JPH04130021A - Electrically conductive oxide - Google Patents

Electrically conductive oxide

Info

Publication number
JPH04130021A
JPH04130021A JP2246751A JP24675190A JPH04130021A JP H04130021 A JPH04130021 A JP H04130021A JP 2246751 A JP2246751 A JP 2246751A JP 24675190 A JP24675190 A JP 24675190A JP H04130021 A JPH04130021 A JP H04130021A
Authority
JP
Japan
Prior art keywords
oxide
electrically conductive
conductive oxide
contg
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2246751A
Other languages
Japanese (ja)
Inventor
Hiromi Nibu
丹生 ひろみ
Shin Fukushima
福島 伸
Shigenori Tanaka
成典 田中
Takeshi Ando
健 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2246751A priority Critical patent/JPH04130021A/en
Publication of JPH04130021A publication Critical patent/JPH04130021A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide the above oxide which exhibits a metallic conductivity and to improve its electric conductivity by mixing compds. contg. at least one kind of the elements selected from Ba, Ca and Sr, Ir and rare earth element contg. Ir and Y and calcining, molding and firing the mixture. CONSTITUTION:The oxide or carbonate of the AE element (AE is at least one kind of the elements selected from Ba, Ca, Sr), the oxide or carbide of the Ir, the compound contg. the RE element (RE is a rare earth element contg. Y) and an A element (A is Na and/or K) or an X element (X is at least one kind of the elements selected from F, Cl, Br) are mixed and calcined at 800 to 900 deg.C in an oxygen atmosphere or reducing atmosphere. This mixture is ground and is then molded to a desired shape; thereafter, the molding is fired at 990 to 1200 deg.C, by which the electrically conductive oxide having the laminar perovskite structure of formula I to formula III ((x) is 0.01<x<0.9; (y) is 0.01<y<1) is obtd.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、イリジウムを含有する電気伝導性酸化物に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an electrically conductive oxide containing iridium.

(従来の技術) 近年、銅を含むペロブスカイト構造の酸化物が、高い臨
界温度を示す超電導体となることが分って以来、各所で
銅を含む酸化物超電導体の研究が活発に行われている。
(Prior art) In recent years, since it has been discovered that perovskite-structured oxides containing copper can be superconductors with high critical temperatures, research on oxide superconductors containing copper has been actively conducted in various places. There is.

このような銅を含む酸化物が高い臨界温度を示す理由に
ついては、まだ完全には明らかにはされてはいないが、
銅と酸素とが形成する2次元面とCu2+のもつ大きさ
l/2のスピンとが、超電導機構と密接に関係している
のものと推測されている。
The reason why such copper-containing oxides exhibit high critical temperatures is not yet completely clear, but
It is presumed that the two-dimensional plane formed by copper and oxygen and the spin of magnitude 1/2 of Cu2+ are closely related to the superconducting mechanism.

一方、イリジウムを含む酸化物のうち、いくつかのもの
は、電気伝導性を示すことが知られており、各種電極材
料や配線材料等への応用が期待されている。また、Is
“もCu2+と同様に、大きさ1/2のスピンをもつ可
能性があるため、上記した銅を含む酸化物が超電導性を
示す理由に基づくと、Irを含む酸化物も超電導体とな
る可能性があることから、超電導材料としての実用化も
期待されている。
On the other hand, some oxides containing iridium are known to exhibit electrical conductivity, and are expected to be applied to various electrode materials, wiring materials, and the like. Also, Is
Similarly to Cu2+, there is a possibility that oxides containing Ir can also become superconductors, based on the reason why oxides containing copper exhibit superconductivity. Because of its properties, it is also expected to be put to practical use as a superconducting material.

このようなlrを含む酸化物のうち、低次元面を有する
結晶構造をとり、大きさ1/2のスピンを有する可能性
が高い酸化物として、5rlr03が最近見出たされて
おり、上述したような理由から興味ある特性を示すこと
が期待されている。
Among such lr-containing oxides, 5rlr03 has recently been discovered as an oxide that has a crystal structure with low-dimensional planes and is likely to have a spin of 1/2 the size, and as described above. For these reasons, it is expected to exhibit interesting properties.

(発明が解決しようとする課題) しかしながら、上述した5rlr(hで表される酸化物
は、高圧酸素下でしか合成できす、酸素量を厳しく制御
しないと金属的伝導を示さないという難点があり、この
ままでは実用上有用とは言いがたい。
(Problem to be Solved by the Invention) However, the above-mentioned oxide represented by 5rlr (h) can only be synthesized under high pressure oxygen, and has the disadvantage that it does not exhibit metallic conduction unless the amount of oxygen is strictly controlled. , it is hard to say that it is practically useful as it is.

また、上述したような条件下で合成したとしても、5r
lr03の室温における電気伝導性はあまり高くなく、
電極材料や配線材料等として実用化するためには十分な
ものとはいえず、また金属−絶縁体転移や磁気転移、超
電導転移も見出たされていない。
Furthermore, even if synthesized under the conditions described above, 5r
The electrical conductivity of lr03 at room temperature is not very high,
It cannot be said that it is sufficient for practical use as an electrode material or wiring material, and metal-insulator transition, magnetic transition, and superconducting transition have not been discovered.

本発明は、このような課題に対処するためになされたも
のであり、イリジウムと酸素との低次元面を有すると共
に、電気伝導性に優れ、かつ容易に合成することが可能
なイリジウムを含む電気伝導性酸化物を提供することを
目的とするものである。
The present invention has been made in order to address these problems, and provides an electrical material containing iridium, which has a low-dimensional surface of iridium and oxygen, has excellent electrical conductivity, and can be easily synthesized. The purpose is to provide a conductive oxide.

[発明の構成] (課題を解決するための手段) 本発明における第1の電気伝導性酸化物は、A2元素(
AEはBa、 CaおよびSrから選ばれた少なくとも
 1種の元素を示す。以下同じ)およびIrを含有し、
ペロブスカイト構造を有する酸化物であって、RE元素
(REはYを含む希土類元素を示す)を含有することを
特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The first electrically conductive oxide in the present invention contains A2 element (
AE represents at least one element selected from Ba, Ca and Sr. The same applies hereinafter) and Ir,
It is an oxide having a perovskite structure, and is characterized by containing an RE element (RE represents a rare earth element containing Y).

また、第2の電気伝導性酸化物は、A2元素およヒIr
を含有し、ペロブスカイト構造を有する酸化物であって
、へ元素(AはNaおよびKから選ばれた少なくとも 
1種の元素を示す)を含有することを特徴とするもので
ある。
Further, the second electrically conductive oxide contains A2 element and Ir
, and has a perovskite structure, wherein A is at least one selected from Na and K.
It is characterized by containing one type of element).

さらに、第3の電気伝導性酸化物は、A2元素およびI
rを含有し、ペロブスカイト構造を有する酸化物であっ
て、 X元素(XはP、 CIおよびBrから選ばれた
少なくとも1種の元素を示す)を含有することを特徴と
するものである。
Furthermore, the third electrically conductive oxide contains A2 element and I
It is an oxide containing r and having a perovskite structure, and is characterized by containing an element X (X represents at least one element selected from P, CI, and Br).

すなわち本発明の電気伝導性酸化物は、上述した5rl
rO3のSrの一部を希土類元素やアルカリ元素で置換
することによって、もしくは0の一部を上記X元素で置
換することによって、キャリア濃度を制御し、金属導電
性の向上ひいては超電導性の発現をもたらすと共に、結
晶構造の安定化を図り、合成時の熱処理条件を緩和した
ものである。
That is, the electrically conductive oxide of the present invention has the above-mentioned 5rl
By replacing part of the Sr in rO3 with a rare earth element or an alkali element, or by replacing part of the 0 with the above-mentioned At the same time, the crystal structure is stabilized and the heat treatment conditions during synthesis are relaxed.

本発明の電気伝導性酸化物の具体例としては、基本的に
は以下に示す3種類の式で実質的に表される組成を有す
るものが例示される。
Specific examples of the electrically conductive oxide of the present invention include those having compositions substantially represented by the following three types of formulas.

^El−X REx lr 03 AEt□ Ax Ir 03 (式中、 Xは0.01<  x< 0.9AEIr0
3−y  Xy ・・・・・・ (1) ・・・・・・ (II) を満足する数を示す) ・・・・・・(m) (式中、yは0.01<  y<  1を満足する数を
示す)また、(I)式および(II)式で表される酸化
物において、(III)式と同様に酸素の一部をX元素
で置換することも効果的である。
^El−X REx lr 03 AEt□ Ax Ir 03 (wherein, X is 0.01<x< 0.9AEIr0
3-y 1) In addition, in the oxides represented by formulas (I) and (II), it is also effective to replace part of the oxygen with element X, as in formula (III). .

上記(1)式および(IF)式におけるXの値が0.0
1以下ではキャリア濃度調整の効果が十分に得られず、
また0、9以上では結晶構造を保てない。
The value of X in the above formulas (1) and (IF) is 0.0
If it is less than 1, the effect of carrier concentration adjustment cannot be obtained sufficiently,
Moreover, if it is 0.9 or more, the crystal structure cannot be maintained.

また、上記(m)式におけるyの値か0.O1以下では
キャリア濃度調整の効果が十分に得られず、また1以上
では結晶構造を保てない。
Also, the value of y in the above equation (m) is 0. If it is less than O1, the effect of carrier concentration adjustment cannot be obtained sufficiently, and if it is more than O1, the crystal structure cannot be maintained.

また、上記Xおよびyで表されるRE、  AまたはX
による置換量は、それぞれ上記範囲内であれば本発明の
効果が得られるが、例えば(1)式および(n)式にお
いてはXを0.2〜0.5の範囲、(m)式においては
yを0.2〜0.5の範囲とすることによって、超電導
性を付与することができる。
In addition, RE, A or X represented by X and y above
The effect of the present invention can be obtained if the amount of substitution by X is within the above range, but for example, in formulas (1) and (n), X is in the range of 0.2 to 0.5, and in formula (m), X is in the range of 0.2 to 0.5. By setting y in the range of 0.2 to 0.5, superconductivity can be imparted.

上記(I)弐〜(III)式で表される酸化物は、いず
れもABO3と表記される層状ペロブスカイト構造を有
するものである。
The oxides represented by formulas (I) to (III) above all have a layered perovskite structure expressed as ABO3.

本発明の電気伝導性酸化物は、例えば以下に示す製造方
法により得ることができる。
The electrically conductive oxide of the present invention can be obtained, for example, by the manufacturing method shown below.

ます、電気伝導性酸化物の構成金属元素である、AE元
素、R2元素、A元素、Irの単体または化合物を充分
に混合する。この構成元素の化合物としては、SrCO
3、La203、]r02等の酸化物や炭酸塩の他に、
焼成後に酸化物に転化する硝酸塩、水酸化物等の化合物
や有機酸塩、有機性金属等を用いてもよい。また、X元
素を使用する際には、5rP2のような酸化物の構成金
属元素のX化物を用いることができる。上述したような
各出発原料は、基本的には上記各式のいずれかの原子比
を満足するように混合するが、製造条件等との関係で1
0%程度すれていても差支えない。
First, the constituent metal elements of the electrically conductive oxide, AE element, R2 element, A element, and Ir alone or in compounds are sufficiently mixed. As a compound of this constituent element, SrCO
In addition to oxides and carbonates such as 3, La203, ]r02,
Compounds such as nitrates and hydroxides, organic acid salts, and organic metals that are converted into oxides after firing may be used. Further, when using the X element, an X oxide of the constituent metal element of the oxide such as 5rP2 can be used. The above-mentioned starting materials are basically mixed so as to satisfy one of the atomic ratios in the above formulas, but depending on the manufacturing conditions etc.
There is no problem even if it is less than 0%.

次いて、この混合粉末を800℃〜900℃程度の温度
で仮焼して結晶化させる。この後、仮焼物を粉砕し、プ
レス成形法等によって所望の形状に成形した後、900
℃〜1200℃程度の温度で焼成して目的とする電気伝
導性酸化物を得る。なお、上記仮焼は必すしも必要では
ない。
Next, this mixed powder is calcined at a temperature of about 800°C to 900°C to crystallize it. After that, the calcined product is crushed and molded into a desired shape using a press molding method, etc., and then
The desired electrically conductive oxide is obtained by firing at a temperature of about 1200°C to 1200°C. Note that the above-mentioned calcination is not absolutely necessary.

上記仮焼工程および焼成工程の雰囲気は、導入するキャ
リアに応じて選択する。例えば、AE元素の一部をR2
元素で置換し、あるいは酸素の一部をX元素で置換し、
電子をキャリアとして導入する際には、還元性雰囲気中
で熱処理を行う。また、AE元素の一部をA元素で置換
し、ホールをキャリアとして導入する際には、酸素雰囲
気中で熱処理を行う。
The atmosphere in the above-mentioned calcination step and firing step is selected depending on the carrier to be introduced. For example, some of the AE elements are R2
Replace with element, or replace part of oxygen with element X,
When introducing electrons as carriers, heat treatment is performed in a reducing atmosphere. Further, when replacing a part of the AE element with the A element and introducing holes as carriers, heat treatment is performed in an oxygen atmosphere.

(作 用) 本発明の電気伝導性酸化物においては、+2価のAE元
素の一部を+3価のR2元素で、もしくは−2価の酸素
の一部を一1価のX元素で置換することにより、電子を
キャリアとして導入するか、あるいは+2価のAE元索
の一部を+1価のへ元素で置換することにより、ホール
をキャリアとして導入している。
(Function) In the electrically conductive oxide of the present invention, a part of the +2 valent AE element is replaced with a +3 valent R2 element, or a part of -2 valent oxygen is replaced with a monovalent X element. In this way, holes are introduced as carriers by introducing electrons as carriers or by replacing a part of the +2-valent AE element with a +1-valent element.

これらによって、系内のキャリア濃度が増加し、かつ上
記した置換は結晶構造の安定化をもたらすため、合成お
よび金属的な伝導の付与が容易になると共に、電気伝導
性の向上か図れる。
These increase the carrier concentration in the system, and the above-mentioned substitutions stabilize the crystal structure, making it easier to synthesize and provide metallic conductivity, as well as improving electrical conductivity.

また、本発明の電気伝導性酸化物は、低温において超電
導性を示す。これは、結晶構造の低次元性およびIr4
゛か有する大きさ 1/2のスピンと、上記キャリア濃
度の制御によるものと考えられる。
Furthermore, the electrically conductive oxide of the present invention exhibits superconductivity at low temperatures. This is due to the low dimensionality of the crystal structure and the Ir4
It is thought that this is due to the spin of 1/2 the size of the magnetic field and the control of the carrier concentration described above.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例1 ます、SrCO3粉末、La2O3粉末およびIr02
粉末を、原子比でSr:La:Ir=0.7:0.3:
Lとなるように所定量秤量し、充分に混合した後、この
混合粉を大気中において、900℃X24時間の条件で
仮焼した。
Example 1 Masu, SrCO3 powder, La2O3 powder and Ir02
The powder has an atomic ratio of Sr:La:Ir=0.7:0.3:
After weighing out a predetermined amount so as to give L and mixing thoroughly, this mixed powder was calcined in the atmosphere at 900° C. for 24 hours.

次に、この仮焼物を粉砕し、この粉末を用いてプレス成
形法によってベレット状の成形体を作製した。次いで、
上記成形体を窒素雰囲気中にて1100℃×24時間の
条件で焼成し、5ro7Lao3Ir03で表される酸
化物の焼結体を得た。
Next, this calcined product was pulverized, and a pellet-shaped molded body was produced using this powder by a press molding method. Then,
The above molded body was fired in a nitrogen atmosphere at 1100° C. for 24 hours to obtain a sintered body of an oxide represented by 5ro7Lao3Ir03.

このようにして得た酸化物焼結体の電気抵抗および磁化
率の測定を行った。電気抵抗は室温おいて2XiO−’
Ω印と良好な値を示し、また温度の低下と共に減少し、
金属的伝導を示した。そして、低温で急激に減少して約
5にで消失した。また、磁化率の測定においては、低温
(約5K)で反磁性を示した。
The electrical resistance and magnetic susceptibility of the oxide sintered body thus obtained were measured. Electrical resistance is 2XiO-' at room temperature
It shows a good value with an Ω mark, and decreases as the temperature decreases.
It showed metallic conduction. Then, it decreased rapidly at low temperatures and disappeared at about 5 ℃. Furthermore, in the measurement of magnetic susceptibility, it showed diamagnetic properties at low temperatures (approximately 5K).

実施例2 SrCO3粉末、Na2O粉末およびIr02粉末を、
原子比でSr:Na:Ir−0,6:0.4:l  と
なるように所定量秤量し、充分に混合した後、この混合
粉を大気中において900℃×24時間の条件で仮焼し
た。
Example 2 SrCO3 powder, Na2O powder and Ir02 powder,
After weighing out a predetermined amount so that the atomic ratio is Sr:Na:Ir-0.6:0.4:l and mixing thoroughly, this mixed powder is calcined in the atmosphere at 900°C for 24 hours. did.

次に、この仮焼物を粉砕し、この粉末を用いてプレス成
形法によってペレット状の成形体を作製した。次いで、
上記成形体を1気圧の酸素中にて1100℃×24時間
の条件で焼成し、5ro6Nao4Ir03で表される
酸化物の焼結体を得た。
Next, this calcined product was pulverized, and a pellet-like molded body was produced using this powder by a press molding method. Then,
The above molded body was fired in oxygen at 1 atm at 1100° C. for 24 hours to obtain a sintered body of an oxide represented by 5ro6Nao4Ir03.

このようにして得た酸化物焼結体の電気抵抗および磁化
率の測定を行った。電気抵抗は室温おいて4X 10−
’Ω印と良好な値を示し、また温度の低下と共に減少し
、金属的伝導を示した。そして、低温で急激に減少して
約5にで消失した。また、磁化率の測定においては、低
温(約5K)で反磁性を示した。
The electrical resistance and magnetic susceptibility of the oxide sintered body thus obtained were measured. Electrical resistance is 4X 10- at room temperature
It showed a good value with 'Ω mark, and decreased as the temperature decreased, indicating metallic conduction. Then, it decreased rapidly at low temperatures and disappeared at about 5 ℃. Furthermore, in the measurement of magnetic susceptibility, it showed diamagnetic properties at low temperatures (approximately 5K).

実施例3 SrCO3粉末、IrO2粉末およびSrP 2粉末を
、金属原子の比率かSr:Ir=1:1となり、かつS
rCO3とSrF2とのモル比が7:3となるように所
定量秤量し、充分に混合した後、この混合粉を大気中に
おいて、900℃X24時間の条件で仮焼した。
Example 3 SrCO3 powder, IrO2 powder and SrP2 powder were prepared with a metal atomic ratio of Sr:Ir=1:1 and SrCO3 powder, IrO2 powder and SrP2 powder.
A predetermined amount of rCO3 and SrF2 was weighed out so that the molar ratio was 7:3, and after thorough mixing, the mixed powder was calcined in the atmosphere at 900° C. for 24 hours.

次に、この仮焼物を粉砕し、この粉末を用いてプレス成
形法によってペレット状の成形体を作製した。次いで、
上記成形体を窒素雰囲気中で1100”CX 24時間
の条件で焼成し、5rlr(h□P0.3で表される酸
化物の焼結体を得た。
Next, this calcined product was pulverized, and a pellet-like molded body was produced using this powder by a press molding method. Then,
The above molded body was fired in a nitrogen atmosphere at 1100"CX for 24 hours to obtain a sintered body of an oxide represented by 5rlr (h□P0.3).

このようにして得た酸化物焼結体の電気抵抗および磁化
率の測定を行った。電気抵抗は室温おいてL5X 10
−’Ω国と良好な値を示し、また温度の低下と共に減少
し、金属的伝導を示した。そして、低温で急激に減少し
て約5にで消失した。また、磁化率の測定においては、
低温(約5K)で反磁性を示した。
The electrical resistance and magnetic susceptibility of the oxide sintered body thus obtained were measured. Electrical resistance is L5X 10 at room temperature
It showed a good value of −'Ω, and decreased as the temperature decreased, indicating metallic conduction. Then, it decreased rapidly at low temperatures and disappeared at about 5 ℃. In addition, in measuring magnetic susceptibility,
It exhibited diamagnetic properties at low temperatures (approximately 5K).

比較例 5rlrO,で表される酸化物の焼結体を上記実施例と
同様にして作製し、電気抵抗を測定したところ、室温お
ける抵抗率は2Ω印で、温度を低下させるにつれて抵抗
率は増加した。また、磁化率の測定においては、低温(
約5K)としても反磁性を示さなかった。
Comparative Example 5 A sintered body of an oxide represented by rlrO was prepared in the same manner as in the above example, and its electrical resistance was measured.The resistivity at room temperature was 2Ω mark, and the resistivity increased as the temperature was lowered. did. In addition, when measuring magnetic susceptibility, low temperatures (
Even at a temperature of about 5K), no diamagnetic property was exhibited.

[発明の効果] 以上説明したように、本発明による電気伝導性酸化物は
、金属的伝導を示すと共に電気伝導性に優れ、さらには
低温では超電導性を示す。よって、配線材料等として有
用であると共に、超電導材料として使用することも可能
である。
[Effects of the Invention] As explained above, the electrically conductive oxide according to the present invention exhibits metallic conductivity and excellent electrical conductivity, and further exhibits superconductivity at low temperatures. Therefore, it is useful as a wiring material, etc., and can also be used as a superconducting material.

出願人      株式会社 東芝Applicant: Toshiba Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)AE元素(AEはBa、CaおよびSrから選ば
れた少なくとも1種の元素を示す)およびIrと、RE
元素(REはYを含む希土類元素を示す)を構成成分と
し、層状ペロブスカイト構造を有することを特徴とする
電気伝導性酸化物。
(1) AE element (AE represents at least one element selected from Ba, Ca and Sr) and Ir, and RE
An electrically conductive oxide having a layered perovskite structure containing an element (RE indicates a rare earth element including Y) as a constituent component.
(2)AE元素(AEはBa、CaおよびSrから選ば
れた少なくとも1種の元素を示す)およびIrと、A元
素(AはNaおよびKから選ばれた少なくとも1種の元
素を示す)を構成成分とし、層状ペロブスカイト構造を
有することを特徴とする電気伝導性酸化物。
(2) AE element (AE represents at least one element selected from Ba, Ca, and Sr) and Ir, and A element (A represents at least one element selected from Na and K). An electrically conductive oxide having a layered perovskite structure.
(3)AE元素(AEはBa、CaおよびSrから選ば
れた少なくとも1種の元素を示す)およびIrと、X元
素(XはF、ClおよびBrから選ばれた少なくとも1
種の元素を示す)を構成成分とし、層状ペロブスカイト
構造を有することを特徴とする電気伝導性酸化物。
(3) AE element (AE represents at least one element selected from Ba, Ca, and Sr) and Ir, and X element (X represents at least one element selected from F, Cl, and Br);
An electrically conductive oxide characterized by having a layered perovskite structure and having a layered perovskite structure.
JP2246751A 1990-09-17 1990-09-17 Electrically conductive oxide Pending JPH04130021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2246751A JPH04130021A (en) 1990-09-17 1990-09-17 Electrically conductive oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2246751A JPH04130021A (en) 1990-09-17 1990-09-17 Electrically conductive oxide

Publications (1)

Publication Number Publication Date
JPH04130021A true JPH04130021A (en) 1992-05-01

Family

ID=17153116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2246751A Pending JPH04130021A (en) 1990-09-17 1990-09-17 Electrically conductive oxide

Country Status (1)

Country Link
JP (1) JPH04130021A (en)

Similar Documents

Publication Publication Date Title
JP4080576B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
EP0356722A1 (en) Oxide superconductor and method of producing the same
EP0348986B1 (en) Bi-Pb-Sr-Ba-Ca-Cu-O system superconductor
JPH04130021A (en) Electrically conductive oxide
JPH04130019A (en) Electrically conductive oxide
JPH04130020A (en) Electrically conductive oxide
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH0196055A (en) Superconductive ceramic composition
JPH0574528B2 (en)
JPH03218921A (en) Copper oxide-based electrically conductive ceramics and production thereof
JPH03223118A (en) Production of oxide superconductor
JP2831755B2 (en) Oxide superconductor
JPH0238359A (en) Production of superconductor
JP2632543B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
US5229035A (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JP4124420B2 (en) Thermoelectric conversion material comprising palladium oxide and method for producing the same
JPS63307156A (en) Method for synthesizing superconducting ceramics
JPH01212225A (en) Oxide superconducting material
JPH02120233A (en) Oxide superconducting material
JPH04137407A (en) Conductive oxide
JPH01131048A (en) Superconducting porcelain composition
JPH01160821A (en) Ceramic superconductor and production thereof
EP0459359A2 (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JPH0292826A (en) Oxide superconductor
Latha et al. Kinetics and formation of (Pb0. 5, Cd0. 5) Sr2 (Y0. 6, Ca0. 4) Cu2O7− δ superconductor by directed reaction process