JPH04130019A - Electrically conductive oxide - Google Patents

Electrically conductive oxide

Info

Publication number
JPH04130019A
JPH04130019A JP2246753A JP24675390A JPH04130019A JP H04130019 A JPH04130019 A JP H04130019A JP 2246753 A JP2246753 A JP 2246753A JP 24675390 A JP24675390 A JP 24675390A JP H04130019 A JPH04130019 A JP H04130019A
Authority
JP
Japan
Prior art keywords
oxide
electrically conductive
conductive oxide
formula
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2246753A
Other languages
Japanese (ja)
Inventor
Hiromi Nibu
丹生 ひろみ
Shin Fukushima
福島 伸
Shigenori Tanaka
成典 田中
Takeshi Ando
健 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2246753A priority Critical patent/JPH04130019A/en
Publication of JPH04130019A publication Critical patent/JPH04130019A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide the above oxide which exhibits a metallic conductivity and to improve its electric conductivity by mixing compds. contg. Bi and Ni, and at least one kind of the elements selected from Ba, Ca and Sr, and calcining, molding and firing the mixture. CONSTITUTION:The oxide or carbonate of Ni, the oxide or carbonate of the Bi and the oxide or carbonate of the AE element (AE is at least one kind of the elements selected from Ba, Ca, Sr) are mixed and calcined at 700 to 800 deg.C in the atmosphere. This mixture is ground and is then molded to a desired shape; thereafter, the molding is fired at 850 to 1000 deg.C, by which the electrically conductive oxide having the laminar perovskite structure of formula (x is 0.01<x<1) is obtd.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、ニッケルを含有する電気伝導性酸化物に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to an electrically conductive oxide containing nickel.

(従来の技術) 近年、銅を含むペロブスカイト構造の酸化物が、高い臨
界温度を示す超電導体となることが分って以来、各所で
銅を含む酸化物超電導体の研究が活発に行われている。
(Prior art) In recent years, since it has been discovered that perovskite-structured oxides containing copper can be superconductors with high critical temperatures, research on oxide superconductors containing copper has been actively conducted in various places. There is.

このような銅を含む酸化物が高い臨界温度を示す理由に
ついては、まだ完全には明らかにはされていないか、銅
と酸素とが形成する 2次元面とCu2“のもつ大きさ
1/2のスピンとが、超電導機構と密接に関係している
のものと推測されている。
The reason why such copper-containing oxides exhibit a high critical temperature is not yet completely clear, or the two-dimensional plane formed by copper and oxygen is 1/2 the size of Cu It is speculated that the spin of the superconductor is closely related to the superconducting mechanism.

一方、ニッケルを含む酸化物のうち、いくつかのものは
、電気伝導性を示すことが知られており、各種電極材料
や配線材料等への応用が期待されている。また、 3価
のNi (Ni”)もCu2+と同様に、大きさ1/2
のスピンをもつ可能性があるため、上記した銅を含む酸
化物が超電導性を示す理由に基づくと、Niを含む酸化
物も超電導体となる可能性があることから、超電導材料
としての実用化も期待されている。
On the other hand, some oxides containing nickel are known to exhibit electrical conductivity, and are expected to be applied to various electrode materials, wiring materials, and the like. Also, like Cu2+, trivalent Ni (Ni”) has a size of 1/2
Based on the above-mentioned reason why copper-containing oxides exhibit superconductivity, there is a possibility that Ni-containing oxides may also become superconductors. is also expected.

上述したような3価のNiを含み、低次元面を有する結
晶構造をとる酸化物として、B1N1(hが最近見出だ
されており、上述したような理由から興味ある特性を示
すことが期待されている。
B1N1 (h) has recently been discovered as an oxide that contains trivalent Ni as described above and has a crystal structure with low-dimensional planes, and is expected to exhibit interesting properties for the reasons described above. has been done.

(発明が解決しようとする課題) しかしながら、上述したB1Ni03で表される酸化物
は、70気圧以上というような高圧酸素下でしか合成で
きず、またこのような条件下で合成したとしても、室温
における電気抵抗か高く、電極材料や配線材料等として
実用化するには有用とは言いかたい。また、金属−絶縁
体転移や磁気転移、超電導転移も見出だされていない。
(Problem to be Solved by the Invention) However, the above-mentioned oxide represented by B1Ni03 can only be synthesized under high pressure oxygen such as 70 atmospheres or more, and even if it is synthesized under such conditions, it can be synthesized at room temperature. Its electrical resistance is high, and it cannot be said that it is useful for practical use as an electrode material or wiring material. Furthermore, metal-insulator transition, magnetic transition, and superconducting transition have not been found.

本発明は、このような課題に対処するためになされたも
のであり、ニッケルと酸素との低次元面を有すると共に
、電気伝導性に優れ、勝つ容易に得ることが可能なニッ
ケルを含む電気伝導性酸化物を提供することを目的とす
るものである。
The present invention has been made to address these problems, and uses an electrically conductive material containing nickel, which has a low-dimensional surface of nickel and oxygen, has excellent electrical conductivity, and can be easily obtained. The purpose is to provide a chemical oxide.

[発明の構成] (課題を解決するための手段) 本発明の電気伝導性酸化物は、旧およびNiを含有し、
層状ペロブスカイト構造を有する酸化物であって、A2
元素(AEはBa、 CaおよびSrから選ばれた少な
くとも 1種の元素を示す)を含有することを特徴とす
るものである。
[Structure of the Invention] (Means for Solving the Problems) The electrically conductive oxide of the present invention contains Ni and Ni,
An oxide having a layered perovskite structure, wherein A2
It is characterized by containing an element (AE represents at least one element selected from Ba, Ca, and Sr).

すなわち本発明の電気伝導性酸化物は、前述したB1N
1(hのBiの一部をアルカリ土類元素で置換すること
によって、キャリア濃度を制御し、金属導電性の向上ひ
いては超電導性の発現をもたらすと共に、結晶構造の安
定化を図り、合成時の熱処理条件を緩和したものである
That is, the electrically conductive oxide of the present invention has the above-mentioned B1N
By substituting a part of Bi in 1(h) with an alkaline earth element, the carrier concentration is controlled and the metal conductivity is improved, which leads to the expression of superconductivity. At the same time, the crystal structure is stabilized, and the The heat treatment conditions are relaxed.

本発明の電気伝導性酸化物の具体例としては、以下の式
で実質的に表される組成か例示される。
Specific examples of the electrically conductive oxide of the present invention include compositions substantially represented by the following formula.

Bj+−−AE−Nl 03        −− (
1)(式中、Xは0.01<  X<  1を満足する
数を示す)上記(I)式で表される酸化物は、ABO3
と表記される層状ペロブスカイト構造を有するものであ
る。ここで、BiはAサイトと Bサイトの両方に入る
ことができるが、NiはBサイトにしか入らない。この
ことを考慮すると、上記(I)式の酸化物は、実質的に
は下記の(II)式で表される。
Bj+--AE-Nl 03 -- (
1) (In the formula, X represents a number satisfying 0.01<X<1) The oxide represented by the above formula (I) is ABO3
It has a layered perovskite structure expressed as . Here, Bi can enter both A site and B site, but Ni can only enter B site. Considering this, the oxide of formula (I) above is substantially represented by formula (II) below.

Bi+−AExB1+−y Nly  03    −
− (II)(式中、yは0.01<  y<  1を
満足する数を示す)上記(I)式および(II)式にお
けるXの値が0.01以下ではキャリア濃度調整の効果
か十分に得られず、また1以上では結晶構造を保てない
。また、上記(II)式におけるyの値か0.01以下
では高圧酸素下でしか合成できず、また1以上では結晶
構造を保てない。
Bi+-AExB1+-y Nly 03-
- (II) (In the formula, y represents a number satisfying 0.01 < y < 1) If the value of If the number is 1 or more, the crystal structure cannot be maintained. Further, if the value of y in the above formula (II) is less than 0.01, it can only be synthesized under high pressure oxygen, and if it is more than 1, the crystal structure cannot be maintained.

また、Xで表されるAEによる置換量は、上記範囲内で
あれば本発明の効果か得られるが、例えばXを0.2〜
0,5の範囲とすることによって、超電導性を付与する
ことができる。
Further, the effects of the present invention can be obtained if the amount of substitution by AE represented by X is within the above range, but for example, if X is 0.2 to
By setting it in the range of 0.5, superconductivity can be imparted.

本発明の電気伝導性酸化物は、例えば以下に示す製造方
法により得ることができる。
The electrically conductive oxide of the present invention can be obtained, for example, by the manufacturing method shown below.

まず、電気伝導性酸化物の構成金属元素である、B]S
AE元素、N1の単体または化合物を充分に混合する。
First, B]S is a constituent metal element of the electrically conductive oxide.
Thoroughly mix the AE element and N1 alone or as a compound.

この構成元素の化合物としては、Bi2O3、SrCO
3、NiO等の酸化物や炭酸塩の他に、焼成後に酸化物
に転化する、硝酸塩、水酸化物等の化合物や有機酸塩、
有機性金属等を用いてもよい。上述したような各出発原
料は、基本的には上記(I)式の原子比を満足するよう
に混合するが、製造条件等との関係で10%程度ずれて
いても差支えない。
Compounds of this constituent element include Bi2O3, SrCO
3. In addition to oxides and carbonates such as NiO, compounds such as nitrates and hydroxides and organic acid salts that are converted to oxides after firing,
Organic metals and the like may also be used. The above-mentioned starting materials are basically mixed so as to satisfy the atomic ratio of formula (I) above, but it may deviate by about 10% depending on the manufacturing conditions and the like.

次いで、この混合粉末を700℃〜800℃程度の温度
で仮焼して結晶化させる。この後、仮焼物を粉砕し、プ
レス成形法等によって所望の形状に成形した後、850
℃〜1000℃程度の温度で焼成し、目的とする電気伝
導性酸化物を得る。なお、上記仮焼は必ずしも必要では
ない。
Next, this mixed powder is calcined at a temperature of about 700°C to 800°C to crystallize it. After that, the calcined product is crushed and molded into a desired shape using a press molding method, etc., and then
The desired electrically conductive oxide is obtained by firing at a temperature of about 1000°C to 1000°C. Note that the above-mentioned calcination is not necessarily necessary.

上記仮焼工程および焼結工程は、大気中や1気圧程度の
酸素中で行っても、十分に上記(I)式または(II)
式で表される結晶を合成することができる。
Even if the above calcination step and sintering step are performed in the atmosphere or in oxygen at about 1 atm, the formula (I) or (II)
A crystal represented by the formula can be synthesized.

(作 用) 本発明の電気伝導性酸化物においては、+3価のBiの
一部を+2価のA2元素で置換することにより、ホール
をキャリアとして導入している。これにより、系内のキ
ャリア濃度が増加し、金属的な伝導を容易に付与するこ
とが可能となると共に、電気伝導性の向上が図れる。ま
た、上記した置換は結晶構造の安定化をもたらすため、
その合成か容易となる。
(Function) In the electrically conductive oxide of the present invention, holes are introduced as carriers by replacing a portion of +3-valent Bi with +2-valent A2 element. This increases the carrier concentration within the system, making it possible to easily provide metallic conduction and improving electrical conductivity. In addition, since the above substitutions stabilize the crystal structure,
Its synthesis becomes easy.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例 まず、Bi2O3粉末、SrCO3粉末およびNiO粉
末を、原子比てBi:Sr:NiJ、5:0.5:1と
なるように所定量計量し、充分に混合した後、この混合
粉を大気中において800°C×24時間の条件で仮焼
した。
Example First, predetermined amounts of Bi2O3 powder, SrCO3 powder, and NiO powder were weighed so that the atomic ratio was Bi:Sr:NiJ, 5:0.5:1, and after thoroughly mixing, this mixed powder was exposed to the atmosphere. It was calcined at 800°C for 24 hours.

次に、この仮焼物を粉砕し、この粉末を用いてプレス成
形法によってペレット状の成形体を作製した。次いで、
上記成形体を1気圧の酸素中にて900℃×24時間の
条件で焼成し、Bio、 s Sro、 s Ni03
て表される酸化物の焼結体を得た。
Next, this calcined product was pulverized, and a pellet-like molded body was produced using this powder by a press molding method. Then,
The above molded body was fired in oxygen at 1 atm at 900°C for 24 hours to obtain Bio, s Sro, s Ni03
A sintered body of the oxide represented by was obtained.

このようにして得た酸化物焼結体の電気抵抗および磁化
率の測定を行った。電気抵抗は室温おいて4X10−’
Ωcmと良好な値を示し、また温度の低下と共に減少し
、金属的伝導を示した。そして、低温で急激に減少して
約5にで消失した。また、磁化率の測定においては、低
温(約5K)で反磁性を示した。
The electrical resistance and magnetic susceptibility of the oxide sintered body thus obtained were measured. Electrical resistance is 4X10-' at room temperature
It showed a good value of Ωcm, and decreased as the temperature decreased, indicating metallic conduction. Then, it decreased rapidly at low temperatures and disappeared at about 5 ℃. Furthermore, in the measurement of magnetic susceptibility, it showed diamagnetic properties at low temperatures (approximately 5K).

比較例 Bi旧帆で表される酸化物の焼結体を上記実施例と同様
にして作製し、電気抵抗を測定したところ、室温おける
抵抗率は20Ω印で、温度を低下させるにつれて抵抗率
は増加した。また、磁化率の測定においては、低温(約
5K)としても反磁性を示さなかった。
Comparative Example A sintered body of an oxide represented by Bi old sail was prepared in the same manner as in the above example, and its electrical resistance was measured.The resistivity at room temperature was 20Ω, and as the temperature was lowered, the resistivity decreased. increased. Furthermore, in the measurement of magnetic susceptibility, no diamagnetic property was exhibited even at low temperatures (approximately 5K).

なお、上記実施例においては、AE元素としてSrを用
いた例について述べたが、他のBaおよびCaを用いた
場合においても、同様な効果か得られた。
In the above example, an example was described in which Sr was used as the AE element, but similar effects were obtained when other Ba and Ca were used.

[発明の効果] 以上説明したように、本発明による電気伝導性酸化物は
、金属的伝導を示すと共に電気伝導性に優れ、よって配
線材料等として有用である。
[Effects of the Invention] As explained above, the electrically conductive oxide according to the present invention exhibits metallic conductivity and has excellent electrical conductivity, and is therefore useful as a wiring material and the like.

出願人      株式会社 東芝Applicant: Toshiba Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)BiおよびNiと、AE元素(AEはBa、Ca
およびSrから選ばれた少なくとも1種の元素を示す)
を構成成分とし、層状ペロブスカイト構造を有すること
を特徴とする電気伝導性酸化物。
(1) Bi and Ni and AE elements (AE is Ba, Ca
and at least one element selected from Sr)
An electrically conductive oxide characterized by having a layered perovskite structure.
JP2246753A 1990-09-17 1990-09-17 Electrically conductive oxide Pending JPH04130019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2246753A JPH04130019A (en) 1990-09-17 1990-09-17 Electrically conductive oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2246753A JPH04130019A (en) 1990-09-17 1990-09-17 Electrically conductive oxide

Publications (1)

Publication Number Publication Date
JPH04130019A true JPH04130019A (en) 1992-05-01

Family

ID=17153147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2246753A Pending JPH04130019A (en) 1990-09-17 1990-09-17 Electrically conductive oxide

Country Status (1)

Country Link
JP (1) JPH04130019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210673A1 (en) * 2022-04-28 2023-11-02 国立大学法人東北大学 Crystal, phase change memory, method for producing crystal, and method for producing phase change memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210673A1 (en) * 2022-04-28 2023-11-02 国立大学法人東北大学 Crystal, phase change memory, method for producing crystal, and method for producing phase change memory

Similar Documents

Publication Publication Date Title
Suzuki et al. Crystal structure and physical properties of layered perovskite compound Sr3V2O7. 01
EP0348986B1 (en) Bi-Pb-Sr-Ba-Ca-Cu-O system superconductor
JPH04130019A (en) Electrically conductive oxide
JPH04130020A (en) Electrically conductive oxide
JPH04130021A (en) Electrically conductive oxide
Fujihara et al. Oxygen deficiency and electrical conductivity of Nd1− xAxNiO3− y (A= alkaline earth) prepared by the low-temperature process
JP2593475B2 (en) Oxide superconductor
JP2859283B2 (en) Oxide superconductor
JP2893405B2 (en) Bi-Pb-Sr-Ca-Cu-o based superconducting material
JP2632543B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JP2831755B2 (en) Oxide superconductor
US5229035A (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
KR100928553B1 (en) SUPERCONDUCTING COMPOSITIONS WITH HIGH Tc AND PROCESSES FOR PREPARING BULK MATERIALS COMPRISED OF THE SAME
JPH0238359A (en) Production of superconductor
Latha et al. Kinetics and formation of (Pb0. 5, Cd0. 5) Sr2 (Y0. 6, Ca0. 4) Cu2O7− δ superconductor by directed reaction process
EP0400666A2 (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JP2528356B2 (en) Conductive ceramics and manufacturing method thereof
JPS63307156A (en) Method for synthesizing superconducting ceramics
JPH0459654A (en) Oxide superconductor
JPS63230521A (en) Superconductor of barium yttrium copper compound (ba4y2 cu7o14) and production thereof
Gallardo‐Amores et al. High Pressure Synthesis and Characterization of New Members of the RuSr2 (RE, Ce) 2Cu2O10 Family (RE= Y, Dy)
JPH01290530A (en) Multiple oxides superconducting material and production thereof
JPH03218921A (en) Copper oxide-based electrically conductive ceramics and production thereof
JPH054819A (en) Electrically conductive oxide
Wang et al. Preparation and Superconductivity of a Series of Bi2CaSr2‐XBaxCu2O8+ δ