JP2637950B2 - Surface cleaning method - Google Patents

Surface cleaning method

Info

Publication number
JP2637950B2
JP2637950B2 JP28387785A JP28387785A JP2637950B2 JP 2637950 B2 JP2637950 B2 JP 2637950B2 JP 28387785 A JP28387785 A JP 28387785A JP 28387785 A JP28387785 A JP 28387785A JP 2637950 B2 JP2637950 B2 JP 2637950B2
Authority
JP
Japan
Prior art keywords
silicon
cleaning
substrate
oxide film
molecular beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28387785A
Other languages
Japanese (ja)
Other versions
JPS62141724A (en
Inventor
徹 辰巳
尚昭 相崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP28387785A priority Critical patent/JP2637950B2/en
Publication of JPS62141724A publication Critical patent/JPS62141724A/en
Application granted granted Critical
Publication of JP2637950B2 publication Critical patent/JP2637950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコン表面の清浄化方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for cleaning a silicon surface.

〔従来の技術〕[Conventional technology]

近年高速バイポーラ素子、マイクロ波用素子あるいは
超格子構造素子などへの応用を目的としてこれまでのシ
リコン薄膜成長技術に比べ、より低温で成長が行われ、
従って不純物分布を乱すことがほとんどないという特徴
を有する高真空内でのシリコン分子線成長(SiMBE)技
術が盛んに研究開発されている。
In recent years, for the purpose of application to high-speed bipolar devices, microwave devices, superlattice structure devices, etc., growth has been performed at lower temperatures compared to conventional silicon thin film growth technology,
Therefore, a silicon molecular beam epitaxy (SiMBE) technique in a high vacuum, which has a characteristic that the impurity distribution is hardly disturbed, has been actively researched and developed.

この様なシリコン分子線成長技術において、単結晶シ
リコン基板表面の清浄度によってその上に成長するシリ
コン膜の結晶性が大きく左右される。従って基板表面の
清浄化方法については、これまでにも数々の方法が検討
されてきた。たとえば、日本電子工業進行協会による
「シリコン新デバイスに関する調査研究報告書1(昭和
57年3月)」52ページから66ページに「Siの分子線成長
技術」と題して発表された報告においては表面清浄化の
ための第1の方法として高真空中で高温加熱する方法、
第2の方法としてイオンビームで基板表面をスパッタす
る方法、第3の方法としてガリウムビームを照射する方
法、さらに第4の方法としてレーザ照射を行なう方法が
示されている。
In such a silicon molecular beam growth technique, the crystallinity of a silicon film grown thereon is greatly affected by the cleanliness of the surface of the single crystal silicon substrate. Accordingly, a number of methods for cleaning the substrate surface have been studied. For example, the Japan Electronic Industry Progress Association, "Survey and Research Report 1 on New Silicon Devices (Showa
(March, 1957) ”from page 52 to page 66, entitled“ Si Molecular Beam Growth Technology ”, the first method for surface cleaning is to heat at high temperature in a high vacuum.
A method for sputtering a substrate surface with an ion beam as a second method, a method for irradiating a gallium beam as a third method, and a method for performing laser irradiation as a fourth method are described.

また、最近では見方、井上、高須により第30回応用物
理学関係連合講演会講演予稿集(昭和58年4月)502ペ
ージに「超高真空中ウエハー清浄化(2)」と題して発
表された講演において、基板洗浄時に表面に形成された
薄い酸化シリコン膜上にさらにシリコンを極薄く堆積
し、710℃という低温で極薄シリコン膜が薄い酸化膜と
反応し、両方が共に蒸発し清浄な表面が得られるという
第5の方法が示された。また、相崎、辰巳、津屋により
第45回応用物理学会学術講演会講演予稿集(昭和59年10
月)651ページに「SiMBEの欠陥密度低減−オゾン処理と
成長速度依存性」と題して発表された講演において新た
な第6の方法として、洗浄の途中で洗浄浴液中にオゾン
を含むガスを導入し、表面の保護酸化膜とシリコン基板
界面の汚染を減少させるという方法が示された。
Recently, the viewpoint, "Ultra High Vacuum Wafer Purification (2)" was announced on page 502 of the proceedings of the 30th Applied Physics-related Lecture Meeting (April 1983) by Viewpoint, Inoue and Takasu. At the lecture, silicon was deposited extremely thinly on the thin silicon oxide film formed on the surface during substrate cleaning, and the ultra-thin silicon film reacted with the thin oxide film at a low temperature of 710 ° C, and both evaporated and clean. A fifth method has been shown in which a surface is obtained. In addition, Aizaki, Tatsumi, and Tsuya have published the 45th Annual Meeting of the Japan Society of Applied Physics (10 October 1984).
Monday) As a new sixth method, a gas containing ozone in the cleaning bath liquid during cleaning was presented as a new method in a lecture entitled "Defect density reduction of SiMBE-ozone treatment and growth rate dependence" on page 651. The method has been shown to reduce contamination at the interface between the protective oxide film on the surface and the silicon substrate.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上述べた第1、第3、第4、第5、第6の方法で
は、いずれもシリコン基板をあらかじめ洗浄溶液中で洗
浄しているので、この洗浄段階での清浄化程度が最終的
なウエハー清浄化程度に影響を与える。第6の方法で
は、オゾンの効果によりかなりの汚染が除去でき(10
0)面ではシリコン分子線成長によるシリコンエピタキ
シャル膜中の欠陥をなくすことができるが、(111)面
では、いまだに102cm-2程度の欠陥がのこる。また、第
2の方法では超高真空内で表面をエッチングでき汚染除
去には有効であるがスパッタによって表面に大きなダメ
ージを与えこれを回復させるために高温熱処理を必要と
する、という欠点があった。
In the first, third, fourth, fifth, and sixth methods described above, since the silicon substrate is previously cleaned in the cleaning solution, the degree of cleaning in this cleaning step is the final wafer. Affects the degree of cleaning. In the sixth method, considerable pollution can be removed by the effect of ozone (10
On the (0) plane, defects in the silicon epitaxial film due to silicon molecular beam growth can be eliminated, but on the (111) plane, defects of about 10 2 cm −2 still exist. In the second method, the surface can be etched in an ultra-high vacuum, which is effective in removing contamination. However, there is a disadvantage that high-temperature heat treatment is required to recover the surface by damaging the surface by sputtering. .

本発明の目的は、この様な従来の欠点を除去せしめ
て、シリコン分子線により十分良好な結晶性を有するエ
ピタキシャル成長膜を得ることができるような、あるい
はこれに限らず一般の集積回路の製造工程等においても
適用できる表面清浄化方法を提供することにある。
An object of the present invention is to eliminate such conventional drawbacks and to obtain an epitaxially grown film having sufficiently good crystallinity by a silicon molecular beam, or to a general integrated circuit manufacturing process. It is another object of the present invention to provide a method for cleaning a surface which can be applied to a method such as the above.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は少なくとも表面にシリコンを有する基板の表
面清浄化方法において、該シリコン表面を露出させ、ゲ
ルマニウム分子線を照射してシリコン表面をシリコンと
ゲルマニウムの混晶層とし、その後加熱して該混晶を蒸
発させることを特徴とする表面清浄化方法である。
The present invention provides a method of cleaning the surface of a substrate having silicon on at least the surface, exposing the silicon surface, irradiating a germanium molecular beam to form a mixed crystal layer of silicon and germanium, and then heating the mixed crystal to form the mixed crystal layer. Is a surface cleaning method characterized by evaporating water.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明す
る。通常のシリコンウエハーは第1図(a)に示す様に
シリコン基板10の表面には厚さ10数Åの自然酸化シリコ
ン膜20が形成され、この酸化シリコン膜20の表面に炭素
等の汚染不純物30が存在し、また酸化シリコン膜20とシ
リコン基板10との界面にも炭素等の汚染不純物31が存在
している。
Next, embodiments of the present invention will be described with reference to the drawings. In a normal silicon wafer, as shown in FIG. 1A, a natural silicon oxide film 20 having a thickness of more than 10 mm is formed on the surface of a silicon substrate 10, and contaminant impurities such as carbon are formed on the surface of the silicon oxide film 20. There is also a contaminant impurity 31 such as carbon at the interface between the silicon oxide film 20 and the silicon substrate 10.

次に28%アンモニア水と30%過酸化水素水と水とを1:
4:20の比率で混合し、沸騰した溶液中でシリコンウエハ
ーを5分ないし10分間洗浄するとアンモニア水のエッチ
ング作用と過酸化水素水の酸化シリコン膜形成作用とが
繰り返し作用することにより、第1図(b)に示す様に
酸化シリコン膜20は除去され、新たに表面に炭素等の汚
染不純物がごくわずかしか存在しない良質の酸化シリコ
ン膜21が厚さ10Å程度形成される。このとき酸化シリコ
ン膜20とシリコン基板10との界面に存在した炭素等の汚
染不純物31は、大部分除去されるが一部は残存し、また
新たに付着することによって洗浄前に比べると少なくは
あるがあいかわらず存在する。さらに、空気中にさらさ
れることにより表面には汚染物32として炭素が付着す
る。
Next, 28% ammonia water, 30% hydrogen peroxide water and water are used as 1:
When mixed at a ratio of 4:20 and the silicon wafer is washed in a boiling solution for 5 to 10 minutes, the etching action of the ammonia water and the action of forming the silicon oxide film in the hydrogen peroxide solution are repeatedly performed. As shown in FIG. 1B, the silicon oxide film 20 is removed, and a new high-quality silicon oxide film 21 having a very small amount of contaminant impurities such as carbon is formed at a thickness of about 10 mm. At this time, the contaminant impurities 31 such as carbon existing at the interface between the silicon oxide film 20 and the silicon substrate 10 are mostly removed but partly remain, and are newly adhered, so that they are at least less than before cleaning. There is, but there is. Furthermore, carbon is attached to the surface as a contaminant 32 by being exposed to the air.

次に、10-10Torr程度の良好な真空度の真空容器中に
て、短時間、例えば1分ないし2分、600℃ないし850℃
に加熱すると、第1図(c)に示す様に前記酸化シリコ
ン膜21の表面から炭素32が脱離する。さらに850℃以上
に加熱すると、第1図(d)に示す様に酸化シリコン膜
21が蒸発する。しかし、界面に存在した炭素汚染物31は
脱離せず表面に残存する。この状態で、基板温度を成長
温度である400℃ないし800℃に下げ、分子線成長を行な
うと表面に残存する炭素汚染物31を核として結晶欠陥が
発生する。この炭素汚染物31を除去するためには、基板
温度を1200℃以上に上げて表面でシリコンのサーマルエ
ッチングを起こし表面を削らなければならない。しか
し、このような高温に上げると基板のドーピングプロフ
ァイルを変えてしまい、分子線成長の大きな長所である
低温成長という特徴が失われる。
Next, in a vacuum vessel having a good degree of vacuum of about 10 −10 Torr, for a short time, for example, 1 minute to 2 minutes, 600 ° C. to 850 ° C.
Then, carbon 32 is desorbed from the surface of the silicon oxide film 21 as shown in FIG. When heated further to 850 ° C. or more, as shown in FIG.
21 evaporates. However, the carbon contaminants 31 existing at the interface do not desorb and remain on the surface. In this state, when the substrate temperature is lowered to the growth temperature of 400 ° C. to 800 ° C. and molecular beam growth is performed, crystal defects are generated with carbon contaminants 31 remaining on the surface as nuclei. In order to remove the carbon contaminants 31, the substrate temperature must be raised to 1200 ° C. or higher to thermally etch silicon on the surface to cut the surface. However, when the temperature is raised to such a high temperature, the doping profile of the substrate is changed, and the characteristic of low temperature growth, which is a great advantage of molecular beam growth, is lost.

そこで、表面の保護酸化膜21を除去した後、基板温度
を200℃以上に保ち、ゲルマニウムを4原子層以上つけ
ると第1図(e)に示す様に表面層はシリコンとゲルマ
ニウムとの混晶層40となる。この混晶層40は、基板温度
を900℃以上にすると蒸発し、結果として基板表面層が
エッチングされたことになる。このとき表面上に残存す
る炭素等の汚染物も表面から脱離し、きわめて清浄な表
面が得られる。
Then, after removing the protective oxide film 21 on the surface, the substrate temperature is kept at 200 ° C. or more and four or more atomic layers of germanium are applied, as shown in FIG. 1 (e), the surface layer becomes a mixed crystal of silicon and germanium. It becomes layer 40. When the substrate temperature is set to 900 ° C. or higher, the mixed crystal layer 40 evaporates, and as a result, the substrate surface layer is etched. At this time, contaminants such as carbon remaining on the surface are also detached from the surface, and an extremely clean surface is obtained.

次に、この表面清浄化法を実際にシリコン分子線成長
に用いた例についてさらに具体的に説明する。面方位が
(111)で比抵抗が10〜20Ω・cmであるP型シリコン基
板を、28%アンモニア水と30%過酸化水素水と水とを1:
4:20の比率で混合し沸騰させた溶液中で10分間洗浄し、
次いで10-10Torrの超高真空内で前記第5の方法である
シリコン予備堆積法を用いて清浄化温度780℃で表面の
酸化膜をとった後、基板温度を成長温度である650℃に
下げ、成長室に装着されている通常のK−セルよりセル
温度1150℃で4原子層蒸着後、基板を900℃1分間加熱
しシリコンとゲルマニウムの混晶層を除去したときの効
果を、その後のシリコン分子線成長膜の結晶欠陥密度に
より評価した結果を第1表に示す。すなわち、第1表は
1.0μm厚のシリコン分子線成長後の試料を通常用いら
れているジルトルエッチングにより結晶欠陥密度を求め
た結果である。
Next, an example in which this surface cleaning method is actually used for silicon molecular beam growth will be described more specifically. A P-type silicon substrate having a plane orientation of (111) and a specific resistance of 10 to 20 Ω · cm is prepared by mixing 28% ammonia water, 30% hydrogen peroxide water and water with 1:
Wash for 10 minutes in a mixed and boiled solution at a ratio of 4:20,
Then, after removing the oxide film on the surface at a cleaning temperature of 780 ° C. by using the silicon pre-deposition method as the fifth method in an ultra-high vacuum of 10 −10 Torr, the substrate temperature is lowered to 650 ° C., which is the growth temperature. After lowering the temperature and then heating the substrate at 900 ° C for 1 minute to remove the mixed crystal layer of silicon and germanium after depositing 4 atomic layers at a cell temperature of 1150 ° C from the normal K-cell installed in the growth chamber, Table 1 shows the results of evaluation based on the crystal defect density of the silicon molecular beam grown film of Example 1. That is, Table 1
This is a result of obtaining a crystal defect density of a sample after growing a silicon molecular beam having a thickness of 1.0 μm by a commonly used zirtol etching.

第1表の結晶欠陥密度の値より、本発明の方法と従来
の方法とを比較して本発明の方法がすぐれていることが
わかる。
The values of the crystal defect density in Table 1 show that the method of the present invention is superior to the conventional method by comparing the method of the present invention with the conventional method.

なお、本実施例では蒸着するゲルマニウムの膜厚を4
厚子層としたが、膜厚は4〜10原子層がよい。膜厚が4
原子層以下であるとシリコンとゲルマニウムが反応せず
混晶層をつくらないためにシリコン表面のエッチングが
できない。膜厚が10原子層以上であるとシリコンとゲル
マニウムの混晶層を蒸発させた後の表面が荒れる。
In this embodiment, the thickness of germanium to be deposited is 4
Although the thick layer is used, the thickness is preferably 4 to 10 atomic layers. Film thickness 4
If the thickness is less than the atomic layer, silicon and germanium do not react and a mixed crystal layer is not formed, so that the silicon surface cannot be etched. If the film thickness is more than 10 atomic layers, the surface after evaporating the mixed crystal layer of silicon and germanium becomes rough.

さらに、本実施例ではシリコンウエハーを対象とした
が、本発明の方法は表面にのみシリコンが存在するSOS
(Silicon on Sapphire)基板や更に一般にSOI(Silico
n on Insulator)基板等にも当然適用できる。
Furthermore, although the present embodiment is directed to a silicon wafer, the method of the present invention is applied to an SOS in which silicon exists only on the surface.
(Silicon on Sapphire) substrates and more generally SOI (Silico on Sapphire)
n on Insulator) Of course, it can also be applied to substrates and the like.

また、以上の説明では本発明をシリコン分子線成長技
術における清浄化法に適用した場合を例にとって説明し
たが、これに限られるものではなく集積回路製造等のウ
エハー処理工程に広く一般的に適用できる。
In the above description, the case where the present invention is applied to a cleaning method in a silicon molecular beam growth technique is described as an example. However, the present invention is not limited to this, and is widely applied to wafer processing steps such as integrated circuit manufacturing. it can.

〔発明の効果〕〔The invention's effect〕

以上、詳細に述べた通り本発明は、シリコン表面にゲ
ルマニウムを蒸着し、表面層をシリコンとゲルマニウム
の混晶層とし、しかる後この混晶層を蒸発させることに
よってシリコン表面をエッチングするものであり、シリ
コン分子線成長法によりエピタキシャル膜を形成すると
結晶欠陥の極めて少ない良質の膜を得ることができ、さ
らに分子線成長法に限らず一般の集積回路の製造工程に
も適用できる効果を有するものである。
As described above in detail, the present invention is to etch a silicon surface by depositing germanium on a silicon surface, forming a surface layer of a mixed crystal layer of silicon and germanium, and then evaporating the mixed crystal layer. When an epitaxial film is formed by the silicon molecular beam growth method, a high-quality film with very few crystal defects can be obtained. Further, the film has an effect that it can be applied not only to the molecular beam growth method but also to a general integrated circuit manufacturing process. is there.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a),(b),(c),(d),(e)は本発
明の一実施例を工程順に示すシリコンウエハーの模式断
面図である。 図において、10……シリコン基板、20……酸化シリコン
膜、21……洗浄後の酸化シリコン膜、30,32……酸化シ
リコン表面の炭素等の汚染不純物、31……酸化シリコン
膜とシリコン基板との界面に存在する炭素等の汚染不純
物、40……シリコンとゲルマニウムの混晶層
1 (a), 1 (b), 1 (c), 1 (d) and 1 (e) are schematic sectional views of a silicon wafer showing an embodiment of the present invention in the order of steps. In the figure, 10: silicon substrate, 20: silicon oxide film, 21: silicon oxide film after cleaning, 30, 32 ... contaminant impurities such as carbon on the silicon oxide surface, 31 ... silicon oxide film and silicon substrate Contaminant impurities, such as carbon, at the interface with silicon, 40 ... a mixed crystal layer of silicon and germanium

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも表面にシリコンを有する基板の
表面清浄化方法において、該シリコン表面を露出させ、
ゲルマニウム分子線を照射してシリコン表面上をシリコ
ンとゲルマニウムの混晶層とし、その後加熱して該混晶
を蒸発させることを特徴とする表面清浄化方法。
In a method for cleaning a surface of a substrate having silicon on at least the surface, the silicon surface is exposed,
A surface cleaning method comprising irradiating a germanium molecular beam to form a mixed crystal layer of silicon and germanium on a silicon surface, and thereafter heating the mixed crystal to evaporate the mixed crystal.
JP28387785A 1985-12-16 1985-12-16 Surface cleaning method Expired - Lifetime JP2637950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28387785A JP2637950B2 (en) 1985-12-16 1985-12-16 Surface cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28387785A JP2637950B2 (en) 1985-12-16 1985-12-16 Surface cleaning method

Publications (2)

Publication Number Publication Date
JPS62141724A JPS62141724A (en) 1987-06-25
JP2637950B2 true JP2637950B2 (en) 1997-08-06

Family

ID=17671332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28387785A Expired - Lifetime JP2637950B2 (en) 1985-12-16 1985-12-16 Surface cleaning method

Country Status (1)

Country Link
JP (1) JP2637950B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706369B2 (en) * 1990-11-26 1998-01-28 シャープ株式会社 Method for growing compound semiconductor and method for manufacturing semiconductor laser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
第32回応用物理学会関係連合講演会 講演予稿集昭和60年春季 P.672 29aY6"Si基板上のGe膜"

Also Published As

Publication number Publication date
JPS62141724A (en) 1987-06-25

Similar Documents

Publication Publication Date Title
JP3380313B2 (en) Diamond field effect transistor
US5250149A (en) Method of growing thin film
Ishiwara et al. Lateral solid phase epitaxy of amorphous Si films on Si substrates with SiO2 patterns
JP4954853B2 (en) Crystal defect and / or stress field manifestation process at the molecular adhesion interface of two solid materials
JPS58130517A (en) Manufacture of single crystal thin film
Tsaur et al. Epitaxial alignment of polycrystalline Si films on (100) Si
JPS61270830A (en) Surface cleaning method
US6580104B1 (en) Elimination of contaminants prior to epitaxy and related structure
Kunii et al. Solid-phase epitaxy of CVD amorphous Si film on crystalline Si
JP2637950B2 (en) Surface cleaning method
JP2595935B2 (en) Surface cleaning method
JPH09162088A (en) Semiconductor substrate and production thereof
JPS60239028A (en) Cleaning method of surface
TW202230462A (en) Method for manufacturing epitaxial wafer
JPS60152018A (en) Manufacture of semiconductor thin film crystal layer
JPH0644562B2 (en) Surface cleaning method
JPH06177039A (en) Epitaxial film formation method
JPS62293724A (en) Method for cleaning surface
JPH07297151A (en) Fabrication of semiconductor device
JPS5982744A (en) Manufacture of sos substrate
JP4509244B2 (en) Manufacturing method of semiconductor device
JPS60236213A (en) Manufacture of semiconductor substrate
JPS60147123A (en) Manufacture of semiconductor device
JPH04139825A (en) Method and apparatus for forming silicon oxide film
JPH06120137A (en) Formation of single crystal silicon thin film