシリコン酸化膜の形成方法及
び形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for forming a silicon oxide film using molecular beams.

(従来の技術) 従来、シリコン酸化膜の形成方法はシリコン基板の熱酸
化もしくは、気相成長によるものであった。シリコン基
板の熱酸化によれば高品質のシリコン酸化膜が得られ、
また界面はシリコン基板内に形成されるため界面準位密
度も少ない。しかし、熱酸化のためには800°C以上
の高温を必要とし、熱酸化の過程で不純物の拡散によっ
て、基板内に形成した不純物プロファイルが崩れてしま
うという欠点がある。一方、気相成長によれば低温の酸
化膜形成が可能ではある。しかし、この気相成長では気
相中でシリコンと酸素の反応が起こり5i02粒子とな
って基板上に降り積もるため、酸化膜中には空孔(ボイ
ド)が多数存在する。このため、気相成長によって形成
した酸化膜は、熱酸化膜に比べて耐圧が低くリーク電流
も多い。さらに、シリコン表面の清浄化が行われていな
いため、界面準位密度が多く、MOSFETのゲート酸
化膜等高品質の酸化膜が要求される箇所には使用するこ
とができないという問題点があった。
(Prior Art) Conventionally, silicon oxide films have been formed by thermal oxidation of a silicon substrate or vapor phase growth. High quality silicon oxide film can be obtained by thermal oxidation of silicon substrate,
Furthermore, since the interface is formed within the silicon substrate, the density of interface states is also low. However, thermal oxidation requires a high temperature of 800° C. or higher, and there is a drawback that the impurity profile formed in the substrate is destroyed by diffusion of impurities during the thermal oxidation process. On the other hand, vapor phase growth allows formation of an oxide film at low temperatures. However, in this vapor phase growth, a reaction between silicon and oxygen occurs in the vapor phase, forming 5i02 particles that accumulate on the substrate, so that many vacancies (voids) are present in the oxide film. Therefore, an oxide film formed by vapor phase growth has a lower breakdown voltage and more leakage current than a thermal oxide film. Furthermore, because the silicon surface was not cleaned, there was a problem that there was a high density of interface states, making it impossible to use it in places where high-quality oxide films were required, such as MOSFET gate oxide films. .

(発明が解決しようとする問題点) 本発明の目的は、この様な従来の欠点を除去せしめて、
低温で成長できしかも平坦な界面を持つ高品質なシリコ
ン酸化膜の形成方法を提供することにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to eliminate such conventional drawbacks,
An object of the present invention is to provide a method for forming a high-quality silicon oxide film that can be grown at low temperatures and has a flat interface.

(問題点を解決するための手段) 本発明は、分子線の形成が可能な真空容器内に基板を配
し、この基板表面にシリコン分子線と酸素分子線を同時
に照射することにより形成することを特徴とするシリコ
ン酸化膜の形成方法または酸素原料として酸素イオンも
しくは酸素イオンを含む酸素分子線を同時に照射するこ
とにより形成することを特徴とするシリコン酸化膜の形
成方法を提供するものである。さらに、前記の方法でシ
リコン酸化膜を形成する前に、シリコンのエピタキシャ
ルバッファー層の成長を行い、シリコン酸化膜を形成す
る方法によると酸化膜とSiとの界面が良好なものが得
られる。シリコン分子線発生用として電子銃式蒸着装置
と酸素分子線発生用としてノズルを備えてなることを特
徴とする。また別のシリコン酸化膜形成装置として基板
に電位を印加する手段を持ち、シリコン分子線発生用と
して電子銃式蒸着装置と酸素イオン発生用としてプラズ
マイオン源を備えてなることを特徴とする装置を提供す
るものである。
(Means for Solving the Problems) The present invention provides a method of forming a substrate by placing a substrate in a vacuum container in which molecular beams can be formed, and simultaneously irradiating silicon molecular beams and oxygen molecular beams onto the surface of the substrate. The present invention provides a method for forming a silicon oxide film characterized in that it is formed by simultaneously irradiating oxygen ions or an oxygen molecular beam containing oxygen ions as an oxygen source. Furthermore, by the method of growing a silicon epitaxial buffer layer before forming a silicon oxide film using the method described above to form a silicon oxide film, a good interface between the oxide film and Si can be obtained. It is characterized by being equipped with an electron gun type evaporation device for generating silicon molecular beams and a nozzle for generating oxygen molecular beams. Another silicon oxide film forming apparatus includes means for applying a potential to the substrate, and is equipped with an electron gun type evaporation apparatus for generating silicon molecular beams and a plasma ion source for generating oxygen ions. This is what we provide.

(作用) 本発明の原理について説明する。02分子は室温近傍の
低温でも容易に清浄表面上に解離吸着する。しかし、従
来の基板熱酸化では、酸化は5i02と基板Si結晶界
面において起こっているため、酸素の5i02中での拡
散と基板結晶Siのバックボンドを切るために多くのエ
ネルギーを必要とし、これが酸化温度と時間を決定して
いる。そこで、発明者は表面側から分子状のSiと02
を同時に供給したところ、酸化はいつも表面で起こり、
しかも結晶を組んでいる基板Siのバックボンドを切る
必要がないため、低温で酸化膜が形成できることを見出
した。
(Operation) The principle of the present invention will be explained. 02 molecules easily dissociate and adsorb onto clean surfaces even at low temperatures near room temperature. However, in conventional substrate thermal oxidation, oxidation occurs at the interface between 5i02 and the substrate Si crystal, so a lot of energy is required to diffuse oxygen in 5i02 and break the back bond of the substrate crystalline Si, which causes oxidation. It determines the temperature and time. Therefore, the inventors added molecular Si and 02 from the surface side.
When supplied at the same time, oxidation always occurred at the surface;
Moreover, it was discovered that the oxide film could be formed at low temperatures because there was no need to cut the back bond of the Si substrate on which the crystal was assembled.

また、この方法では気相成長による酸化膜の堆積と異な
り分子線領域で行うため、気相反応ではなく表面でのS
iの酸化であり、気相成長に比べてよりちみつな膜の形
成が行えることがわかった。さらに、SiO2形成前に
SiMBEでSiのバッファーエピタキシャル層を成長
することによって5i02/Si界面を原子オーダーで
平坦にすることができ、界面の凹凸による電界集中に起
因する耐圧の低下及び界面遷移層に起因する界面準位密
度を減少させることができた。
In addition, unlike the deposition of oxide films by vapor phase growth, this method is performed in the molecular beam region.
It was found that this method is an oxidation of i, and that a more honeyed film can be formed compared to vapor phase growth. Furthermore, by growing a Si buffer epitaxial layer using SiMBE before forming SiO2, the 5i02/Si interface can be made flat on the atomic order, reducing the breakdown voltage due to electric field concentration due to the unevenness of the interface and the interface transition layer. The resulting interface state density could be reduced.

以上のような酸化膜形成方法ではSi分子発生源として
電子銃式蒸着装置を用いるため、Si分子と同時に照射
する酸素の分圧をlXl0−6Torr以上に上げるこ
とは難しい。この様に、非常に希薄な酸素雰囲気中での
成長では、膜内に取り込まれる酸素濃度は成長温度に大
きく依存し、成長温度が低いほど高くなる。さらに、室
温で成長しても酸素量が足りないために膜中の酸素濃度
は5i02のストイキオメトリ−より低いものになる。
In the oxide film forming method as described above, since an electron gun type evaporation device is used as a Si molecule generation source, it is difficult to raise the partial pressure of oxygen to be irradiated simultaneously with Si molecules to more than 1X10-6 Torr. In this way, when growing in a very dilute oxygen atmosphere, the oxygen concentration taken into the film largely depends on the growth temperature, and becomes higher as the growth temperature is lower. Furthermore, even if grown at room temperature, the oxygen concentration in the film is lower than the stoichiometry of 5i02 because the amount of oxygen is insufficient.

この様な酸化膜の耐圧は低く、リーク電流も多い。Such an oxide film has a low breakdown voltage and a large leakage current.

そこで、第1図に示すように、酸素分子線発生用として
ノズルを用いると、試料基板近傍における酸素分圧を5
 X 10 ’Torrまで上げることができ、室温成
長では酸素濃度を5i02のストイキオメトリーに近づ
けることができた。この方法により、室温で成長した酸
化膜は気相成長によって形成した酸化膜と同程度の電気
的特性を示した。しかし、室温形成のため膜中にボイド
が多く電気的特性は熱酸化膜に比べて悪い。
Therefore, as shown in Figure 1, if a nozzle is used to generate an oxygen molecular beam, the oxygen partial pressure near the sample substrate can be reduced by 5.
It was possible to increase the oxygen concentration to X 10' Torr, and in room temperature growth, the oxygen concentration could be brought close to the stoichiometry of 5i02. Using this method, the oxide film grown at room temperature showed electrical properties comparable to those of oxide films formed by vapor phase growth. However, since it is formed at room temperature, there are many voids in the film, and its electrical characteristics are worse than that of a thermally oxidized film.

次に、発明者は第2図に示すように、電子銃式蒸着装置
を用いてSi分子線を照射しながら、ECRプラズマイ
オン源を用いて酸素を酸素イオンもしくは酸素イオンと
酸素分子線の混合したものとして供給し、基板に電圧を
かけて酸素イオンを基板に打込んだ場合、形成された酸
化膜中の酸素濃度が、特に高温で成長したときに飛躍的
に増加することを見出した。この様にして成長した膜で
は成長温度が400°Cでも膜中の酸素濃度は5i02
のストイキオメトリ−に一致し、耐圧、リーク電流、界
面準位密度共に熱酸化によって形成された酸化膜と同程
度のものを作ることができた。
Next, as shown in Figure 2, the inventor used an ECR plasma ion source to irradiate oxygen with Si molecular beams using an electron gun type evaporation device, or to mix oxygen ions and oxygen molecular beams. It has been found that when oxygen ions are implanted into the substrate by applying a voltage to the substrate, the oxygen concentration in the formed oxide film increases dramatically, especially when grown at high temperatures. In the film grown in this way, even at a growth temperature of 400°C, the oxygen concentration in the film is 5i02
It was possible to create an oxide film with breakdown voltage, leakage current, and interface state density comparable to that of an oxide film formed by thermal oxidation.

本方法は、基板Siを酸化するものではなく、Siも表
面側から供給するために、基板はSiである必要はなく
化合物半導体上でも同様な酸化膜が得られた。
In this method, the Si substrate is not oxidized, and since Si is also supplied from the surface side, the substrate does not need to be Si, and a similar oxide film can be obtained even on a compound semiconductor.

(実施例) 本発明の実施例について具体的に説明する。実験は40
ccの電子銃式Si蒸着装置を備えたMBE装置を改造
した第1図の装置により行った。試料ウェハーには4イ
ンチn形5i(100)、(111)0.01〜0.0
2Ωcm基板を用いた。試料基板3はRCA洗浄後、真
空容器1に搬送し10人のa−8iを堆積後、800°
C1分間の清浄化を行い、清浄面を出し、成長温度50
0°Cでバッファ層であるエピタキシャル層をaooo
A成長した。基板温度を室温に下げた後、ノズル4から
純度99.9999%の酸素を真空容器内にリークし電
子銃Si蒸着装置5から、5i02の形成速度換算で0
.55人/sのSi分子線を照射し清浄面上に酸化膜を
形成した。酸素分圧は5X10−5Torr一定とし形
成温度を室温から750°Cまで変化させた。形成膜厚
は約1000人であった。なお、基板加熱は基板は基板
保持部2に、内蔵された加熱ヒータ(図示せず)により
行った。
(Example) Examples of the present invention will be specifically described. 40 experiments
The experiment was carried out using the apparatus shown in FIG. 1, which is a modified MBE apparatus equipped with a CC electron gun type Si vapor deposition apparatus. The sample wafer has a 4-inch n-type 5i (100), (111) 0.01 to 0.0
A 2Ωcm substrate was used. After RCA cleaning, the sample substrate 3 was transferred to the vacuum container 1, and after depositing 10 A-8Is, it was heated at 800°.
Clean for 1 minute, expose the clean surface, and increase the growth temperature to 50
Aooo the epitaxial layer which is a buffer layer at 0°C
A.I grew up. After lowering the substrate temperature to room temperature, oxygen with a purity of 99.9999% is leaked into the vacuum chamber from the nozzle 4, and from the electron gun Si evaporation device 5, the rate of 5i02 formation is 0.
.. An oxide film was formed on the clean surface by irradiating with a Si molecular beam at a rate of 55 people/s. The oxygen partial pressure was kept constant at 5×10 −5 Torr, and the formation temperature was varied from room temperature to 750°C. The thickness of the formed film was about 1000. Note that the substrate was heated by a heater (not shown) built into the substrate holder 2.

第3図は形成温度と屈折率との関係を示したものである
。形成温度が700°C以上では基板に何もつかなかっ
た。形成温度が600°C以下ではっきりとした干渉色
が認められた。屈折率は形成温度が低いほど5i02の
屈折率に近づき、室温形成では5i02の屈折率に一致
した。この結果は、形成温度が低温はど膜中の酸素濃度
が多くなり、SiO2のストイキオメトリ−に近づくた
めに屈折率が5i02に近づいていると考えられる。そ
こで、室温近傍の低温で本当に酸素分子が解離し5i0
2ができているのかどうか調べるために、形成温度を6
00°Cから室温まで変化させた時の膜の組成をXPS
で調べた。膜厚は100人一定とした。第4図に5i2
pコアレベル、第5図にO1sコアレベルのピーク変化
を示す。図かられかる様に、形成温度が下がるにしたが
って、5i2pピークは高エネルギー側ヘシフトし室温
では5i02に対応するピーク位置となった。また、酸
素1sピークは形成温度が下がると高くなり、ピーク位
置は高エネルギー側ヘシフトし室温では5i02の位置
となる。以上より、形成温度が低いほど膜中の酸素濃度
が上がり、5i02のストイキオメトリ−に近づくこと
がわかる。ただし、室温形成の5i2pスペクトルにお
いて5i02ピークの低エネルギー側に肩が見られ、こ
の膜が完全には5i02のストイキオメトリ−に合って
おらず、5i−8iボンドも存在していることがわかる
。次に本方法で形成した酸化膜の電気的特性について調
べた。第6図は電気容量から求めた比誘電率と形成温度
の関係を示したものである。
FIG. 3 shows the relationship between formation temperature and refractive index. When the formation temperature was 700°C or higher, nothing was attached to the substrate. Clear interference colors were observed when the formation temperature was below 600°C. The lower the formation temperature, the closer the refractive index is to the refractive index of 5i02, and when formed at room temperature, it matched the refractive index of 5i02. This result is considered to be due to the fact that when the formation temperature is low, the oxygen concentration in the film increases and the refractive index approaches 5i02 because it approaches the stoichiometry of SiO2. Therefore, at low temperatures near room temperature, oxygen molecules really dissociate and 5i0
In order to check whether 2 is formed, the formation temperature was set to 6.
XPS shows the composition of the film when changing from 00°C to room temperature.
I looked it up. The film thickness was kept constant for 100 people. 5i2 in Figure 4
FIG. 5 shows the peak change in the O1s core level. As can be seen from the figure, as the formation temperature decreases, the 5i2p peak shifts to the higher energy side and becomes the peak position corresponding to 5i02 at room temperature. Further, the oxygen 1s peak becomes higher as the formation temperature decreases, and the peak position shifts to the higher energy side and becomes the 5i02 position at room temperature. From the above, it can be seen that the lower the formation temperature, the higher the oxygen concentration in the film, which approaches the stoichiometry of 5i02. However, in the 5i2p spectrum formed at room temperature, a shoulder can be seen on the low energy side of the 5i02 peak, indicating that this film does not completely match the stoichiometry of 5i02 and that 5i-8i bonds also exist. . Next, we investigated the electrical properties of the oxide film formed by this method. FIG. 6 shows the relationship between the dielectric constant determined from the capacitance and the formation temperature.

比誘電率は屈折率と同様に形成温度が低いほどSiO□
に近づいた。第7図は耐圧と形成温度の関係を示したも
のである。耐圧も形成温度が低いほど高く、ファイナル
ブレイクダウンは形成温度が230°Cの時、最高7M
V/amであり気相成長による酸化膜と同程度であった
。しかし、形成温度を室温まで下げると、耐圧が下がり
、リーク電流も増えた。形成温度を室温まで下げると、
リーク電流及び耐圧が悪化するのは、室温成長では5i
02に空孔が多いためであると考えられる。
Similar to the refractive index, the lower the formation temperature, the higher the relative permittivity of SiO□
approached. FIG. 7 shows the relationship between breakdown voltage and formation temperature. The lower the forming temperature, the higher the withstand pressure, and the final breakdown is up to 7M when the forming temperature is 230°C.
V/am, which was comparable to that of an oxide film grown by vapor phase growth. However, when the formation temperature was lowered to room temperature, the withstand voltage decreased and leakage current increased. When the formation temperature is lowered to room temperature,
Leakage current and breakdown voltage deteriorate when grown at room temperature at 5i.
This is thought to be because there are many holes in 02.

さらに空孔ができない高い成長温度範囲で、酸素濃度を
減少させずにSiO2のストイキオメトリーに合わせる
ため、第2図に示したようなマグネット25、導波管2
7、発振器26とより構成されるECRプラズマイオン
源をMBE装置(真空容器1)に取り付け、酸素をイオ
ン化して供給した。この時のイオン化率は約40%であ
った。ECRプラズマ室の酸素分圧はI X 1O−4
Torr、基板3近傍の酸素分圧は5X10−5Tor
rであった。このとき、基板に+500■の電圧をかけ
、酸素イオンを基板に低速で注入した。第3図にこの様
にして成長した酸化膜の成長温度と屈折率の関係を、第
6図に成長温度と誘電率の関係を示す。屈折率、耐圧共
に形成温度が400°C以下では5i02の値と一致し
た。さらに、第7図に示すように耐圧は、成長温度が3
00°Cから400°Cとき最高11MV/amとなり
、リーク電流も少なかった。この値は、熱酸化膜と同程
度のものである。
Furthermore, in order to match the stoichiometry of SiO2 without reducing the oxygen concentration in the high growth temperature range where voids are not formed, a magnet 25 and a waveguide 2 as shown in FIG.
7. An ECR plasma ion source composed of an oscillator 26 was attached to the MBE apparatus (vacuum vessel 1), and oxygen was ionized and supplied. The ionization rate at this time was about 40%. The oxygen partial pressure in the ECR plasma chamber is I x 1O-4
Torr, oxygen partial pressure near the substrate 3 is 5X10-5 Torr
It was r. At this time, a voltage of +500 .mu. was applied to the substrate, and oxygen ions were injected into the substrate at a low rate. FIG. 3 shows the relationship between the growth temperature and refractive index of the oxide film grown in this manner, and FIG. 6 shows the relationship between the growth temperature and dielectric constant. Both the refractive index and the breakdown voltage matched the values of 5i02 when the formation temperature was 400°C or less. Furthermore, as shown in Figure 7, the breakdown voltage is
The maximum voltage was 11 MV/am from 00°C to 400°C, and the leakage current was also small. This value is comparable to that of a thermal oxide film.

最後に、本方法で形成した5i02/Si界面の平坦性
を評価するために5i(100)面上に500°Cで3
000人のエピタキシャルバッファー層を成長後、成長
温度300°Cで酸素イオンを併用して50人の5i0
2を形成し界面の断面格子像を観察した。MBEでバッ
ファー層を成長しているため界面は極めて平坦であり、
界面の乱れは通常の5i(100)ウェハーを用いた場
合、数100入ごとに観察される1原子層ステップだけ
であった。これはもとのMBE成長バッファー層上に存
在するものである。この1原子層ステップの密度はウェ
ハー表面の傾きに依存し、正確にjust面を使った場
合、数1000人の平坦なテラスを得ることができた。
Finally, in order to evaluate the flatness of the 5i02/Si interface formed by this method, three
After growing an epitaxial buffer layer of 000 layers, 5i0 of 50 layers was grown using oxygen ions at a growth temperature of 300°C.
2 was formed and the cross-sectional lattice image of the interface was observed. Since the buffer layer is grown by MBE, the interface is extremely flat.
When a normal 5i (100) wafer was used, the disturbance at the interface was only one atomic layer step observed every several hundred wafers. This is what is present on the original MBE growth buffer layer. The density of this one-atomic layer step depends on the slope of the wafer surface, and if the just plane is used accurately, a flat terrace of several thousand layers can be obtained.

この様に、MBEでエピタキシャルバッファー層を成長
後、5i02を形成したMOSキャパシターの界面準位
密度をCv法により測定したところ、1010cm−2
台であり熱酸化によって得られる界面と同等であった。
In this way, after growing the epitaxial buffer layer by MBE, the interface state density of the 5i02 MOS capacitor was measured by the Cv method, and it was found to be 1010 cm-2.
It was similar to the interface obtained by thermal oxidation.

なお、本実施例ではシリコンウェハーを対象としたが、
本発明の方法は表面にのみシリコンが存在する5O8(
Silicon on 5apphire)基板や更に
一般に5OI(Silicon on In5ulat
or)基板等にも当然適用できる。また、本方法は、基
板Siを酸化するのではなく、Siも表面から供給する
ために、本質的に基板はSiである必要はなく、化合物
半導体上でも同様に良質な酸化膜が得られることを確認
した。
Note that although silicon wafers were targeted in this example,
The method of the present invention uses 5O8 (5O8) where silicon exists only on the surface.
Silicon on 5apphire) substrates and more generally 5OI (Silicon on In5ulat) substrates.
or) Of course, it can also be applied to substrates, etc. In addition, since this method does not oxidize the substrate Si but also supplies Si from the surface, the substrate does not essentially need to be Si, and a high-quality oxide film can be obtained on a compound semiconductor as well. It was confirmed.

(発明の効果) 以上、詳細に述べた通り本発明によれば、Si分子線と
酸素分子線を用いてシリコン酸化膜を形成するので30
0°Cから400°Cという低い成長温度で、電気的に
熱酸化膜と同等な良質の酸化膜の形成を行うことができ
る。また、エピタキシャルバッファー層上に形成するこ
とによって、原子オーダーで平坦な酸化膜とシリコンの
界面を得ることができる。
(Effects of the Invention) As described above in detail, according to the present invention, a silicon oxide film is formed using a Si molecular beam and an oxygen molecular beam.
A high-quality oxide film electrically equivalent to a thermal oxide film can be formed at a low growth temperature of 0°C to 400°C. Furthermore, by forming the layer on the epitaxial buffer layer, it is possible to obtain an oxide film-silicon interface that is flat on the atomic order.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の装置の概念図、第2図は、本発明の
装置の概念図、第3図は、形成温度と屈折率との関係を
示す図、第4図は、成長温度を変化させた時のXPSの
5i2pコアレベルスペクトルの変化を示す図、第5図
は、成長温度を変化させた時のXPSの01sコアレベ
ルスペクトルの変化を示す図、第6図は、電気容量から
求めた比誘電率と形成温度の関係を示す図、第7図は、
耐圧と形成温度の関係を示す図である。 図において、 1・・・真空容器、2・・・基板保持部、3・・・基板
、4・・・ノズル、5・・・電子銃式蒸着装置、6・・
・02ボンベ、7・・・02ライン、8・・・バルブ、
25・・・マグネット、261.・発振器、27・・・
導波管、28・・・アンテナである。
Figure 1 is a conceptual diagram of the apparatus of the present invention, Figure 2 is a conceptual diagram of the apparatus of the present invention, Figure 3 is a diagram showing the relationship between the formation temperature and the refractive index, and Figure 4 is the growth temperature. Figure 5 is a diagram showing changes in the 5i2p core level spectrum of XPS when changing the growth temperature. Figure 6 is a diagram showing changes in the 01s core level spectrum of XPS when the growth temperature is changed. Figure 7 is a diagram showing the relationship between the dielectric constant and the formation temperature determined from
It is a figure showing the relationship between breakdown voltage and formation temperature. In the figure, 1... Vacuum container, 2... Substrate holder, 3... Substrate, 4... Nozzle, 5... Electron gun type evaporation device, 6...
・02 cylinder, 7...02 line, 8...valve,
25...Magnet, 261.・Oscillator, 27...
Waveguide, 28... antenna.

Claims (5)

【特許請求の範囲】[Claims] (1)分子線の形成が可能な真空容器内に基板を配し、
この基板上にシリコン分子線と酸素分子線を同時に照射
することにより基板上にシリコン酸化膜を形成すること
を特徴とするシリコン酸化膜の形成方法。
(1) Place the substrate in a vacuum container that can form molecular beams,
A method for forming a silicon oxide film, which comprises forming a silicon oxide film on a substrate by simultaneously irradiating the substrate with a silicon molecular beam and an oxygen molecular beam.
(2)分子線の形成が可能な真空容器内に基板を配し、
この基板上に、シリコン分子線を照射しながら、酸素イ
オンもしくは酸素イオンを含む酸素分子線を同時に照射
することにより基板上にシリコン酸化膜を形成すること
を特徴とするシリコン酸化膜の形成方法。
(2) Place the substrate in a vacuum container that can form molecular beams,
A method for forming a silicon oxide film, which comprises forming a silicon oxide film on the substrate by simultaneously irradiating the substrate with a silicon molecular beam and simultaneously irradiating oxygen ions or an oxygen molecular beam containing oxygen ions.
(3)分子線の形成が可能な真空容器内に基板を配し、
この基板上にシリコン分子線を照射することによりシリ
コンエピタキシャルバッファー層を成長した後、同真空
容器内でシリコン分子線を照射しながら、酸素分子線、
もしくは酸素イオン、もしくは酸素イオンを含む酸素分
子線を同時に照射することにより基板上にシリコン酸化
膜を形成することを特徴とするシリコン酸化膜の形成方
法。
(3) Place the substrate in a vacuum container that can form molecular beams,
After growing a silicon epitaxial buffer layer by irradiating silicon molecular beams on this substrate, while irradiating silicon molecular beams in the same vacuum chamber, oxygen molecular beams,
Alternatively, a method for forming a silicon oxide film comprising forming a silicon oxide film on a substrate by simultaneously irradiating oxygen ions or an oxygen molecular beam containing oxygen ions.
(4)基板保持部を備えた真空容器と、真空容器内にシ
リコン分子線を供給するための電子銃式蒸着装置と、酸
素分子線を供給するためのノズルとを備えてなることを
特徴とするシリコン酸化膜の形成装置。
(4) A vacuum container equipped with a substrate holding part, an electron gun type evaporation device for supplying a silicon molecular beam into the vacuum container, and a nozzle for supplying an oxygen molecular beam. Silicon oxide film forming equipment.
(5)基板保持部を備えた真空容器と、基板に電位をか
けるための手段と、真空容器内にシリコン分子線を供給
するための電子銃式蒸着装置と、酸素イオン供給用のプ
ラズマイオン源とを備えてなることを特徴とするシリコ
ン酸化膜の形成装置。
(5) A vacuum container equipped with a substrate holder, a means for applying a potential to the substrate, an electron gun type evaporation device for supplying a silicon molecular beam into the vacuum container, and a plasma ion source for supplying oxygen ions. A silicon oxide film forming apparatus comprising:
JP32680888A 1988-12-23 1988-12-23 Method and apparatus for forming silicon oxide film Pending JPH02172226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32680888A JPH02172226A (en) 1988-12-23 1988-12-23 Method and apparatus for forming silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32680888A JPH02172226A (en) 1988-12-23 1988-12-23 Method and apparatus for forming silicon oxide film

Publications (1)

Publication Number Publication Date
JPH02172226A true JPH02172226A (en) 1990-07-03

Family

ID=18191939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32680888A Pending JPH02172226A (en) 1988-12-23 1988-12-23 Method and apparatus for forming silicon oxide film

Country Status (1)

Country Link
JP (1) JPH02172226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139825A (en) * 1990-10-01 1992-05-13 Nec Corp Method and apparatus for forming silicon oxide film
JPH0567568A (en) * 1991-09-09 1993-03-19 Nippon Telegr & Teleph Corp <Ntt> Growth apparatus of semiconductor crystal thin film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121219A (en) * 1981-01-21 1982-07-28 Hitachi Ltd Manufacture of semiconductor device
JPS59198724A (en) * 1983-04-26 1984-11-10 Toshiba Corp Formation of insulating film
JPS59217332A (en) * 1983-05-24 1984-12-07 Mitsubishi Electric Corp Manufacture of silicon dioxide film
JPS6286732A (en) * 1985-10-14 1987-04-21 Hitachi Ltd Formation of compound film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121219A (en) * 1981-01-21 1982-07-28 Hitachi Ltd Manufacture of semiconductor device
JPS59198724A (en) * 1983-04-26 1984-11-10 Toshiba Corp Formation of insulating film
JPS59217332A (en) * 1983-05-24 1984-12-07 Mitsubishi Electric Corp Manufacture of silicon dioxide film
JPS6286732A (en) * 1985-10-14 1987-04-21 Hitachi Ltd Formation of compound film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139825A (en) * 1990-10-01 1992-05-13 Nec Corp Method and apparatus for forming silicon oxide film
JPH0567568A (en) * 1991-09-09 1993-03-19 Nippon Telegr & Teleph Corp <Ntt> Growth apparatus of semiconductor crystal thin film

Similar Documents

Publication Publication Date Title
EP0843345B1 (en) Method of manufacturing a semiconductor article
CN100530531C (en) A method of fabricating a composite substrate
KR0145824B1 (en) Soi substrate and method of producing the same
US4572841A (en) Low temperature method of deposition silicon dioxide
JP4703224B2 (en) Method for producing oxide thin film
CN1333445C (en) An oxide layer on a GAAS-based semiconductor structure and method of forming same
US20060110939A1 (en) Enhanced thin-film oxidation process
JP2009501440A (en) Method for reducing the roughness of thick insulating layers
US4406765A (en) Apparatus and process for production of amorphous semiconductor
US4380865A (en) Method of forming dielectrically isolated silicon semiconductor materials utilizing porous silicon formation
KR100320796B1 (en) Method of manufacturing a semiconductor device utilizing a gate dielelctric
US6689646B1 (en) Plasma method for fabricating oxide thin films
JPH05275358A (en) Method of controlling irregularity at surface of single crystal
JPH07235502A (en) Method of manufacturing semiconductor device
JP2681283B2 (en) Method for growing oxide on ion-implanted polysilicon surface
JPS6388839A (en) Manufacture of dielectrically isolated device with buried conductive layer
US7678633B2 (en) Method for forming substrates for MOS transistor components and its products
JPH02172226A (en) Method and apparatus for forming silicon oxide film
JP2001506809A (en) Semiconductor device and manufacturing method thereof
Paccagnella et al. Properties and thermal stability of the SiO2/GaAs interface with different surface treatments
KR100229358B1 (en) The method of sbt layer
JPH04252018A (en) Formation of polycrystalline silicon film
JPH0817845A (en) Semiconductor device and manufacture thereof
US5136344A (en) High energy ion implanted silicon on insulator structure
JP2780501B2 (en) Semiconductor wafer with insulating film and method of manufacturing the same