JP2865174B2 - Copper oxide conductive compound - Google Patents

Copper oxide conductive compound

Info

Publication number
JP2865174B2
JP2865174B2 JP3114211A JP11421191A JP2865174B2 JP 2865174 B2 JP2865174 B2 JP 2865174B2 JP 3114211 A JP3114211 A JP 3114211A JP 11421191 A JP11421191 A JP 11421191A JP 2865174 B2 JP2865174 B2 JP 2865174B2
Authority
JP
Japan
Prior art keywords
conductive compound
copper oxide
mmol
based conductive
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3114211A
Other languages
Japanese (ja)
Other versions
JPH0543228A (en
Inventor
恭二 大段
徳雄 松崎
良二 杉瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP3114211A priority Critical patent/JP2865174B2/en
Publication of JPH0543228A publication Critical patent/JPH0543228A/en
Application granted granted Critical
Publication of JP2865174B2 publication Critical patent/JP2865174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、導電性化合物、具体的
には銅酸化物系の導電性化合物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive compound, specifically, a copper oxide-based conductive compound.

【従来の技術】無機物としての導電性化合物は、耐食
性、耐熱性等の優れた特性を利用して、従来より、電
極、発熱体等として広い分野で使用されている。例え
ば、塩素工業において、RuOは電力消費量が小さ
く、しかも耐腐食性等に優れるなどの特性から、電極材
料として特に好適である。このRuOはまた、最近で
は熱転写プリンターのサーマルヘッドにも利用されてい
る。更に、導電性化合物の他の用途例としては、IT0
(In−Sn−O系)化合物の透明電極への適用、PL
ZT(Pb−La−Zn−Ti系)化合物の光スイッ
チ、光シャッターへの適用など、その応用分野は拡大し
つつある。その他、導電性化合物は、外部環境の変化を
電気的な信号に変換するための各種センサーの電極とし
ても利用されている。また、耐熱性を考慮すれば、La
−Cr−O系又はLa−Co−O系導電性化合物は、炉
用発熱体、燃料電池電極としても有用である。
2. Description of the Related Art A conductive compound as an inorganic substance has been used in a wide range of fields as an electrode, a heating element and the like by utilizing its excellent properties such as corrosion resistance and heat resistance. For example, in the chlorine industry, RuO 2 is particularly suitable as an electrode material because of its characteristics such as low power consumption and excellent corrosion resistance. This RuO 2 is also recently used for a thermal head of a thermal transfer printer. Further, as another application example of the conductive compound, IT0
Application of (In-Sn-O) compound to transparent electrode, PL
The application field of a ZT (Pb-La-Zn-Ti) compound, such as an optical switch and an optical shutter, is expanding. In addition, conductive compounds are also used as electrodes of various sensors for converting changes in the external environment into electrical signals. Further, considering heat resistance, La
-Cr-O-based or La-Co-O-based conductive compounds are also useful as furnace heating elements and fuel cell electrodes.

【0002】[0002]

【発明が解決しようとする課題】このように導電性化合
物の適用分野は多岐にわたり、その有用性が重視されて
いることから、さらに製造が容易で、安価な導電性化合
物の出現が常に望まれている。本発明は上記従来の実情
に鑑みてなされたものであり、容易に入手可能な原料を
用いて、比較的低温で加熱することにより、工業的に有
利に製造することができる銅酸化物系導電性化合物を提
供することを目的とする。
As described above, since the conductive compound is applied to a wide variety of fields and its usefulness is emphasized, the appearance of a conductive compound which is easy to manufacture and inexpensive is always desired. ing. The present invention has been made in view of the above-described conventional circumstances, and uses a readily available raw material and heats it at a relatively low temperature, so that a copper oxide-based conductive material that can be produced industrially advantageously. It is intended to provide a sex compound.

【0003】[0003]

【課題を解決するための手段】本発明は、下記一般式で
示される銅酸化物系導電性化合物に関する。 (MCu (上記式において、Mは、Dy、Ho、Er、Tb、T
m、Yb、及びLuよりなる群より選択される少なくと
も一種の元素、Aは、ハロゲン元素及び/又はNO
表わし、x+y=1、0<x/y≦10、6≦Z≦8、
0.5≦w≦9である。)本発明の銅酸化物系導電性化
合物のX線回折スペクトルのピークとしては、2θが1
6.0〜16.8゜、29.5〜34.0゜、37.8
〜39.5゜、41.0〜43.0゜、54.6〜5
7.0゜のピークが特徴的である。これらのピークは、
立方晶系の結晶の面指数111、222、400、33
1、440に帰属される。軸長aは約9.2〜9.8Å
である。
Means for Solving the Problems The present invention has the following general formula:
It relates to the copper oxide-based conductive compound shown. (MxCuy)7OzAw  (In the above formula, M is Dy, Ho, Er, Tb, T
at least selected from the group consisting of m, Yb, and Lu
Is also a kind of element, A is a halogen element and / or NO3To
X + y = 1, 0 <x / y ≦ 10, 6 ≦ Z ≦ 8,
0.5 ≦ w ≦ 9. ) Copper oxide-based conductivity of the present invention
As the peak of the X-ray diffraction spectrum of the compound, 2θ is 1
6.0-16.8 ゜, 29.5-34.0 ゜, 37.8
3939.5 ゜, 41.0〜43.0 ゜, 54.6-5
The peak at 7.0 ° is characteristic. These peaks
Plane indices 111, 222, 400, 33 of cubic crystals
1,440. The axial length a is about 9.2 to 9.8Å
It is.

【0004】本発明の銅酸化物系導電性化合物のX線回
折スペクトルのパターンから、本発明の銅酸化物系導電
性化合物は、Ag(NO)類似組成を有する立
方晶系の結晶であると認められる。この結晶において
は、立方晶の酸素が一部欠損したものも含まれ、M及び
銅の酸化数は+1〜+3の混合価数であると考えられ、
これが導電性に寄与するものと推定される。
According to the X-ray diffraction spectrum pattern of the copper oxide-based conductive compound of the present invention, the copper oxide-based conductive compound of the present invention has a cubic system having a composition similar to that of Ag 7 O 8 (NO 3 ). Recognized as a crystal. In this crystal, cubic oxygen partially deficient is included, and the oxidation number of M and copper is considered to be a mixed valence of +1 to +3.
This is presumed to contribute to conductivity.

【0005】本発明の銅酸化物系導電性化合物は、例え
ば、以下のようにして製造することができる。即ち、ま
ずDy(ディスプロシウム)、Ho(ホルミウム)、E
r(エルビウム)、Tb(テルビウム)、Tm(ツリウ
ム)、Yb(イッテルビウム)、及びLu(ルテチウ
ム)よりなる群より選択される少なくとも一種の元素の
酸化物及び/又は硝酸塩及び/又は塩化物と、銅の硝酸
塩及び/又は塩化物を所定量混合し、ついで、得られた
混合物を200〜650℃、好ましくは250〜450
℃で加熱することにより、本発明の銅酸化物系導電性化
合物を得る。ここで、加熱温度が650℃を越えると絶
縁性化合物であるCuO及び/又はDy、Ho、Er、
Tb、Tm、Yb、あるいはLuの酸化物(M
が分解生成し、導電性化合物の生成割合が減少し、さら
に高温の場合には全て絶縁性化合物となるため好ましく
ない。一方、加熱温度が200℃未満では硝酸塩の分解
反応が効率的に進行しない。この加熱処理は電気炉等の
通常の加熱装置を用い、加熱時間は1分〜50時間程度
の間で適宜選定される。また、加熱処理は、酸素、窒
素、あるいは空気などのガスを流通させて、揮発性分解
物を除去しながら行うことも、あるいは、ガスを流通さ
せる代わりに、減圧下で行うこともできる。なお、使用
される硝酸塩及び塩化物にはその水和物も当然含まれ、
また、硝酸銅としては、塩基性硝酸銅Cu(OH)
(NO)も使用可能である。酸化物、硝酸塩及び/又
は塩化物の原料化合物の混合法としては、各々の原料化
合物をボールミル等で混合粉砕する方法、又は、各々の
原料化合物の水溶液を混合した後、蒸発乾固して水を除
去する方法等を採用することができる。
[0005] The copper oxide-based conductive compound of the present invention can be produced, for example, as follows. That is, first, Dy (dysprosium), Ho (holmium), E
oxides and / or nitrates and / or chlorides of at least one element selected from the group consisting of r (erbium), Tb (terbium), Tm (thulium), Yb (ytterbium), and Lu (lutetium); A predetermined amount of copper nitrate and / or chloride is mixed, and then the obtained mixture is heated at 200 to 650 ° C, preferably 250 to 450 ° C.
By heating at ° C, the copper oxide-based conductive compound of the present invention is obtained. Here, when the heating temperature exceeds 650 ° C., the insulating compounds CuO and / or Dy, Ho, Er,
Oxide of Tb, Tm, Yb or Lu (M 2 O 3 )
Is decomposed and generated, and the generation ratio of the conductive compound is reduced. Further, when the temperature is high, the compound becomes an insulating compound, which is not preferable. On the other hand, when the heating temperature is lower than 200 ° C., the decomposition reaction of nitrate does not proceed efficiently. This heating treatment uses a normal heating device such as an electric furnace, and the heating time is appropriately selected from about 1 minute to 50 hours. The heat treatment can be performed while removing volatile decomposition products by flowing a gas such as oxygen, nitrogen, or air, or can be performed under reduced pressure instead of flowing a gas. The nitrates and chlorides used naturally include hydrates,
Further, as the copper nitrate, basic copper nitrate Cu 2 (OH) 3
(NO 3 ) can also be used. As a method for mixing the raw material compounds of oxides, nitrates and / or chlorides, a method of mixing and pulverizing each raw material compound with a ball mill or the like, or a method of mixing an aqueous solution of each raw material compound, and evaporating to dryness to obtain water. Can be adopted.

【0006】[0006]

【発明の効果】本発明の銅酸化物系導電性化合物は、耐
熱性、耐腐食性、機械的特性と導電性を兼備する高特性
導電性化合物であり、燃料電池電極、各種センサーの電
極材料、炉用発熱体等の用途に使用可能である。また、
各種の化学反応における固体触媒、あるいは近年技術進
歩の著しい超伝導体を製造するための原料としても極め
て有用である。このような本発明の銅酸化物系導電性化
合物は、硝酸塩や塩化物といった容易に入手可能な原料
を用いて、200〜650℃といった比較的低い加熱温
度で効率的に製造することができる。
The copper oxide conductive compound of the present invention is a high-performance conductive compound having both heat resistance, corrosion resistance, mechanical properties and conductivity, and is used as an electrode material for fuel cell electrodes and various sensors. It can be used for applications such as heating elements for furnaces. Also,
It is extremely useful as a raw material for producing a solid catalyst in various chemical reactions or a superconductor in which technical progress has been remarkable in recent years. Such a copper oxide-based conductive compound of the present invention can be efficiently produced at a relatively low heating temperature of 200 to 650 ° C. using easily available raw materials such as nitrates and chlorides.

【0007】[0007]

【実施例】以下に本発明の実施例を示す。 実施例1 酸化エルビウム0.552g(1.44mmol)、硝
酸銅三水和物3.49g(14.44mmol)、塩化
銅二水和物0.492g(2.89mmol)を良く混
合し、混合物を酸素気流下、450℃で2時間加熱し
た。その結果、図1に示すような立方晶系のX線回折パ
ターン(CuKα線使用)(2θ=16.6゜[11
1]、33.5゜[222]、38.9゜[400]、
42.5゜[331]、56.2゜[440])を有す
る銅酸化物系導電性化合物が得られた。このX線回折ス
ペクトルから、本実施例により(Er1/7
6/7Clが生成したことが確認された。こ
の銅酸化物系導電性化合物の温度・比抵抗曲線を図2に
示す。図2より得られた銅酸化物系導電性化合物の室温
での比抵抗は4×10−3Ωcmであり、良好な導電性
を有することが明らかになった。また、この化合物は室
温で常磁性であった。図3はM・H磁化曲線を示す。
Examples of the present invention will be described below. Example 1 0.552 g (1.44 mmol) of erbium oxide, 3.49 g (14.44 mmol) of copper nitrate trihydrate, and 0.492 g (2.89 mmol) of copper chloride dihydrate were mixed well, and the mixture was mixed. Heated at 450 ° C. for 2 hours under an oxygen stream. As a result, a cubic X-ray diffraction pattern (using CuKα rays) as shown in FIG. 1 (2θ = 16.6 ゜ [11
1], 33.5 ° [222], 38.9 ° [400],
42.5 ° [331], 56.2 ° [440]) were obtained. From the X-ray diffraction spectrum, (Er 1/7 C
It was confirmed that u 6/7 ) 7 O z Cl was produced. FIG. 2 shows a temperature-resistivity curve of the copper oxide-based conductive compound. From FIG. 2, the specific resistance at room temperature of the obtained copper oxide-based conductive compound was 4 × 10 −3 Ωcm, and it was revealed that the compound had good conductivity. This compound was paramagnetic at room temperature. FIG. 3 shows the MH magnetization curve.

【0008】実施例2 硝酸エルビウム五水和物1.22g(2.75mmo
l)、硝酸銅三水和物3.32g(13.72mmo
l)、塩化銅二水和物0.468g(2.75mmo
l)を良く混合し、混合物を酸素雰囲気下、450℃で
2時間加熱した。その結果、図1と類似の立方晶系のX
線回折パターン(2θ=16.6゜[111]、33.
5゜[222]、38.9゜[400]、42.5゜
[331]、56.2゜[440]を示す銅酸化物系導
電性化合物が得られ、本実施例により(Er1/7Cu
6/7Clが生成したことが確認された。この
銅酸化物系導電性化合物の比抵抗(室温)は8×10
−3Ωcmであった。 実施例3 酸化ホルミウム0.603g(1.60mmol)、硝
酸銅三水和物3.85g(15.95mmol)、塩化
銅二水和物0.544g(3.19mmol)を良く混
合し、混合物を酸素雰囲気下、450℃で2時間加熱し
た。その結果、図4に示すような立方晶系のX線回折パ
ターン(2θ=16.5゜[111]、33.4゜[2
22]、38.8゜[400]、42.5゜[33
1]、56.0゜[440])を有する銅酸化物系導電
性化合物が得られ、本実施例により(Ho1/7Cu
6/7Clが生成したことが確認された。この
銅酸化物系導電性化合物の温度・比抵抗曲線を図5に示
す。図5より得られたこの銅酸化物系導電性化合物の比
抵抗(室温)は4.2×10−3Ωcmであり、この化
合物は室温で常磁性であった。
Example 2 1.22 g (2.75 mmol) of erbium nitrate pentahydrate
l), 3.32 g (13.72 mmol) of copper nitrate trihydrate
l), 0.468 g (2.75 mmol) of copper chloride dihydrate
1) was mixed well and the mixture was heated at 450 ° C. for 2 hours under an oxygen atmosphere. As a result, a cubic X similar to FIG.
Line diffraction pattern (2θ = 16.6 ° [111];
A copper oxide-based conductive compound exhibiting 5 {222}, 38.9} [400], 42.5} [331], and 56.2} [440] was obtained. According to the present example, (Er 1 / 7 Cu
6/7 ) 7 O z Cl was confirmed to have been formed. The specific resistance (room temperature) of this copper oxide-based conductive compound is 8 × 10
-3 Ωcm. Example 3 0.603 g (1.60 mmol) of holmium oxide, 3.85 g (15.95 mmol) of copper nitrate trihydrate, and 0.544 g (3.19 mmol) of copper chloride dihydrate were mixed well, and the mixture was mixed. Heated at 450 ° C. for 2 hours in an oxygen atmosphere. As a result, a cubic X-ray diffraction pattern (2θ = 16.5 ° [111], 33.4 ° [2
22], 38.8 {[400], 42.5} [33
1], 56.0 ° [440]), and according to this example, (Ho 1/7 Cu
6/7 ) 7 O z Cl was confirmed to have been formed. FIG. 5 shows a temperature-resistivity curve of the copper oxide-based conductive compound. The specific resistance (room temperature) of the copper oxide-based conductive compound obtained from FIG. 5 was 4.2 × 10 −3 Ωcm, and the compound was paramagnetic at room temperature.

【0009】実施例4 硝酸ディスプロシウム五水和物1.22g(2.74m
mol)、硝酸銅三水和物3.31g(13.70mm
ol)、塩化銅二水和物0.467g(2.74mmo
l)を良く混合し、混合物を酸素雰囲気下、350℃で
2時間加熱した。その結果、図1と類似の立方晶系のX
線回折パターン(2θ=16.5゜[111]、33.
3゜[222]、38,7゜[400]、42.4゜
[331]、55.8゜[440])を示す銅酸化物系
導電性化合物が得られ、本実施例により(Dy1/7
6/7Clが生成したことが確認された。こ
の銅酸化物系導電性化合物の比抵抗(室温)は1×10
−2Ωcmであった。 実施例5 酸化ルテチウム0.631g(1.58mmol)、硝
酸銅三水和物3.83g(15.85mmol)、塩化
銅二水和物0.54g(3.17mmol)を良く混合
し、混合物を酸素雰囲気下、450℃で2時間加熱し
た。その結果、図1と類似の立方晶系のX線回折パター
ン(2θ=16.6゜[111]、33.6゜[22
2]、39.0゜[400]、42.7゜[331]、
56.4゜[440])を示す銅酸化物系導電性化合物
が得られ、本実施例により(Lu1/7Cu6/7
Clが生成したことが確認された。この銅酸化物系
導電性化合物の比抵抗(室温)は8×10−3Ωcmで
あった。
EXAMPLE 4 1.22 g (2.74 m) of dysprosium nitrate pentahydrate
mol), 3.31 g (13.70 mm) of copper nitrate trihydrate
ol), 0.467 g (2.74 mmol) of copper chloride dihydrate
1) was mixed well, and the mixture was heated at 350 ° C. for 2 hours under an oxygen atmosphere. As a result, a cubic X similar to FIG.
Line diffraction pattern (2θ = 16.5 ° [111];
A copper oxide-based conductive compound showing 3 {[222], 38,7} [400], 42.4 {[331], 55.8} [440]) was obtained, and according to the present example, (Dy 1 / 7 C
It was confirmed that u 6/7 ) 7 O z Cl was produced. The specific resistance (room temperature) of this copper oxide-based conductive compound is 1 × 10
−2 Ωcm. Example 5 0.631 g (1.58 mmol) of lutetium oxide, 3.83 g (15.85 mmol) of copper nitrate trihydrate, and 0.54 g (3.17 mmol) of copper chloride dihydrate were mixed well, and the mixture was mixed. Heated at 450 ° C. for 2 hours in an oxygen atmosphere. As a result, a cubic X-ray diffraction pattern (2θ = 16.6 ° [111], 33.6 ° [22
2], 39.0 ° [400], 42.7 ° [331],
56.4 ([440]), a copper oxide-based conductive compound was obtained. According to this example, (Lu 1/7 Cu 6/7 ) 7 was obtained.
It was confirmed that O z Cl was formed. The specific resistance (room temperature) of the copper oxide-based conductive compound was 8 × 10 −3 Ωcm.

【0010】実施例6 酸化テルビウム0.613g(0.80mmol)、硝
酸銅三水和物3.87g(16.01mmol)、塩化
銅二水和物0.546g(3.20mmol)を良く混
合し、混合物を酸素雰囲気下、450℃で2時間加熱し
た。その結果、図1と類似の立方晶系のX線回折パター
ン(2θ=16.5゜[111]、33.4゜[22
2]、38.8゜[400]、42.5゜[331]、
56.0゜[440])を示す銅酸化物系導電性化合物
が得られ、本実施例により(Tb1/7Cu6/7
Clが生成したことが確認された。この銅酸化物系
導電性化合物の比抵抗(室温)は1×10−2Ωcmで
あった。 実施例7 硝酸イッテルビウム三水和物1.15g(2.79mm
ol)、硝酸銅三水和物3.37g(14.0mmo
l)、塩化銅二水和物0.476g(2.79mmo
l)を良く混合し、混合物を酸素雰囲気下、450℃で
2時間加熱した。その結果、図1と類似の立方晶系のX
線回折パターン(2θ=16.6゜[111]、33.
6゜[222]、39.0゜[400]、42.6゜
[331]、56.3゜[440])を示す銅酸化物系
導電性化合物が得られ、本実施例により(Yb1/7
6/7Clが生成したことが確認された。こ
の銅酸化物系導電性化合物の比抵抗(室温)は6×10
−3Ωcmであった。
Example 6 0.613 g (0.80 mmol) of terbium oxide, 3.87 g (16.01 mmol) of copper nitrate trihydrate, and 0.546 g (3.20 mmol) of copper chloride dihydrate were mixed well. The mixture was heated at 450 ° C. for 2 hours under an oxygen atmosphere. As a result, a cubic X-ray diffraction pattern similar to that of FIG. 1 (2θ = 16.5 ° [111], 33.4 ° [22
2], 38.8 ° [400], 42.5 ° [331],
Thus, a copper oxide-based conductive compound exhibiting 56.0 [[440]) was obtained, and according to this example, (Tb 1/7 Cu 6/7 ) 7
It was confirmed that O z Cl was formed. The specific resistance (room temperature) of the copper oxide-based conductive compound was 1 × 10 −2 Ωcm. Example 7 1.15 g of ytterbium nitrate trihydrate (2.79 mm
ol), 3.37 g (14.0 mmol) of copper nitrate trihydrate
l), 0.476 g (2.79 mmol) of copper chloride dihydrate
1) was mixed well and the mixture was heated at 450 ° C. for 2 hours under an oxygen atmosphere. As a result, a cubic X similar to FIG.
Line diffraction pattern (2θ = 16.6 ° [111];
6 [222], 39.0 [400], 42.6 [331], 56.3 [440]), a copper oxide-based conductive compound was obtained, and (Yb 1 / 7 C
It was confirmed that u 6/7 ) 7 O z Cl was produced. The specific resistance (room temperature) of this copper oxide-based conductive compound is 6 × 10
-3 Ωcm.

【0011】実施例8 酸化ツリウム0.540g(1.40mmol)、硝酸
銅三水和物3.37g(14.0mmol)、塩化銅二
水和物0.476g(2.79mmol)を良く混合
し、混合物を酸素雰囲気下、450℃で2時間加熱し
た。その結果、図1と類似の立方晶系のX線回折バター
ン(2θ=16.6゜[111]、33.5゜[22
2]、38.9゜[400]、42.5゜[331]、
56.2゜[440])を示す銅酸化物系導電性化合物
が得られ、本実施例により(Tm1/7Cu6/7
Clが生成したことが確認された。この銅酸化物系
導電性化合物の比抵抗(室温)は1×10−2Ωcmで
あった。 実施例9 酸化エルビウム0.35g(0.914mmol)と硝
酸銅三水和物2.65g(11.0mmol)を良く混
合し、混合物を酸素雰囲気下、330℃で1時間加熱し
た。その結果、図1と類似の立方晶系のX線回折パター
ン(2θ=16.4゜[111]、33.1゜[22
2]、38.4゜[400]、42.0゜[331]、
55.4゜[440])を示す銅酸化物系導電性化合物
が得られ、本実施例により(Er1/7Cu6/7
NOが生成したことが確認された。この銅酸化物
系導電性化合物の比抵抗(室温)は8×10−2Ωcm
であり、この化合物は室温で常磁性であった。
Example 8 0.540 g (1.40 mmol) of thulium oxide, 3.37 g (14.0 mmol) of copper nitrate trihydrate and 0.476 g (2.79 mmol) of copper chloride dihydrate were mixed well. The mixture was heated at 450 ° C. for 2 hours under an oxygen atmosphere. As a result, a cubic X-ray diffraction pattern similar to that of FIG. 1 (2θ = 16.6 ° [111], 33.5 ° [22
2], 38.9 ° [400], 42.5 ° [331],
A copper oxide-based conductive compound exhibiting 56.2 {[440]) was obtained, and according to the present example, (Tm 1/7 Cu 6/7 ) 7 was obtained.
It was confirmed that O z Cl was formed. The specific resistance (room temperature) of the copper oxide-based conductive compound was 1 × 10 −2 Ωcm. Example 9 0.35 g (0.914 mmol) of erbium oxide and 2.65 g (11.0 mmol) of copper nitrate trihydrate were mixed well, and the mixture was heated at 330 ° C. for 1 hour in an oxygen atmosphere. As a result, a cubic X-ray diffraction pattern similar to that of FIG. 1 (2θ = 16.4 {[111], 33.1} [22
2], 38.4 ゜ [400], 42.0 ゜ [331],
A copper oxide-based conductive compound exhibiting 55.4 ([440]) was obtained, and according to this example, (Er 1/7 Cu 6/7 ) 7 was obtained.
The O z NO 3 was produced was confirmed. The specific resistance (room temperature) of the copper oxide-based conductive compound is 8 × 10 −2 Ωcm.
This compound was paramagnetic at room temperature.

【0012】実施例10 硝酸エルビウム五水和物0.703g(1.59mmo
l)と硝酸銅三水和物2.30g(9.51mmol)
を良く混合し、混合物を酸素雰囲気下、330℃で1時
間加熱した。その結果、図1と類似の立方晶系のX線回
折パターン(2θ=16.4゜[111]、33.1゜
[222]、38.4゜[400]、42.0゜[33
1]、55.4゜[440])を示す銅酸化物系導電性
化合物が得られ、本実施例により(Er1/7Cu
6/7NOが生成したことが確認された。こ
の銅酸化物系導電性化合物の比抵抗(室温)は8×10
−2Ωcmであった。 実施例11 酸化ホルミウム0.346g(0.915mmol)と
硝酸銅三水和物2.65g(11.0mmol)を良く
混合し、混合物を酸素雰囲気下、330℃で1時間加熱
した。その結果、図1と類似の立方晶系のX線回折パタ
ーン(2θ=16.3゜[111]、33.0゜[22
2]、38.3゜[400]、41.8゜[331]、
55.2゜[440])を示す銅酸化物系導電性化合物
が得られ、本実施例により(Ho1/7Cu6/7
NOが生成したことが確認された。この銅酸化物
系導電性化合物の比抵抗(室温)は5×10−2Ωcm
であった。また、この銅酸化物系導電性化合物は室温で
常磁性であった。
Example 10 0.703 g (1.59 mmol) of erbium nitrate pentahydrate
l) and 2.30 g (9.51 mmol) of copper nitrate trihydrate
Was thoroughly mixed, and the mixture was heated at 330 ° C. for 1 hour under an oxygen atmosphere. As a result, a cubic X-ray diffraction pattern similar to that of FIG. 1 (2θ = 16.4 {[111], 33.1} [222], 38.4} [400], 42.0} [33
1], 55.4 ° [440]), and according to this example, (Er 1/7 Cu
It was confirmed that 6/7 ) 7 O z NO 3 was produced. The specific resistance (room temperature) of this copper oxide-based conductive compound is 8 × 10
−2 Ωcm. Example 11 0.346 g (0.915 mmol) of holmium oxide and 2.65 g (11.0 mmol) of copper nitrate trihydrate were mixed well, and the mixture was heated at 330 ° C. for 1 hour in an oxygen atmosphere. As a result, a cubic X-ray diffraction pattern similar to FIG. 1 (2θ = 16.3 {[111], 33.0} [22
2], 38.3 {[400], 41.8} [331],
A copper oxide-based conductive compound exhibiting 55.2 ([440]) was obtained, and according to the present example, (Ho 1/7 Cu 6/7 ) 7 was obtained.
The O z NO 3 was produced was confirmed. The specific resistance (room temperature) of the copper oxide-based conductive compound is 5 × 10 −2 Ωcm.
Met. The copper oxide conductive compound was paramagnetic at room temperature.

【0013】実施例12 酸化ルテチウム0.362g(0.91mmol)と硝
酸銅三水和物2.64g(10.9mmol)を良く混
合し、混合物を酸素雰囲気下、330℃で1時間加熱し
た。その結果、図1と類似の立方晶系のX線回折パター
ン(2θ=16.4゜[111]、33.2゜[22
2]、38.5゜[400]、42.1゜[331]、
55.6゜[440])を示す銅酸化物系導電性化合物
が得られ、本実施例により(Lu1/7Cu6/7
NOが生成したことが確認された。この銅酸化物
系導電性化合物の比抵抗(室温)は3×10−2Ωcm
であった。 実施例13 酸化イッテルビウム0.359g(0.910mmo
l)と硝酸銅三水和物2.64g(10.9mmol)
を良く混合し、混合物を酸素雰囲気下、330℃で1時
間加熱した。その結果、図1と類似の立方晶系のX線回
折パターン(2θ=16.5゜[111]、33.2゜
[222]、38.5゜[400]、42.2゜[33
1]、55.6゜[440])を示す銅酸化物系導電性
化合物が得られ、本実施例により(Yb1/7Cu
6/7NOが生成したことが確認された。こ
の銅酸化物系導電性化合物の比抵抗(室温)は2×10
−2Ωcmであった。
Example 12 0.362 g (0.91 mmol) of lutetium oxide and 2.64 g (10.9 mmol) of copper nitrate trihydrate were mixed well, and the mixture was heated at 330 ° C. for 1 hour in an oxygen atmosphere. As a result, a cubic X-ray diffraction pattern similar to FIG. 1 (2θ = 16.4 {[111], 33.2} [22
2], 38.5 ゜ [400], 42.1 ゜ [331],
A copper oxide-based conductive compound exhibiting 55.6 [[440]) was obtained, and according to this example, (Lu 1/7 Cu 6/7 ) 7 was obtained.
The O z NO 3 was produced was confirmed. The specific resistance (room temperature) of the copper oxide-based conductive compound is 3 × 10 −2 Ωcm.
Met. Example 13 0.359 g of ytterbium oxide (0.910 mmol
l) and 2.64 g (10.9 mmol) of copper nitrate trihydrate
Was thoroughly mixed, and the mixture was heated at 330 ° C. for 1 hour under an oxygen atmosphere. As a result, a cubic X-ray diffraction pattern similar to that of FIG. 1 (2θ = 16.5 ° [111], 33.2 ° [222], 38.5 ° [400], 42.2 ° [33]
1], 55.6 ° [440]), and according to this example, (Yb 1/7 Cu
It was confirmed that 6/7 ) 7 O z NO 3 was produced. The specific resistance (room temperature) of the copper oxide conductive compound is 2 × 10
−2 Ωcm.

【0014】実施例14 酸化テルビウム0.351g(0.458mmol)と
硝酸銅三水和物2.66g(11.0mmol)を良く
混合し、混合物を酸素雰囲気下、330℃で1時間加熱
した。その結果、図1と類似の立方晶系のX線回折パタ
ーン(2θ=16.3゜[111]、33.0゜[22
2]、38.2゜[400]、41.8゜[331]、
55.2゜[440])を示す銅酸化物系導電性化合物
が得られ、本実施例により(Tb1/7Cu6/7
NOが生成したことが確認された。この銅酸化物
系導電性化合物の比抵抗(室温)は1×10−1Ωcm
であった。 実施例15 硝酸ディスプロシウム0.342g(0.917mmo
l)と硝酸銅三水和物2.66g(11.0mmol)
を良く混合し、混合物を酸素雰囲気下、330℃で1時
間加熱した。その結果、図1に類似の立方晶系のX線回
折パターン(2θ=16.3゜[111]、32.9゜
[222]、38.2゜[400]、41.8゜[33
1]、55.1゜[440])を示す銅酸化物系導電性
化合物が得られ、本実施例により(Dy1/7Cu
6/7NOが生成したことが確認された。こ
の銅酸化物系導電性化合物の比抵抗(室温)は1×10
−1Ωcmであった。図6はM・H磁化曲線を示す。
Example 14 0.351 g (0.458 mmol) of terbium oxide and 2.66 g (11.0 mmol) of copper nitrate trihydrate were mixed well, and the mixture was heated at 330 ° C. for 1 hour in an oxygen atmosphere. As a result, a cubic X-ray diffraction pattern similar to FIG. 1 (2θ = 16.3 {[111], 33.0} [22
2], 38.2 ゜ [400], 41.8 ゜ [331],
A copper oxide-based conductive compound exhibiting 55.2 {[440]) was obtained, and according to this example, (Tb 1/7 Cu 6/7 ) 7 was obtained.
The O z NO 3 was produced was confirmed. The specific resistance (room temperature) of the copper oxide-based conductive compound is 1 × 10 −1 Ωcm.
Met. Example 15 0.342 g of dysprosium nitrate (0.917 mmol
l) and 2.66 g (11.0 mmol) of copper nitrate trihydrate
Was thoroughly mixed, and the mixture was heated at 330 ° C. for 1 hour under an oxygen atmosphere. As a result, a cubic X-ray diffraction pattern similar to FIG. 1 (2θ = 16.3 {[111], 32.9} [222], 38.2} [400], 41.8} [33
1], copper oxide-based conductive compound showing a 55.1 ° [440]) is obtained by the present embodiment (Dy 1/7 Cu
It was confirmed that 6/7 ) 7 O z NO 3 was produced. The specific resistance (room temperature) of this copper oxide-based conductive compound is 1 × 10
-1 Ωcm. FIG. 6 shows the MH magnetization curve.

【0015】実施例16 酸化ツリウム0.352g(0.911mmol)と硝
酸銅三水和物2.64g(10.9mmol)を良く混
合し、混合物を酸素雰囲気下、330℃で1時間加熱し
た。その結果、図1に類似の立方晶系のX線回折パター
ン(2θ=16.4゜[111]、33.1゜[22
2]、38.4゜[400]、42.0゜[331]、
55.4゜[440])を示す銅酸化物系導電性化合物
が得られ、本実施例により(Tm1/7Cu6/7
NOが生成したことが確認された。この銅酸化物
系導電性化合物の比抵抗(室温)は5×10−2Ωcm
であった。 実施例17 酸化ルテチウム0.181g(0.455mmol)、
酸化イッテルビウム0.179g(0.455mmo
l)、硝酸銅三水和物2.64g(10.9mmol)
を良く混合し、混合物を酸素雰囲気下、330℃で1時
間加熱した。その結果、図1と類似の立方晶系のX線回
折パターン(2θ=16.5゜[111]、33.2゜
[222]、38.5゜[400]、42.2゜[33
1]、55・6゜[440])を示す銅酸化物系導電性
化合物が得られ、本実施例により(Lu1/14
1/14Cu6/7NOが生成したことが確
認された。この銅酸化物系導電性化合物の比抵抗(室
温)は5×10−2Ωcmであった 実施例18 酸化エルビウム0.172g(0.45mmol)と硝
酸銅三水和物2.83g(11.7mmol)を良く混
合し、混合物を酸素雰囲気下、330℃で1時間加熱し
た。その結果、図1と類似の立方晶系のX線回折パター
ン(2θ=16.3゜[111]、33.0゜[22
2]、38.3゜[400]、41.8゜[331]、
55.2゜[440])を示す銅酸化物系導電性化合物
が得られ、本実施例により(Er1/14Cu
13/14NOが生成したことが確認され
た。この銅酸化物系導電性化合物の比抵抗(室温)は1
×10−1Ωcmであった。
EXAMPLE 16 0.352 g (0.911 mmol) of thulium oxide and 2.64 g (10.9 mmol) of copper nitrate trihydrate were mixed well, and the mixture was heated at 330 ° C. for 1 hour in an oxygen atmosphere. As a result, a cubic X-ray diffraction pattern similar to FIG. 1 (2θ = 16.4 {[111], 33.1} [22
2], 38.4 ゜ [400], 42.0 ゜ [331],
A copper oxide-based conductive compound exhibiting 55.4 ([440]) was obtained, and according to this example, (Tm 1/7 Cu 6/7 ) 7 was obtained.
The O z NO 3 was produced was confirmed. The specific resistance (room temperature) of the copper oxide-based conductive compound is 5 × 10 −2 Ωcm.
Met. Example 17 0.181 g (0.455 mmol) of lutetium oxide,
0.179 g of ytterbium oxide (0.455 mmol
l), 2.64 g (10.9 mmol) of copper nitrate trihydrate
Was thoroughly mixed, and the mixture was heated at 330 ° C. for 1 hour under an oxygen atmosphere. As a result, a cubic X-ray diffraction pattern similar to that of FIG. 1 (2θ = 16.5 ° [111], 33.2 ° [222], 38.5 ° [400], 42.2 ° [33]
1], 55.6 ゜ [440]), and according to this example, (Lu 1/14 Y
It was confirmed that 1/14 Cu 6/7 ) 7 O z NO 3 was produced. The specific resistance (room temperature) of this copper oxide-based conductive compound was 5 × 10 −2 Ωcm. Example 18 0.172 g (0.45 mmol) of erbium oxide and 2.83 g of copper nitrate trihydrate (11. 7 mmol), and the mixture was heated at 330 ° C. for 1 hour under an oxygen atmosphere. As a result, a cubic X-ray diffraction pattern similar to FIG. 1 (2θ = 16.3 {[111], 33.0} [22
2], 38.3 {[400], 41.8} [331],
55.2 ([440]), a copper oxide-based conductive compound was obtained, and (Er 1/14 Cu
13/14) 7 that O z NO 3 was produced was confirmed. The specific resistance (room temperature) of this copper oxide-based conductive compound is 1
× 10 -1 Ωcm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の銅酸化物系導電性化合物のX線回折
パターンを示す。
FIG. 1 shows an X-ray diffraction pattern of a copper oxide-based conductive compound of Example 1.

【図2】実施例1の銅酸化物系導電性化合物の温度・比
抵抗曲線を示す。
FIG. 2 shows a temperature-resistivity curve of the copper oxide-based conductive compound of Example 1.

【図3】実施例1の銅酸化物系導電性化合物のM・H磁
化曲線を示す。
FIG. 3 shows an MH magnetization curve of the copper oxide-based conductive compound of Example 1.

【図4】実施例3の銅酸化物系導電性化合物のX線回折
パターンを示す。
FIG. 4 shows an X-ray diffraction pattern of the copper oxide-based conductive compound of Example 3.

【図5】実施例3の銅酸化物系導電性化合物の温度・比
抵抗曲線を示す。
FIG. 5 shows a temperature-resistivity curve of the copper oxide-based conductive compound of Example 3.

【図6】実施例15の銅酸化物系導電性化合物のM・H
磁化曲線を示す。
FIG. 6 shows MH of the copper oxide-based conductive compound of Example 15.
3 shows a magnetization curve.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記一般式で示される銅酸化物系導電性化
合物 (MCu (上記式において、Mは、Dy、Ho、Er、Tb、T
m、Yb、及びLuよりなる群より選択される少なくと
も一種の元素、Aは、ハロゲン元素及び/又はNO
表わし、x+y=1、0<x/y≦10、6≦Z≦8、
0.5≦w≦9である。)
1. A copper oxide-based conductive material represented by the following general formula:
Compound (MxCuy)7OzAw  (In the above formula, M is Dy, Ho, Er, Tb, T
at least selected from the group consisting of m, Yb, and Lu
Is also a kind of element, A is a halogen element and / or NO3To
X + y = 1, 0 <x / y ≦ 10, 6 ≦ Z ≦ 8,
0.5 ≦ w ≦ 9. )
JP3114211A 1991-02-26 1991-02-26 Copper oxide conductive compound Expired - Fee Related JP2865174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3114211A JP2865174B2 (en) 1991-02-26 1991-02-26 Copper oxide conductive compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3114211A JP2865174B2 (en) 1991-02-26 1991-02-26 Copper oxide conductive compound

Publications (2)

Publication Number Publication Date
JPH0543228A JPH0543228A (en) 1993-02-23
JP2865174B2 true JP2865174B2 (en) 1999-03-08

Family

ID=14631996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3114211A Expired - Fee Related JP2865174B2 (en) 1991-02-26 1991-02-26 Copper oxide conductive compound

Country Status (1)

Country Link
JP (1) JP2865174B2 (en)

Also Published As

Publication number Publication date
JPH0543228A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
Rao Chemical synthesis of solid inorganic materials
JP3443641B2 (en) Composite oxides with high Seebeck coefficient and high electrical conductivity
Adak et al. Synthesis and characterization of lanthanum aluminate powder at relatively low temperature
EP1174933B1 (en) Complex oxide having high thermoelectric conversion efficiency
CN101945833A (en) Method for producing sintered body
JP2865174B2 (en) Copper oxide conductive compound
JP3069701B1 (en) Composite oxide with high Seebeck coefficient and high electrical conductivity
JP3089301B1 (en) Thermoelectric conversion material and method for producing composite oxide sintered body
JP2979515B2 (en) Copper oxide conductive ceramics and method for producing the same
JP2003229605A (en) Thermoelectric conversion material and its manufacturing method
JP2967541B2 (en) Copper oxide conductive ceramics and method for producing the same
Devi et al. A modified citrate gel route for the synthesis of phase pure Bi2Sr2CaCu2O8 superconductor
US5112783A (en) Conductive copper oxide ceramics and process for producing same
JP3472814B2 (en) Composite oxide with excellent thermoelectric conversion performance
JP3163340B2 (en) Method for producing copper oxide-based conductive ceramics
JPS63256564A (en) Superconductive ceramic of scalelike oxide and its production
Proskurina et al. Phase equilibria and structure of solid solutions in the La–Co–Fe–O system at 1100 C
JPH04108661A (en) Production of electrically conductive ceramics containing copper oxide
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPS63307113A (en) Production of superconductor
JPH0574528B2 (en)
JP4124420B2 (en) Thermoelectric conversion material comprising palladium oxide and method for producing the same
JPH0234502A (en) Lamellar oxide type high temperature superconducting powder and its preparation
JPH06239615A (en) Production of copper oxide-based electrically conductive ceramic thin film
JPH04502448A (en) Multiphase superconductor and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees