JPS59198724A - Formation of insulating film - Google Patents

Formation of insulating film

Info

Publication number
JPS59198724A
JPS59198724A JP58072106A JP7210683A JPS59198724A JP S59198724 A JPS59198724 A JP S59198724A JP 58072106 A JP58072106 A JP 58072106A JP 7210683 A JP7210683 A JP 7210683A JP S59198724 A JPS59198724 A JP S59198724A
Authority
JP
Japan
Prior art keywords
substrate
ion beam
insulating film
raw materials
evaporated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58072106A
Other languages
Japanese (ja)
Inventor
Tomoyasu Inoue
井上 知泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58072106A priority Critical patent/JPS59198724A/en
Publication of JPS59198724A publication Critical patent/JPS59198724A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To enable to form an insulating film in high density, in high purity, and moreover to form in controlled composition by a method wherein the component elements of the insulating film are ionized at every element, and the beams of the ions thereof are irradiated on the surface of a substrate. CONSTITUTION:Ion beam sources 111-113 are provided at the every component element of an insulator to be formed, and a liquid nitrogen shroud 2 to seize unnecessarily evaporated matters and impurity gas molecules is arranged at the circumference thereof. Ionizing cells 3, a substrate 4, a heater 5 and a substrate holder 6, etc. are provided. AT the ion beam sources 111-113, when raw materials are the solids of comparatively low melting points such as aluminum, magnesium, etc., the raw materials are filled up in crucibles manufactured of boron nitride, evaporated according to electric resistance heating of the circumference, evaporated atoms or atomic groups are ionized in the ionizing cells, and accelerated and converged to form an ion beam. Moreover, when the raw materials are the solid materials of high melting points such as silicon, boron, zirconium, etc., the ion beam is formed using evaporation sources according to electron beam heating.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は半導体工業、光学部品工業等の分野で必要と
される基体上に良質な絶縁被膜を形成する方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a method for forming a high-quality insulating film on a substrate, which is required in fields such as the semiconductor industry and the optical component industry.

〔従来技術とその問題点〕[Prior art and its problems]

半導体工業では、種々の目的に絶縁被膜′(主として、
S t、02 、 S t3N4 、 Al2O3等)
を利用しておや、その被膜形成法として、CVD法(C
hemical VaporDeposition )
、プラズ7CVD法、スパッタリング法等が用いられて
来た。そこで形成される被膜の構造は通常非晶質又は多
結晶である。また被膜の密度9組成、純度等を高精度に
制御する事が難しい。
In the semiconductor industry, insulating coatings' (mainly
S t,02, S t3N4, Al2O3, etc.)
As a coating formation method, the CVD method (C
chemical vapor position)
, plasma 7CVD method, sputtering method, etc. have been used. The structure of the coating formed therein is usually amorphous or polycrystalline. Furthermore, it is difficult to control the density, composition, purity, etc. of the film with high precision.

一般に、CVD法やスパッタリング法で形成した被膜の
密度は、バルクのそれよりも小さく、 密性に欠け、内
部欠陥が多い。CVD法では反応ガス分圧の制御が難し
いため、またスパッタリング法ではターゲラ)f成元素
の付層効率が元素毎に異なるため、形成する被膜の組成
を高度に制御する事が困難である。さらに、CVDやス
パッタリングでは、装置内の不純物ガス分圧が高い事、
原料ガス系の純度低下等により、形成する被膜内に不純
物が混入する事を防ぐ事が困難である。
Generally, the density of a film formed by CVD or sputtering is lower than that of a bulk film, lacks density, and has many internal defects. In the CVD method, it is difficult to control the partial pressure of the reactant gas, and in the sputtering method, the deposition efficiency of the target element differs depending on the element, so it is difficult to highly control the composition of the formed film. Furthermore, in CVD and sputtering, the partial pressure of impurity gas inside the equipment is high.
It is difficult to prevent impurities from being mixed into the formed film due to a decrease in the purity of the raw material gas system.

また、結晶性基板上に被膜をエピタキシャル成長させる
場合、所謂エピタキシ温度以上に、基板を刀目熱し、付
着する絶縁物を基板の結晶格子点と整合する位置に配置
させる必要がある。一般に、高融点絶縁物のエピタキシ
温度は高温度であシ、基板材料の融点が低い場合には、
それ以上に基板温度を上げる事はできず、基板と堆積さ
せる物質の組合せによっては、エピタキシャル成長が著
しく困難となる。例えば、シリコン単結晶基板上にAl
2O,や5i02等を成長させる場合がこれにあたる。
Furthermore, when epitaxially growing a film on a crystalline substrate, it is necessary to heat the substrate to a temperature higher than the so-called epitaxy temperature and to place the attached insulator at a position that matches the crystal lattice points of the substrate. In general, the epitaxy temperature for high melting point insulators is high; if the melting point of the substrate material is low,
It is not possible to raise the substrate temperature beyond this, and epitaxial growth becomes extremely difficult depending on the combination of the substrate and the substance to be deposited. For example, Al on a silicon single crystal substrate.
This is the case when growing 2O, 5i02, etc.

その際には、特別の工夫によシエビタキシ温度をシリコ
ンの融点よシ低くする必要があシ、その技術は、未だ充
分に確立されていない。
In this case, it is necessary to use special measures to lower the sheathing temperature to a level lower than the melting point of silicon, and this technology has not yet been fully established.

〔発明の目的〕[Purpose of the invention]

この発明は上述した従来の方法の欠点を改良したもので
、絶縁被膜な筒密度、高純度かつ制御された組成に形成
することがでさる方法を提供するものである。
The present invention improves the drawbacks of the above-mentioned conventional methods and provides a method by which an insulating film can be formed with high density, high purity, and controlled composition.

〔発明の概要〕[Summary of the invention]

この発明は、絶縁被膜の構成元素を各元素毎にイオン化
し、それらのビームを基板表面上に照射することによシ
、該表面上で各イオン同志が反応して絶縁物を形成する
絶縁破膜の形成方法である。
This invention ionizes the constituent elements of the insulating film individually and irradiates the beam onto the substrate surface, thereby causing an insulation breakdown in which the ions react with each other on the surface to form an insulator. This is a method of forming a film.

ここで、イオン自身のもつ運動エネルギとイオンの反応
エネルギによシ低い基板温度にて、良好な特性の絶縁膜
を形成する事ができろう 所望の絶縁膜の構成元素全てのイオンビーム源を用意し
、それらの方向は、基板表面に向けておく。イオン化に
は電子fij撃、プラズマ応用、放電応用等の手段によ
シイオンビームg al+で行なう。
Here, we prepare an ion beam source for all the constituent elements of the desired insulating film, which can form an insulating film with good characteristics at a low substrate temperature due to the kinetic energy of the ions themselves and the reaction energy of the ions. However, their directions should be directed toward the substrate surface. The ionization is carried out using an ion beam GAL+ using means such as electron bombardment, plasma application, and discharge application.

また、21氏分系の絶縁膜形成の場合、互に異なる荷電
のイオンビームを用い、基板′川流或は基板電位を制御
することにより、形成する膜の組成を市l」御すること
ができる。
In addition, in the case of forming an insulating film in the 21°C system, it is possible to control the composition of the film to be formed by using ion beams with different charges and controlling the substrate flow or substrate potential. can.

〔発明の効果〕〔Effect of the invention〕

本発明により、従来技術では得られない、高密度で、高
純度で、高度に組成を制御された絶縁被膜を形成するこ
とができる。また、絶縁膜の形成温度を低くすることが
でき、半尋体工業に於ては、製這工程の低温化に貢献で
きる。光学81S品工業に於ては被膜の屈折率等の光学
的!1ヶ性を高精度に制御することができる。
According to the present invention, it is possible to form an insulating film with high density, high purity, and highly controlled composition, which cannot be obtained using conventional techniques. Furthermore, the formation temperature of the insulating film can be lowered, which contributes to lowering the temperature of the manufacturing process in the half-body industry. In the optical 81S product industry, optical factors such as the refractive index of the coating! It is possible to control the unidirectionality with high precision.

また、従来技術では、極めて困難であった、結晶性基板
上への絶縁膜のエピタキシャル成長を容易に行うことが
できる2 〔発明の実施例〕 本発明の実施例を図面を用いながら説明する。
Furthermore, it is possible to easily epitaxially grow an insulating film on a crystalline substrate, which was extremely difficult with conventional techniques.2 [Embodiments of the Invention] Examples of the present invention will be described with reference to the drawings.

図は、この例で用いられた絶縁膜形成装置の断面図であ
る。形成する絶縁物の構成元素毎に、イオンビーム源1
11〜118を設け、それらの周囲(二は不要な蒸発物
や不純物ガス分子を捕獲するだめの液体窒素シュラウド
2が配置されている。8はイオン化セル、4は基板、5
はヒータ、6は基板ホルダーである。
The figure is a cross-sectional view of the insulating film forming apparatus used in this example. Ion beam source 1 is used for each constituent element of the insulator to be formed.
11 to 118 are provided, and around them (2 is a liquid nitrogen shroud 2 for capturing unnecessary evaporated matter and impurity gas molecules. 8 is an ionization cell, 4 is a substrate, 5 is a
is a heater, and 6 is a substrate holder.

イオンビーム赤111〜113は、原料がアルミニウム
、マグネシウム件の比較的低融点の固体の場合ニハ、窒
化ホウ素製のルツボ内に原料を充填し、周囲を抵抗加熱
する事によって、蒸発させ、蒸発原子、或は原子内をイ
オン化室でイオン化し、電界により加速、収束させてイ
オンビームを作る。
Ion Beam Red 111 to 113 is used when the raw material is a solid with a relatively low melting point such as aluminum or magnesium.The raw material is filled in a crucible made of boron nitride, and the surrounding area is resistively heated to evaporate the evaporated atoms. Alternatively, atoms are ionized in an ionization chamber, and an ion beam is created by accelerating and converging the atoms using an electric field.

また、シリコン、ホウ素、ジルコニウム件の高融忌な固
体材料の場合には、電子ビーム加熱によるM発源(所1
1B−ガン)を用いて、上記と同様な方法でイオンビー
ムを作る。
In addition, in the case of high-meltability solid materials such as silicon, boron, and zirconium, an M emission source (sometimes 1
1B-gun) to create an ion beam in the same manner as above.

一方、酸素、窒素等の気体の場合は、気体をイ3−5 オン化室に10〜10  Torr程度の圧力に尋人し
、該気体を高周彼プラズマによシミ離し、それを電界(
二より 7Jl+速、収束させる。
On the other hand, in the case of gases such as oxygen and nitrogen, the gas is placed in a 3-5 ionization chamber at a pressure of about 10 to 10 Torr, the gas is smeared with high-frequency plasma, and the electric field (
Converge at 7 Jl+ speed from the second.

本実施例ではジルコン(zr2+)イオンと酸素(0−
)イオンヲ使って、(100) S i基板上1:l−
ZrO2を500OAの厚さに堆積させた。この場合、
基板な′電気的に浮かせて基板電流をモニタし、電流値
が零となる様、双方のイオンビームの強度を調整した。
In this example, zircon (zr2+) ions and oxygen (0-
) using ions, (100) on Si substrate 1:l-
ZrO2 was deposited to a thickness of 500 OA. in this case,
The substrate was electrically suspended and the substrate current was monitored, and the intensity of both ion beams was adjusted so that the current value became zero.

Zr+20→ZrO2となシ、電気的に中和される過程
であるので、この基板電流制御により、形成する被膜の
組成を完全に化学量論比のものとする事がでさた。この
膜の密度は5.47 (PAII )であり 、Zr0
tバルクのそれとほぼ一致した。Zr3?よび0−イオ
ンビームの加速電圧は、8’00I+’であった。
Since Zr+20→ZrO2 is an electrically neutralized process, by controlling the substrate current, it was possible to make the composition of the formed film completely stoichiometric. The density of this film is 5.47 (PAII), and Zr0
It almost coincided with that of t-bulk. Zr3? and the acceleration voltage of the 0-ion beam was 8'00I+'.

基板温度〜700Cで形成した破膜では、Z r 02
膜はF地(100)Si基板に対し、エピタキシャル成
長シタ。エピタキシャル成長の下限温度は約600C程
度であった。。
For membrane rupture formed at substrate temperature ~700C, Z r 02
The film was epitaxially grown on an F-based (100) Si substrate. The lower limit temperature for epitaxial growth was about 600C. .

2+ Zr  イオンビームの代シに、Si  イオンビーム
を使うと、8i02膜を形成することもでさた。この場
合、Si + 20−+ S i02 +eの反応を使
うので、5iO21分子形成当p、仙電荷が蓄積する。
It was also possible to form an 8i02 film by using a Si ion beam instead of the 2+ Zr ion beam. In this case, since the reaction of Si + 20-+ Si02 +e is used, a charge is accumulated when 5iO21 molecules are formed.

従って被膜組成を制御するには基板電流を積分し、その
積分値を形成する被膜の厚さ9面積、密度に鑑みて、適
正な値となる様にしなければならない。
Therefore, in order to control the film composition, it is necessary to integrate the substrate current and adjust the integrated value to an appropriate value in view of the thickness, area, and density of the film forming the film.

f i di = 1.6 X 10  X S −d
−p     (1)その基本式は、(1)式で与えら
れる。ここでiは基板電流、Sは基板の面積、dは被膜
の厚さ、ρは被膜の密度(mo l e c u I 
e s/cr/l )である。この様な制御方式では前
記ZrO2形成の場合でもZrの1価イオンZr+を用
いる」烏合にも当てはまる。Zrイオン中に1価イオン
と多価イオンが混在しているときは、その効果を補正し
なければならない事は自明である。その場合は、各荷′
屯イオンの比を予め測定しておき、その逆数の重みで(
1)式を適用した和を用いる。そして、その値を膜の形
成速度に対し一定値となる様に入射ビーム強度を制御す
れば良い。
f i di = 1.6 x 10 x S -d
-p (1) Its basic formula is given by formula (1). Here, i is the substrate current, S is the area of the substrate, d is the thickness of the coating, and ρ is the density of the coating (mol e cu I
es/cr/l). Such a control method also applies to the case of forming ZrO2 using monovalent Zr ions Zr+. It is obvious that when monovalent ions and multivalent ions coexist in Zr ions, the effect must be corrected. In that case, each load'
The ratio of tun ions is measured in advance, and the weight of its reciprocal is used to calculate (
1) Use the sum applying the formula. Then, the incident beam intensity may be controlled so that the value becomes constant with respect to the film formation rate.

〔発明の他の実施例〕[Other embodiments of the invention]

前記実施例では、ZrO2と8i02の形成について述
べたが、他のj俊化物絶縁被膜、例えば、Al2O,。
Although the above embodiments have described the formation of ZrO2 and 8i02, other j-arnide insulating coatings, such as Al2O, can also be formed.

YO+ Cen2+ Mfi’O,Tie、、V2O,
、Nb2O5,HfO,、Ta、0゜等や、他の窒化物
絶縁被膜S t3N4 、 T IN、 AIN、 T
aN等にも本発明を適用することができる。
YO+ Cen2+ Mfi'O, Tie,, V2O,
, Nb2O5, HfO, Ta, 0°, etc., and other nitride insulating films S t3N4 , T IN, AIN, T
The present invention can also be applied to aN, etc.

また、基板として(100)Siを用いたが、(111
)。
In addition, although (100) Si was used as the substrate, (111
).

(110) 、 (211) 、 (all)等地の面
方位の81や同様の各種面方位のGc 、 Gaps 
、 GaP 、 InP 、 EnSb 、 GaxA
l、−許S等の他の半尋体基板を用いても良い。
(110), (211), (all) Gc, Gaps of 81 of isogeological surface orientation and various similar surface orientations
, GaP, InP, EnSb, GaxA
Other semicircular substrates such as L, -S and the like may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例による方法で使用した絶縁膜形
成装置の配置図である。 111〜113・・・イオンビーム源 2・・・液体屋素、シュラウド 3・・・イオン化セル 4・・・基板 5・・・ヒータ 6・・・基板ホルダー
The drawing is a layout diagram of an insulating film forming apparatus used in a method according to an embodiment of the present invention. 111-113...Ion beam source 2...Liquid source, shroud 3...Ionization cell 4...Substrate 5...Heater 6...Substrate holder

Claims (1)

【特許請求の範囲】[Claims] 所望の絶縁膜の各構成元素に対応した、一部または全部
がイオン化した原子またはイオンのビームを基体上に入
射させて該絶縁膜を形成し、その際、基体に流れる電流
の瞬時強度または積分強度が一定となる様、各ビーム強
度を制御することを特徴とする絶縁被膜の形成方法。
A beam of partially or fully ionized atoms or ions corresponding to each constituent element of the desired insulating film is made incident on the substrate to form the insulating film, and at this time, the instantaneous intensity or integral of the current flowing through the substrate is determined. A method for forming an insulating film, characterized by controlling the intensity of each beam so that the intensity is constant.
JP58072106A 1983-04-26 1983-04-26 Formation of insulating film Pending JPS59198724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58072106A JPS59198724A (en) 1983-04-26 1983-04-26 Formation of insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58072106A JPS59198724A (en) 1983-04-26 1983-04-26 Formation of insulating film

Publications (1)

Publication Number Publication Date
JPS59198724A true JPS59198724A (en) 1984-11-10

Family

ID=13479806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58072106A Pending JPS59198724A (en) 1983-04-26 1983-04-26 Formation of insulating film

Country Status (1)

Country Link
JP (1) JPS59198724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172226A (en) * 1988-12-23 1990-07-03 Nec Corp Method and apparatus for forming silicon oxide film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121056A (en) * 1978-03-13 1979-09-19 Nec Corp Manufacture of binary compound semiconductor thin film
JPS57128973A (en) * 1981-02-02 1982-08-10 Sharp Corp Semiconductor element and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121056A (en) * 1978-03-13 1979-09-19 Nec Corp Manufacture of binary compound semiconductor thin film
JPS57128973A (en) * 1981-02-02 1982-08-10 Sharp Corp Semiconductor element and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172226A (en) * 1988-12-23 1990-07-03 Nec Corp Method and apparatus for forming silicon oxide film

Similar Documents

Publication Publication Date Title
DE3852960T2 (en) Monocrystalline thin film substrate.
US4213781A (en) Deposition of solid semiconductor compositions and novel semiconductor materials
US9856578B2 (en) Methods of producing large grain or single crystal films
Fukushima et al. Epitaxial growth of TiO2 rutile thin films on sapphire substrates by a reactive ionized cluster beam method
EP0132322A2 (en) Thermal crackers for forming pnictide films in high vacuum processes
EP0104916B1 (en) Depositing a film onto a substrate including electron-beam evaporation
JPS59198724A (en) Formation of insulating film
CN101586227A (en) Adopt ion plating on growth substrates, to prepare the method for aluminium nitride material
Weissmantel et al. Ion beam techniques for thin and thick film deposition
Yu et al. Structure stability and mechanical property of Y2O3 thin films deposited by reactive magnetron sputtering
RU2482229C1 (en) METHOD FOR PRODUCTION OF EPITAXIAL FILMS OF (SiC)1-x(AlN)x SOLID SOLUTION
JPH03143506A (en) Method and device for refining
KR860000161B1 (en) In-sb compound crystal semiconductor and method of its manufacturing
RU2149478C1 (en) Thermionic cathode
JPS584920A (en) Manufacture of semiconductor
Galvão et al. The influence of AlN buffer layer on the structural and chemical properties of SiC thin films produced by high-power impulse magnetron sputtering
JP2522618B2 (en) Phosphorus alloyed cubic boron nitride film
JP2003026497A (en) Method of producing iron silicide crystal
JP2916514B2 (en) Manufacturing method of oxide thin film
CN105088152A (en) Method and device for manufacturing barrier film layer
CA1059880A (en) Deposition of solid semiconductor compositions and novel semiconductor materials
CN117604470A (en) Efficient growth method and performance test method for AlN film induced by Mo layer
JPS60255698A (en) Member for producing compound semiconductor and production thereof
JPH01156462A (en) Production of thin film of ferroelectric substance
JPH0243357A (en) Production of thin superconducting film