JPH03218921A - Copper oxide-based electrically conductive ceramics and production thereof - Google Patents

Copper oxide-based electrically conductive ceramics and production thereof

Info

Publication number
JPH03218921A
JPH03218921A JP2012085A JP1208590A JPH03218921A JP H03218921 A JPH03218921 A JP H03218921A JP 2012085 A JP2012085 A JP 2012085A JP 1208590 A JP1208590 A JP 1208590A JP H03218921 A JPH03218921 A JP H03218921A
Authority
JP
Japan
Prior art keywords
copper oxide
based conductive
conductive ceramic
copper
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012085A
Other languages
Japanese (ja)
Other versions
JP2979515B2 (en
Inventor
Hideo Ihara
英雄 伊原
Norio Terada
教男 寺田
Masatoshi Jo
城 昌利
Riyouji Sugise
良二 杉瀬
Hiroshi Daimon
宏 大門
Kazuhiro Fujii
一宏 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Ube Corp
Original Assignee
Agency of Industrial Science and Technology
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Ube Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP2012085A priority Critical patent/JP2979515B2/en
Priority to US07/639,931 priority patent/US5112783A/en
Priority to DE4101761A priority patent/DE4101761C2/en
Publication of JPH03218921A publication Critical patent/JPH03218921A/en
Application granted granted Critical
Publication of JP2979515B2 publication Critical patent/JP2979515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E40/64
    • Y02E60/324

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To easily obtain copper oxide-based electrically conductive ceramics represented by a prescribed formula and having heat and corrosion resistances by heating a mixture of the nitrates of In, Sc, Y, etc., with copper nitrate at a prescribed temp. CONSTITUTION:The nitrates of one or more kinds of elements (M) selected among In, Sc, Y, Tl and Ga are mixed with copper nitrate and this mixture is heated at 200-600 deg.C to obtain copper oxide-based electrically conductive ceramics represented by a formula (MxCuy)7Oz(NO3) (where x+y=1, x/y=0-10 and z is 6-8).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は銅酸化物系導電性セラミックス及びその製造方
法に係り、特に、容易かつ安価に入手可能な原料を用い
て、比較的低温での加熱により製造することができる銅
酸化物系導電性セラミックス及びその製造方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to copper oxide-based conductive ceramics and a method for producing the same, and particularly relates to a method for manufacturing the same at a relatively low temperature using easily and inexpensively available raw materials. The present invention relates to copper oxide-based conductive ceramics that can be produced by heating and a method for producing the same.

[従来の技術] 導電性セラミックスは、セラミックス特有の耐食性、耐
熱性等の優れた特性を利用して、従来より、電極、発熱
体等として広い分野で使用されている,例えば、塩素工
業において、RuO2は電力消費量が小さく、しかも耐
腐食性等に優れるなどの特性から、電極材料として特に
好適である。
[Prior Art] Conductive ceramics have traditionally been used in a wide range of fields as electrodes, heating elements, etc., by taking advantage of their excellent characteristics such as corrosion resistance and heat resistance, which are unique to ceramics.For example, in the chlorine industry, RuO2 is particularly suitable as an electrode material because of its low power consumption and excellent corrosion resistance.

このRu02はまた、最近では熱転写プリンターのサー
マルヘッドにも利用されている。
This Ru02 has also recently been used in thermal heads of thermal transfer printers.

更に、導電性セラミックスの他の用途例としては、IT
O,(In−Sn−0系)セラミックスノ透明電極への
通用、PLZT (pb−La−Zn−Ti系)セラミ
ックスの光スイッチ、光シャッターへの適用など、その
応用分野は拡大しつつある。その他、導電性セラミック
スは、外部環境の変化を電気的な信号に変換するための
各種センサーの電極としても利用されている。また、セ
ラミックスの耐熱性を考慮すれば、La−Cr−0系又
はLa−Co−0系セラミックスは、炉用発熱体、燃料
電池電極としても有用である。
Furthermore, other applications of conductive ceramics include IT
The field of application is expanding, such as the application of O, (In-Sn-0 series) ceramics to transparent electrodes, and the application of PLZT (pb-La-Zn-Ti series) ceramics to optical switches and optical shutters. In addition, conductive ceramics are also used as electrodes for various sensors that convert changes in the external environment into electrical signals. Furthermore, considering the heat resistance of ceramics, La-Cr-0 or La-Co-0 ceramics are useful as heating elements for furnaces and fuel cell electrodes.

[発明が解決しようとするi!i!] このような導電性セラミックスの適用分野は多岐にわた
り、その有用性が重視されていることから、導電性セラ
ミックスをより安価にかつより容易に製造する技術の出
現が常に望まれている。
[The invention attempts to solve i! i! ] Such conductive ceramics are applicable to a wide variety of fields, and their usefulness is valued, so there is always a desire for a technology to produce conductive ceramics more cheaply and more easily.

本発明は上記従来の実情に鑑みてなされたものであり、
容易かつ安価に人手可能な原料を用いて、比較的低温で
加熱することにより、工業的に有利に製造することがで
きる銅酸化物系導電性セラミックス及びその製造方法を
提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional situation,
The purpose of the present invention is to provide copper oxide-based conductive ceramics that can be manufactured industrially advantageously by using raw materials that can be easily and inexpensively produced manually and by heating at relatively low temperatures, and a method for manufacturing the same. .

[課題を解決するための千段」 請求項(1)の銅酸化物系導電性セラミックスは、下記
一般式[1]で示されることを特徴とする。
[A thousand steps to solve the problem] The copper oxide-based conductive ceramic of claim (1) is characterized by being represented by the following general formula [1].

(M,Cu,)7  0.  (NO3 )”’  [
11請求項(2)の銅酸化物系導電性セラミックスは下
記一般式[ n ]で示されることを特徴とする。
(M, Cu,)7 0. (NO3)”' [
The copper oxide-based conductive ceramic according to claim 11 (2) is characterized by being represented by the following general formula [n].

Cu7 0x  (NOs  )       ・・・
 [111請求項(3)の銅酸化物系導電性セラミック
スの製造方法は,請求項(1)の銅酸化物系導電性セラ
ミックスを製造する方法であって、In,Sc,Y,T
J2及びGaよりなる群から選ばれる1種又は2種以上
の硝酸塩と硝酸銅との混合物を200〜600℃で加熱
することを特徴とする。
Cu7 0x (NOs)...
[111 The method for manufacturing a copper oxide-based conductive ceramic according to claim (3) is a method for manufacturing the copper oxide-based conductive ceramic according to claim (1), which comprises In, Sc, Y, T.
It is characterized in that a mixture of one or more nitrates selected from the group consisting of J2 and Ga and copper nitrate is heated at 200 to 600°C.

請求項(4)の銅酸化物系導電性セラミックスの製造方
法は、請求項(2)の銅酸化物系導電性セラミックスを
製造する方法であクて、硝酸銅を200〜600℃で加
熱することを特徴とする。
The method for producing copper oxide-based conductive ceramics according to claim (4) is the method for producing copper oxide-based conductive ceramics according to claim (2), in which copper nitrate is heated at 200 to 600°C. It is characterized by

請求項(5)の銅酸化物系導電性セラミックスの製造方
法は、上記請求項(2)のセラミックスの製造方法であ
って、硝酸銅中に前述の請求項(1)の銅酸化物系導電
性セラミックスの結晶を硝酸銅に対して10重量%以下
共存させて200〜600℃で加熱することを特徴とす
る。
The method for manufacturing a copper oxide-based conductive ceramic according to claim (5) is the method for manufacturing a ceramic according to claim (2), wherein the copper oxide-based conductive ceramic according to claim (1) is added to copper nitrate. The method is characterized in that less than 10% by weight of copper nitrate is made to coexist with ceramic crystals and heated at 200 to 600°C.

以下に本発明を詳細に説明する。The present invention will be explained in detail below.

本発明の銅酸化物系導電性セラミックスは下記一般式[
11で示され、 (  M  X  C  u  y  )  7  0
  z   (  N  O  3 )  ”’  [
  I ]式中、 M: In,Sc,Y,TIL及びGaよりなる群から
選ばれる1種又は2種以上の元素 X十y=i 0≦x/y≦lO、好ましくは0≦x / y≦16≦
2≦8 である。
The copper oxide conductive ceramic of the present invention has the following general formula [
11, (MX Cu y) 7 0
z (N O 3) ”' [
I] where, M: one or more elements selected from the group consisting of In, Sc, Y, TIL and Ga ≦16≦
2≦8.

このような本発明の銅酸化物系導電性セラミックスのX
線回折スペクトルのピークとしては、2θで 16.0〜16.5°, 29.5〜33.5’″, 
37.8〜38.7°54.6〜56。2゜のビークが
特徴的である。これらのピークは立方晶系の結晶の面指
数 111,222,400,440 に帰属される。軸長aは約9.2〜9.5Aである。
X of such copper oxide-based conductive ceramics of the present invention
The peaks of the line diffraction spectrum are 16.0 to 16.5°, 29.5 to 33.5''' in 2θ,
Beaks of 37.8-38.7° and 54.6-56.2° are characteristic. These peaks are assigned to the surface indexes of 111, 222, 400, and 440 of cubic crystals. The axial length a is about 9.2 to 9.5A.

本発明のセラミックスの赤外線吸収スペクトルは約1 
360 〜1 380cm−’に吸収ピークを有してお
り、No3基の存在を示している。
The infrared absorption spectrum of the ceramics of the present invention is approximately 1
It has an absorption peak at 360 to 1 380 cm-', indicating the presence of No3 group.

このような本発明の銅酸化物系導電性セラミックスのう
ち、請求項(1)の銅酸化物系導電性セラミックスは、
例えば、請求項(3)の方法に従って、次のようにして
製造することができる。
Among such copper oxide-based conductive ceramics of the present invention, the copper oxide-based conductive ceramics of claim (1) include:
For example, according to the method of claim (3), it can be manufactured as follows.

即ち、まずMの硝酸塩と、硝酸銅との所定量を混合し、
次いで、得られた混合物を200〜600℃で加熱する
ことにより、本発明の銅酸化物系導電性セラミックスを
得る.ここで、加熱温度が600℃を超えると絶縁性セ
ラミックスであるCuO又はM2 02が分解生成し、
導電性セラミックスの生成割合が減少し、更に高温の場
合には全て絶縁性セラミックスとなるため好ましくない
。一方、加熱温度が200℃未満では硝酸塩の分解反応
が効率的に進行しない.この加熱時間は1分〜50時間
程度の間で適宜選定され、加熱は電気炉等の通常の加熱
装置を用いて、酸素又は空気中にて行なうことができる
. なお、使用される硝酸塩にはその永和物も当然含まれ、
また、硝酸銅としては、塩基性硝酸銅Cu2 (OH)
 3 (NOs )も使用可能である。硝酸塩の混合法
としては、各々の硝酸塩をボールミル等で粉砕混合する
方法、又は、各々の水溶液を混合した後、蒸発乾固して
水を除去する方法等を採用することができる。
That is, first, a predetermined amount of M nitrate and copper nitrate are mixed,
Next, the resulting mixture is heated at 200 to 600°C to obtain the copper oxide conductive ceramic of the present invention. Here, when the heating temperature exceeds 600°C, CuO or M202, which is an insulating ceramic, decomposes and is produced.
This is not preferable because the proportion of conductive ceramics produced decreases, and if the temperature is higher, all the materials become insulating ceramics. On the other hand, if the heating temperature is less than 200°C, the nitrate decomposition reaction will not proceed efficiently. The heating time is appropriately selected from about 1 minute to about 50 hours, and the heating can be carried out in oxygen or air using a normal heating device such as an electric furnace. In addition, the nitrate used naturally includes its permanent product,
In addition, as copper nitrate, basic copper nitrate Cu2 (OH)
3 (NOs) can also be used. The nitrates may be mixed by pulverizing and mixing each nitrate using a ball mill or the like, or by mixing each aqueous solution and then evaporating to dryness to remove water.

請求項(2)の銅酸化物系導電性セラミックスは、上記
請求項(3)の方法において、Mの硝酸塩を用いずに硝
酸銅のみを原料として同様に200〜600℃で加熱す
ることにより製造することができる。
The copper oxide-based conductive ceramic of claim (2) is produced in the method of claim (3) by heating only copper nitrate at 200 to 600°C as a raw material without using M nitrate. can do.

また、この請求項(2)の銅酸化物系導電性セラミック
スの製造に際し、予め別途製造された請求項(1)の銅
酸化物系導電性セラミックス<Mx Cu,)7 0!
  (NOs )(X≠0)の微量を硝酸銅に添加混合
しても良い。(Mll C uy ) 7 0x  (
NOa )を添加することにより 添加された (MX C u, ) 7 0x  (NO3 )が種
結晶として作用し、導電性のC u 7 0 z  (
 N O 3 )をより効率的に製造することが可能と
される。この場合、(M)l Cu,)7 0!  (
NO3)の添加量は少な過ぎると十分な種結晶効果が得
られず、多過ぎても(:u7 0.(NOi )の生成
を阻害する恐れがあるため、(MX Cuy )7 0
x  (NO3)の添加量は硝酸銅に対して10重量%
以下、とりわけ0.1〜10重量%とするのが好ましい
.[作用] 本発明の銅酸化物系導電性セラミックスのX線回折スペ
クトルのパターンから、本発明の銅酸化物系導電性セラ
ミックスは、A g.i 0 a(N O a )類似
組成を有する立方晶系の結晶であると認められる。この
結晶においては、立方晶の酸素が一部欠損したものも含
まれ、Mの酸化数は+3であるが、銅の酸化数は+2〜
+3の値であるこ−とから、これが導電性に寄与するも
のと推定される。
Furthermore, when manufacturing the copper oxide conductive ceramic of claim (2), the copper oxide conductive ceramic of claim (1) which is separately manufactured in advance<Mx Cu,)70!
A trace amount of (NOs) (X≠0) may be added to and mixed with copper nitrate. (Mll Cuy) 7 0x (
By adding NOa), the added (MX Cu, )70x (NO3) acts as a seed crystal, and conductive Cu70z (
N O 3 ) can be produced more efficiently. In this case, (M)l Cu,)7 0! (
If the amount of NO3) added is too small, a sufficient seed crystal effect cannot be obtained, and if it is too large, it may inhibit the production of (:u70.(NOi).
The amount of x (NO3) added is 10% by weight based on copper nitrate.
Hereinafter, it is particularly preferable to set it to 0.1 to 10% by weight. [Function] From the X-ray diffraction spectrum pattern of the copper oxide conductive ceramic of the present invention, the copper oxide conductive ceramic of the present invention has A g. It is recognized that it is a cubic crystal having a composition similar to i 0 a (N O a ). In this crystal, some cubic crystal oxygen is missing, and the oxidation number of M is +3, but the oxidation number of copper is +2 to
Since the value is +3, it is presumed that this contributes to conductivity.

しかして、このような本発明の銅酸化物系導電性セラミ
ックスは、本発明の方法に従って、Mの硝酸塩やCuの
硝酸塩といった安価で容易に入手可能な原料を用いて、
200〜600℃といった比較的低い加熱温度にて容易
かつ効率的に製造することができる。
Therefore, the copper oxide-based conductive ceramics of the present invention can be produced using inexpensive and easily available raw materials such as M nitrate and Cu nitrate according to the method of the present invention.
It can be easily and efficiently produced at a relatively low heating temperature of 200 to 600°C.

特に、請求項(2)の銅酸化物系導電性セラミックスを
製造するにあたり、請求項(5)の方法に従って、原料
に請求項(1)の銅酸化物系導電性セラミックスを添加
混合することにより、該(MX C uy ) 7 0
H  ( N O 3 )の種晶効果により、高特性の
Cu70x  (NO3)を効率的に製造することが可
能とされる。
In particular, when producing the copper oxide conductive ceramic of claim (2), by adding and mixing the copper oxide conductive ceramic of claim (1) to the raw materials according to the method of claim (5). , said (MX Cuy) 7 0
The seed crystal effect of H (NO 3 ) makes it possible to efficiently produce Cu70x (NO 3 ) with high characteristics.

[実施例] 以下に実施例を挙げて本発明をより具体的に説明する。[Example] EXAMPLES The present invention will be described in more detail with reference to Examples below.

実施例1 硝酸インジウム三水和物2.27gと硝酸銅三水和物7
.73g(モル比I n / C u = 1 / 5
 )を良く混合し、混合物を酸素気流中、450℃で1
0分間加熱した。
Example 1 2.27 g of indium nitrate trihydrate and 7 g of copper nitrate trihydrate
.. 73g (molar ratio I n / Cu = 1 / 5
) were mixed well, and the mixture was heated at 450°C in an oxygen stream for 1
Heated for 0 minutes.

その結果、第1図に示すような立方晶系のX線回折パタ
ーン(Cu  Kα線使用)を有する銅酸化物系導電性
セラミックスが得られた。このX線回折スペクトルから
、本実施例により(I nrys cus/6 ) 7
 0x  (NOs )が生成したことが確認された。
As a result, a cuprate-based conductive ceramic having a cubic X-ray diffraction pattern (using Cu Kα radiation) as shown in FIG. 1 was obtained. From this X-ray diffraction spectrum, according to this example, (Inrys cus/6) 7
It was confirmed that 0x (NOs) was generated.

この銅酸化物系導電性セラミックスの温度一比抵抗曲線
を第2図に示す。第2図より得られた銅酸化物系導電性
セラミックスは良好な導電性を示すことが明らかである
FIG. 2 shows a temperature-resistivity curve of this copper oxide conductive ceramic. It is clear from FIG. 2 that the copper oxide conductive ceramic obtained exhibits good conductivity.

実施例2 硝酸インジウム三水和物1.28gと硝酸銅三水和物8
.72g (モル比I n / C u =1/10)
を良く混合し、混合物を酸素気流中、600℃で5分間
加熱した。
Example 2 1.28 g of indium nitrate trihydrate and 8 g of copper nitrate trihydrate
.. 72g (molar ratio I n / Cu = 1/10)
were mixed well and the mixture was heated at 600° C. for 5 minutes in an oxygen stream.

その結果、第3図に示すような立方晶系のX線回折パタ
ーン(Cu  Kα線使用)を有する銅酸化物系導電性
セラミックスが得られた.このX線回折スペクトルから
、本実施例により(I nl/II  Cu+o/++
)7 0x  (NOs )が生成したことが確認され
た。この銅酸化物系導電性セラミックスの比抵抗(室温
)は0.1Ω・Cmであった。
As a result, a cuprate-based conductive ceramic having a cubic X-ray diffraction pattern (using Cu Kα radiation) as shown in Figure 3 was obtained. From this X-ray diffraction spectrum, according to this example, (I nl/II Cu+o/++
)70x (NOs) was confirmed to have been generated. The specific resistance (room temperature) of this copper oxide-based conductive ceramic was 0.1 Ω·Cm.

実施例3 硝酸インジウム三水和物0.145gと硝酸銅三水和物
9、86g(モル比1 n / C u =1/100
)を良く混合し、混合物を酸素気流中、250℃で3時
間加熱した。
Example 3 0.145 g of indium nitrate trihydrate and 9.86 g of copper nitrate trihydrate (molar ratio 1 n / Cu = 1/100
) were mixed well and the mixture was heated at 250° C. for 3 hours in an oxygen stream.

その結果、第4図に示すような立方晶系のX線回折パタ
ーン(Cu  Ka線使用)を有する銅酸化物系導電性
セラミックスが得られた。このXli回折スペクトルか
ら、本実施例により(I n+/+o+ C u+oo
/+ot)70z  (NOs ) カ生成したことが
確認された。この銅酸化物系導電性セラミックスの比抵
抗(室温)は0.1Ω・cmであった。
As a result, a copper oxide conductive ceramic having a cubic X-ray diffraction pattern (using Cu Ka line) as shown in FIG. 4 was obtained. From this Xli diffraction spectrum, according to this example, (I n+/+o+ Cu+oo
/+ot)70z (NOs) was confirmed to have been generated. The specific resistance (room temperature) of this copper oxide-based conductive ceramic was 0.1 Ω·cm.

実施例4 硝酸スカンジウム四水和物2.01gと硝酸銅三水和物
8.0Og (モル比S C / C u =1/5)
を良く混合し、混合物を酸素気流中、450℃で10分
間加熱した. その結果、第5図に示すような立方晶系のX線回折パタ
ーン(Cu  Ka線使用)を有する銅酸化物系導電性
セラミックスが得られた。
Example 4 2.01 g of scandium nitrate tetrahydrate and 8.0 Og of copper nitrate trihydrate (molar ratio S C / C u =1/5)
The mixture was heated at 450°C for 10 minutes in an oxygen stream. As a result, a cuprate-based conductive ceramic having a cubic X-ray diffraction pattern (using Cu Ka line) as shown in FIG. 5 was obtained.

このX線回折スペクトルから、本実施例により(Sc/
Cusys)70x  (NO3)が生成したことが確
認された。この銅酸化物系導電性セラミツクスの比抵抗
(室温)は0.1Ω・cmであった。
From this X-ray diffraction spectrum, (Sc/
It was confirmed that Cusys) 70x (NO3) was produced. The specific resistance (at room temperature) of this copper oxide-based conductive ceramic was 0.1 Ω·cm.

実施例5 硝酸スカンジウム四水和物2.01gと硝酸銅三水和物
a.OOg (モル比S c / C u =1/5)
に水10m1を加え溶解させた。これをアルミナ基板上
にスビンコートし、酸素気流中、450℃で5分間加熱
した。
Example 5 2.01 g of scandium nitrate tetrahydrate and copper nitrate trihydrate a. OOg (molar ratio S c / Cu = 1/5)
10 ml of water was added to the solution to dissolve it. This was coated onto an alumina substrate and heated at 450° C. for 5 minutes in an oxygen stream.

その結果、第6図に示すような立方晶系のX線回折パタ
ーン(Cu  Kα線使用)を有する銅酸化物系導電性
セラミックスが得られた。このX線回折スペクトルから
、本実施例により(SC+/8 Cusza)70x 
 (NOs )が生成したことが確認された。この銅酸
化物系導電性セラミックスの比抵抗(室温)は0.2Ω
・cmであった。
As a result, a cuprate-based conductive ceramic having a cubic X-ray diffraction pattern (using Cu Kα radiation) as shown in FIG. 6 was obtained. From this X-ray diffraction spectrum, according to this example, (SC+/8 Cusza) 70x
It was confirmed that (NOs) was generated. The specific resistance (room temperature) of this copper oxide conductive ceramic is 0.2Ω
・It was cm.

実施例6 硝酸銅三水和物10.0gと実施例1において得られた
銅酸化物系導電性セラミックスの粉末0.1gを良く混
合し、混合物を酸素気流中、?50℃で2時間加熱した
Example 6 10.0 g of copper nitrate trihydrate and 0.1 g of the copper oxide conductive ceramic powder obtained in Example 1 were mixed well, and the mixture was heated to ? Heated at 50°C for 2 hours.

その結果、第7図に示すような立方晶系のX線回折パタ
ーン(Cu  Ka線使用)を有する銅酸化物系導電性
セラミックスが得られた。このX線回折スペクトルから
、本実施例によりCu70■ (NO3)が生成したこ
とが確記された。この銅酸化物系導電性セラミックスの
比抵抗(室温)は0.1Ω・Cmであった。
As a result, a cuprate-based conductive ceramic having a cubic X-ray diffraction pattern (using Cu Ka line) as shown in FIG. 7 was obtained. From this X-ray diffraction spectrum, it was confirmed that Cu70 (NO3) was produced in this example. The specific resistance (room temperature) of this copper oxide-based conductive ceramic was 0.1 Ω·Cm.

実施例7 硝酸銅三水和物10.0gを酸素気流中、250℃で3
時間加熱した。
Example 7 10.0 g of copper nitrate trihydrate was heated at 250°C in an oxygen stream.
heated for an hour.

その結果、第8図に示すような立方晶系のX線回折パタ
ーン(Cu  Ka線使用)を有する生成物が得られた
。このX線回折スペクトルから、本実施例によりCuフ
o,(NO3 )の銅酸化物系導電性セラミックスと塩
基性硝酸銅Cu2 (OH)2  (NO3 )と酸化
銅CuOの混合物が得られたことが確認された。得られ
た銅酸化物系導電性セラミックスの比抵抗(室温)は0
.2Ω・Cmてあった。
As a result, a product having a cubic X-ray diffraction pattern (using Cu Ka radiation) as shown in FIG. 8 was obtained. From this X-ray diffraction spectrum, it was found that in this example, a mixture of copper oxide-based conductive ceramics of Cufo, (NO3), basic copper nitrate Cu2 (OH)2 (NO3), and copper oxide CuO was obtained. was confirmed. The specific resistance (room temperature) of the obtained copper oxide conductive ceramic is 0.
.. It was 2Ω・Cm.

実施例8 硝酸イットリウム六水和物2.84gと硝酸銅三水和物
7.tag(モル比Y / C u = 1 / 4 
)を良く混合し、混合物を酸素気流中、250℃で15
時間加熱した。
Example 8 2.84 g of yttrium nitrate hexahydrate and copper nitrate trihydrate 7. tag (molar ratio Y/C u = 1/4
) were mixed well, and the mixture was heated at 250°C in an oxygen stream for 15 minutes.
heated for an hour.

その結果、第9図に示すような立方晶系のX線回折パタ
ーン(Cu  Ka線使用)を有する銅酸化物系導電性
セラミックスが得られた。このX線回折スペクトルから
、本実施例により(Yl/S Cu4zs)70!  
(NO3)が生成シタコとが確認された。この銅酸化物
系導電性セラミックスの比抵抗(室温)は2.0Ω・c
mであった。
As a result, a cuprate-based conductive ceramic having a cubic X-ray diffraction pattern (using Cu Ka line) as shown in FIG. 9 was obtained. From this X-ray diffraction spectrum, according to this example, (Yl/S Cu4zs) 70!
It was confirmed that (NO3) was generated. The specific resistance (room temperature) of this copper oxide conductive ceramic is 2.0Ω・c
It was m.

[発明の効果] 以上詳述した通り、本発明の銅酸化物系導電性セラミッ
クスによれば、セラミックスの耐熱性、耐食性、機械的
特性と、導電性とを兼備する高特性導電性セラミックス
であって、安価で人手し易い原料を用いて、比較的低温
の加熱により容易かつ効率的に製造することができる銅
酸化物系導電性セラミックスが提供される。
[Effects of the Invention] As detailed above, the copper oxide-based conductive ceramic of the present invention is a high-performance conductive ceramic that has both the heat resistance, corrosion resistance, mechanical properties, and electrical conductivity of ceramics. Thus, there is provided a copper oxide-based conductive ceramic that can be easily and efficiently manufactured by heating at a relatively low temperature using inexpensive and easily handled raw materials.

このような本発明の銅酸化物系導電性セラミックスは、
各種の電極、発熱体材料として好適に通用可能であり、
また、近年技術進歩の著しい超伝導体を製造するため原
料としても工業的に極めて有用である。
Such a copper oxide-based conductive ceramic of the present invention is
It can be suitably used as a material for various electrodes and heating elements,
It is also industrially extremely useful as a raw material for producing superconductors, which have undergone remarkable technological advances in recent years.

しかして、このような本発明の銅酸化物系導電性セラミ
ックスは、請求項(3)〜(5)の本発明の銅酸化物系
導電性セラミックスの製造方法により、容易かつ効率的
に低コストにて製造される。
Therefore, such a copper oxide-based conductive ceramic of the present invention can be easily and efficiently produced at low cost by the method of manufacturing a copper oxide-based conductive ceramic of the present invention according to claims (3) to (5). Manufactured in

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られた銅酸化物系導電性セラミッ
クスのX線回折スペクトルを示す図、第2図は同温度一
比抵抗曲線を示す図である。第3図、第4図、第5図、
第6図、第7図、第8図及び第9図は各々、実施例2、
3、4、5、6、7及び8で得られた銅酸化物系導電性
セラミックスのX線回折スペクトルを示す図である。
FIG. 1 is a diagram showing the X-ray diffraction spectrum of the cuprate-based conductive ceramic obtained in Example 1, and FIG. 2 is a diagram showing the same temperature-resistivity curve. Figure 3, Figure 4, Figure 5,
FIG. 6, FIG. 7, FIG. 8, and FIG. 9 show Example 2,
FIG. 3 is a diagram showing the X-ray diffraction spectra of the copper oxide-based conductive ceramics obtained in Examples 3, 4, 5, 6, 7, and 8.

Claims (5)

【特許請求の範囲】[Claims] (1) 下記一般式[ I ]で示される銅酸化物系導電
性セラミックス。 (M_xCu_y)_7O_z(NO_3)・・・[
I ][[I]式中、 MはIn、Sc、Y、Tl及びGaより なる群から選ばれる1種又は2種以上の 元素、 x+y:1 0<x/y≦10 6≦z≦8]
(1) A copper oxide-based conductive ceramic represented by the following general formula [I]. (M_xCu_y)_7O_z(NO_3)...[
I] [[I] In the formula, M is one or more elements selected from the group consisting of In, Sc, Y, Tl and Ga, x+y: 1 0<x/y≦10 6≦z≦8 ]
(2) 下記一般式[II]で示される銅酸化物系導電性
セラミックス。 Cu_7O_z(NO_3)・・・[II] [[II]式中、 6≦z≦8]
(2) A copper oxide-based conductive ceramic represented by the following general formula [II]. Cu_7O_z(NO_3)...[II] [In the formula [II], 6≦z≦8]
(3) In、Sc、Y、Tl及びGaよりなる群から
選ばれる1種又は2種以上の硝酸塩と硝酸銅との混合物
を200〜600℃で加熱することにより特許請求の範
囲第1項に記載の銅酸化物系導電性セラミックスを製造
する方法。
(3) Claim 1 is achieved by heating a mixture of one or more nitrates selected from the group consisting of In, Sc, Y, Tl and Ga and copper nitrate at 200 to 600°C. A method of manufacturing the copper oxide-based conductive ceramics described above.
(4) 硝酸銅を200〜600℃で加熱することによ
り特許請求の範囲第2項に記載の銅酸化物系導電性セラ
ミックスを製造する方法。
(4) A method for producing the copper oxide-based conductive ceramics according to claim 2 by heating copper nitrate at 200 to 600°C.
(5) 硝酸銅中に特許請求の範囲第1項に記載の銅酸
化物系導電性セラミックスの結晶を硝酸銅に対して10
重量%以下共存させて200〜600℃で加熱すること
により特許請求の範囲第2項に記載の銅酸化物系導電性
セラミックスを製造する方法。
(5) Crystals of the copper oxide-based conductive ceramic according to claim 1 are added to copper nitrate at a ratio of 10% to copper nitrate.
A method for producing the copper oxide-based conductive ceramic according to claim 2, by heating at 200 to 600°C in the presence of less than % by weight.
JP2012085A 1990-01-22 1990-01-22 Copper oxide conductive ceramics and method for producing the same Expired - Lifetime JP2979515B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012085A JP2979515B2 (en) 1990-01-22 1990-01-22 Copper oxide conductive ceramics and method for producing the same
US07/639,931 US5112783A (en) 1990-01-22 1991-01-14 Conductive copper oxide ceramics and process for producing same
DE4101761A DE4101761C2 (en) 1990-01-22 1991-01-22 Electrically conductive copper oxide ceramics and process for their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012085A JP2979515B2 (en) 1990-01-22 1990-01-22 Copper oxide conductive ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03218921A true JPH03218921A (en) 1991-09-26
JP2979515B2 JP2979515B2 (en) 1999-11-15

Family

ID=11795747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012085A Expired - Lifetime JP2979515B2 (en) 1990-01-22 1990-01-22 Copper oxide conductive ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP2979515B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223154A (en) * 2000-02-10 2001-08-17 Fujitsu Ltd Charged particle beam aligner, electrostatic deflector and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369171A (en) * 2018-09-30 2019-02-22 镇江华智睿安物联科技有限公司 A kind of mass spectrum ionization source electrode material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223154A (en) * 2000-02-10 2001-08-17 Fujitsu Ltd Charged particle beam aligner, electrostatic deflector and method of manufacturing the same

Also Published As

Publication number Publication date
JP2979515B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
JPH01226737A (en) Superconductor and its production
Alberta et al. Preparation of phase-pure perovskite lead indium niobate ceramics
JPH03218921A (en) Copper oxide-based electrically conductive ceramics and production thereof
US5112783A (en) Conductive copper oxide ceramics and process for producing same
JPS63236748A (en) Novel superconducting material composition
JPH0574528B2 (en)
JP2710272B2 (en) Bismuth rare earth oxide solid solution having triclinic structure and method for producing the same
JP3163340B2 (en) Method for producing copper oxide-based conductive ceramics
JPS63256564A (en) Superconductive ceramic of scalelike oxide and its production
JPS6365630B2 (en)
JPH03279254A (en) Copper oxide based conductive ceramics and production thereof
JPH0238359A (en) Production of superconductor
JPH04108661A (en) Production of electrically conductive ceramics containing copper oxide
JPH04130021A (en) Electrically conductive oxide
Fujihira et al. Preparation and properties of highly conductive La 1− x M x MnO 3− y thin film showing magnetic effect from sol-gel process
JPH0543228A (en) Copper oxide-based electric conductive compound
JPH04130019A (en) Electrically conductive oxide
JP2849704B2 (en) Bismuth-vanadium oxide compound for oxide ion conductor and method for producing the same
JPS63252923A (en) Superconducting material composition
JPH0234502A (en) Lamellar oxide type high temperature superconducting powder and its preparation
JPH04130020A (en) Electrically conductive oxide
JPH01212225A (en) Oxide superconducting material
JPH02199024A (en) Oxide superconductor
JPH04325420A (en) Compound having composition of nafe3v9o19 and its synthesizing method
JPH03115157A (en) Production of bi-based oxide superconductor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term