JP3069701B1 - Composite oxide with high Seebeck coefficient and high electrical conductivity - Google Patents

Composite oxide with high Seebeck coefficient and high electrical conductivity

Info

Publication number
JP3069701B1
JP3069701B1 JP11239123A JP23912399A JP3069701B1 JP 3069701 B1 JP3069701 B1 JP 3069701B1 JP 11239123 A JP11239123 A JP 11239123A JP 23912399 A JP23912399 A JP 23912399A JP 3069701 B1 JP3069701 B1 JP 3069701B1
Authority
JP
Japan
Prior art keywords
composite oxide
thermoelectric conversion
seebeck coefficient
present
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11239123A
Other languages
Japanese (ja)
Other versions
JP2001064021A (en
Inventor
良次 舟橋
一郎 松原
賢 袖岡
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP11239123A priority Critical patent/JP3069701B1/en
Application granted granted Critical
Publication of JP3069701B1 publication Critical patent/JP3069701B1/en
Publication of JP2001064021A publication Critical patent/JP2001064021A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

【要約】 【課題】毒性が少なく、存在量の多い元素により構成さ
れ、耐熱性、化学耐久性等に優れ、高い熱電変換効率を
有する材料を提供する。 【解決手段】一般式:Ca3-xBixCo4y(0≦x≦
1、8.5≦y≦10)で表され、ゼーベック係数90
μV/K以上、電気伝導度5.0×103S/m以上で
あることを特徴とする複合酸化物。
An object of the present invention is to provide a material which is composed of elements having low toxicity and abundance, has excellent heat resistance, chemical durability and the like, and has high thermoelectric conversion efficiency. A general formula: Ca 3-x Bi x Co 4 O y (0 ≦ x ≦
1, 8.5 ≦ y ≦ 10) and a Seebeck coefficient of 90
A composite oxide having a μV / K or more and an electric conductivity of 5.0 × 10 3 S / m or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高いゼーベック係
数と高い電気伝導度を有する複合酸化物、及び該酸化物
を用いた熱電変換材料に関する。
The present invention relates to a composite oxide having a high Seebeck coefficient and a high electric conductivity, and a thermoelectric conversion material using the oxide.

【0002】[0002]

【従来の技術】我が国では、一次供給エネルギーからの
有効なエネルギーの得率は30%程度しかなく、約70
%ものエネルギ−を最終的には熱として大気中に廃棄し
ている。また、工場やごみ焼却場などにおいて燃焼によ
り生ずる熱も他のエネルギーに変換されることなく大気
中に廃棄されている。このように、我々人類は非常に多
くの熱エネルギーを無駄に廃棄しており、化石エネルギ
ーの燃焼等の行為から僅かなエネルギーしか獲得してい
ない。
2. Description of the Related Art In Japan, the yield of effective energy from primary supply energy is only about 30%, and is about 70%.
% Of energy is ultimately discarded into the atmosphere as heat. Also, heat generated by combustion in factories, refuse incineration plants, and the like is discarded into the atmosphere without being converted into other energy. In this way, human beings waste a great deal of heat energy wastefully, and have obtained only a small amount of energy from actions such as burning fossil energy.

【0003】エネルギーの得率を向上させるためには、
大気中に廃棄されている熱エネルギーを利用できるよう
することが有効である。そのためには熱エネルギーを直
接電気エネルギーに変換する熱電変換は有効な手段であ
る。この熱電変換とは、ゼーベック効果を利用したもの
であり、熱電変換材料の両端で温度差をつけることで電
位差を生じさせて発電を行うエネルギー変換法である。
この熱電発電では、熱電変換材料の一端を廃熱により生
じた高温部に配置し、もう一端を大気中(室温)に配置
して、それぞれの両端に導線を接続するだけで電気が得
られ、一般の発電に必要なモーターやタービン等の可動
装置は全く必要ない。このためコストも安く、さらに燃
焼等によるガスの排出も無く、熱電変換材料が劣化する
まで継続的に発電を行うことができる。
In order to improve the energy yield,
It is effective to make available thermal energy that is discarded in the atmosphere. For that purpose, thermoelectric conversion, which directly converts heat energy into electric energy, is an effective means. The thermoelectric conversion utilizes the Seebeck effect, and is an energy conversion method in which a temperature difference is applied between both ends of a thermoelectric conversion material to generate a potential difference and generate power.
In this thermoelectric power generation, electricity is obtained simply by placing one end of a thermoelectric conversion material in a high-temperature portion generated by waste heat, placing the other end in the atmosphere (room temperature), and connecting conductors to both ends, There is no need for a moving device such as a motor or a turbine necessary for general power generation. For this reason, the cost is low, the gas is not discharged due to combustion or the like, and the power generation can be continuously performed until the thermoelectric conversion material is deteriorated.

【0004】このように、熱電発電は今後心配されるエ
ネルギー問題の解決の一端を担う技術として期待されて
いるが、熱電発電を実現するためには、高い熱電変換効
率を有し、耐熱性、化学的耐久性等に優れた熱電変換材
料が必要となる。現在、高い熱電変換効率を有する物質
として知られているものは、金属間化合物であり、その
中でも最も高い変換効率を有する材料は、Bi2Te3
ある。しかしながら、Bi2Te3の熱電変換効率は高々
10%程度であり、また200℃以下の温度でしか利用
できない。しかも、Teが稀少元素であり、毒性を有す
ることを考慮すると、実用材としての応用には限界があ
る。このため、毒性が少なく、構成元素の存在量が多
く、さらには耐熱性、化学的耐久性等に優れ、高い熱電
変換効率を有する材料の開発が期待されている。
As described above, thermoelectric power generation is expected to play a part in solving the energy problem of concern in the future, but in order to realize thermoelectric power generation, it has high thermoelectric conversion efficiency, heat resistance, A thermoelectric conversion material having excellent chemical durability and the like is required. At present, a substance known as a substance having high thermoelectric conversion efficiency is an intermetallic compound, and among them, a material having the highest conversion efficiency is Bi 2 Te 3 . However, Bi 2 Te 3 has a thermoelectric conversion efficiency of at most about 10%, and can be used only at a temperature of 200 ° C. or less. Moreover, considering that Te is a rare element and has toxicity, there is a limit to its application as a practical material. Therefore, development of a material having low toxicity, a large amount of constituent elements, excellent heat resistance, chemical durability and the like, and high thermoelectric conversion efficiency is expected.

【0005】耐熱性や化学的耐久性に優れた材料として
は金属酸化物が考えられるが、金属酸化物の熱電変換効
率は、Bi2Te3と比較して一桁低いのが現状である。
これは、1×103S/m以上の電気伝導度を有する酸
化物では、ゼーベック係数が数十μV/K程度の低い値
しか示さないためである。
As a material having excellent heat resistance and chemical durability, a metal oxide can be considered, but the thermoelectric conversion efficiency of the metal oxide is one digit lower than that of Bi 2 Te 3 at present.
This is because the oxide having an electric conductivity of 1 × 10 3 S / m or more has a low Seebeck coefficient of only several tens μV / K.

【0006】[0006]

【発明が解決しようとする課題】本発明の主な目的は、
毒性が少なく、存在量の多い元素により構成され、耐熱
性、化学的耐久性等に優れ、高い熱電変換効率を有する
材料を提供することである。
SUMMARY OF THE INVENTION The main object of the present invention is to:
An object of the present invention is to provide a material which is formed of an element having a low toxicity and a large amount, has excellent heat resistance, chemical durability and the like, and has high thermoelectric conversion efficiency.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記した熱
電変換材料の現状に鑑みて種々の研究を重ねた結果、B
i、Ca、Co及びOを構成元素として含む特定組成の
複合酸化物が、高いゼーベック係数と電気伝導度を有す
るものであり、熱電変換素子における熱電変換材料とし
て有用であることを見出し、ここに本発明を完成するに
至った。
The present inventor has conducted various studies in view of the current state of the above-mentioned thermoelectric conversion materials.
A composite oxide having a specific composition containing i, Ca, Co and O as constituent elements has high Seebeck coefficient and electric conductivity, and is found to be useful as a thermoelectric conversion material in a thermoelectric conversion element. The present invention has been completed.

【0008】即ち、本発明は、下記の複合酸化物及び熱
電変換材料を提供するものである。 1.一般式:Ca3-xBixCo4y(0≦x≦1、8.
5≦y≦10)で表され、ゼーベック係数90μV/K
以上、電気伝導度5×103S/m以上であることを特
徴とする複合酸化物。 2.上記項1に記載された一般式において、0<x≦1
である上記項1に記載の複合酸化物。 3.上記項1に記載された一般式において、0.2≦x
≦0.8である上記項1に記載の複合酸化物。 4.上記項1〜3のいずれかに記載の複合酸化物からな
るP型熱電変換材料。
That is, the present invention provides the following composite oxide and thermoelectric conversion material. 1. General formula: Ca 3-x Bi x Co 4 O y (0 ≦ x ≦ 1,8.
5 ≦ y ≦ 10), and a Seebeck coefficient of 90 μV / K
As described above, a composite oxide having an electric conductivity of 5 × 10 3 S / m or more. 2. In the general formula described in the above item 1, 0 <x ≦ 1
Item 2. The composite oxide according to the above item 1, wherein 3. In the general formula described in the above item 1, 0.2 ≦ x
Item 2. The composite oxide according to item 1, wherein ≦ 0.8. 4. Item 4. A P-type thermoelectric conversion material comprising the composite oxide according to any one of Items 1 to 3.

【0009】[0009]

【発明の実施の形態】本発明の複合酸化物は、一般式:
Ca3-xBixCo4y(0≦x≦1、8.5≦y≦1
0)で表されるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The composite oxide of the present invention has a general formula:
Ca 3-x Bi x Co 4 O y (0 ≦ x ≦ 1,8.5 ≦ y ≦ 1
0).

【0010】この様な複合酸化物は、酸素欠損ペロブス
カイトであるCa2Co25と同様のペロブスカイト型
結晶構造を有するものである。この点を明確にするため
に、後述する実施例1で得た複合酸化物についての粉末
X線回折パターンを図1に示す。このX線回折パターン
によれば、不純物相によるピークが観察されないことか
ら、該複合酸化物は、Ca2Co25のCaサイトに欠
損が生じたものであることが判る。図2に本発明の複合
酸化物の結晶構造の模式図を示す。
Such a composite oxide has a perovskite-type crystal structure similar to Ca 2 Co 2 O 5 which is an oxygen-deficient perovskite. To clarify this point, FIG. 1 shows a powder X-ray diffraction pattern of the composite oxide obtained in Example 1 described later. According to this X-ray diffraction pattern, since no peak due to the impurity phase is observed, it is understood that the complex oxide has a defect at the Ca site of Ca 2 Co 2 O 5 . FIG. 2 shows a schematic diagram of the crystal structure of the composite oxide of the present invention.

【0011】上記特定の組成を有する複合酸化物は、9
0μV/K以上のゼーベック係数と5×103S/m以
上の電気伝導度を有するものである。この様に高いゼー
ベック係数と高い電気伝導度を同時に有することによ
り、本発明の複合酸化物を熱電変換素子の熱電変換材料
として用いた場合に、高い熱電変換効率を発揮すること
ができる。更に、該複合酸化物は、耐熱性、化学的耐久
性等が良好であり、しかも構成元素は、毒性が少なく、
存在量が多いことから、熱電変換材料として実用性の高
いものである。
The composite oxide having the above specific composition is 9
It has a Seebeck coefficient of 0 μV / K or more and an electric conductivity of 5 × 10 3 S / m or more. By having such a high Seebeck coefficient and high electric conductivity at the same time, high thermoelectric conversion efficiency can be exhibited when the composite oxide of the present invention is used as a thermoelectric conversion material of a thermoelectric conversion element. Further, the composite oxide has good heat resistance, good chemical durability and the like, and the constituent elements have low toxicity,
Due to its large abundance, it is highly practical as a thermoelectric conversion material.

【0012】本発明の複合酸化物では、上記一般式にお
いて、xの値は0以上、1以下であるが、特に、0<x
≦1であって、複合酸化物中にBiが必須の構成成分と
して含まれる場合には、高いゼーベック係数を示すもの
となる。更に、0.2≦x≦0.8の場合には、ゼーベ
ック係数が非常に高く、熱電変換材料として特に有用性
の高いものとなる。
In the composite oxide of the present invention, the value of x in the above general formula is 0 or more and 1 or less.
If Bi is included as an essential component in the composite oxide, a high Seebeck coefficient is exhibited. Further, when 0.2 ≦ x ≦ 0.8, the Seebeck coefficient is extremely high, and the material is particularly useful as a thermoelectric conversion material.

【0013】上記一般式において、y=9の場合に、酸
素量が化学量論量となるが、8.5≦y≦10程度の範
囲においても、目的とする複合酸化物を得ることができ
る。
In the above general formula, when y = 9, the amount of oxygen becomes a stoichiometric amount, but the desired complex oxide can be obtained even in the range of about 8.5 ≦ y ≦ 10. .

【0014】本発明の複合酸化物は、原料物質を所定の
配合比率で混合し、酸化性雰囲気中で焼成することによ
って得ることができる。
The composite oxide of the present invention can be obtained by mixing raw materials at a predetermined mixing ratio and firing in an oxidizing atmosphere.

【0015】原料物質は、焼成により目的とする複合酸
化物を形成し得るものであれば特に限定されず、金属単
体、酸化物、各種化合物(炭酸塩等)等を使用できる。
例えばBi源としては、酸化ビスマス(Bi23,Bi
25)、硝酸ビスマス(Bi(NO33)、塩化ビスマ
ス(BiCl3)、水酸化ビスマス(Bi(OH)3)、
トリプロポキシビスマス(Bi(OC373)等を使
用でき、Ca源としては、酸化カルシウム(CaO)、
塩化カルシウム(CaCl2)、炭酸カルシウム(Ca
CO3)、硝酸カルシウム(Ca(NO32)、水酸化
カルシウム(Ca(OH)2)、ジメトキシカルシウム
(Ca(OCH32)、ジエトキシカルシウム(Ca
(OC252)、ジプロポキシカルシウム(Ca(O
372)等を使用でき、Co源としては酸化コバル
ト(CoO,Co23,Co34)、塩化コバルト(C
oCl2)、炭酸コバルト(CoCO3)、硝酸コバルト
(Co(NO32)、水酸化コバルト(Co(O
H)2)、ジプロポキシコバルト(Co(OC372
等を使用できる。
The raw material is not particularly limited as long as it can form a target composite oxide by firing, and may be a simple metal, an oxide, various compounds (such as carbonates) and the like.
For example, as a Bi source, bismuth oxide (Bi 2 O 3 , Bi
2 O 5 ), bismuth nitrate (Bi (NO 3 ) 3 ), bismuth chloride (BiCl 3 ), bismuth hydroxide (Bi (OH) 3 ),
Tripropoxybismuth (Bi (OC 3 H 7 ) 3 ) or the like can be used. As a Ca source, calcium oxide (CaO),
Calcium chloride (CaCl 2 ), calcium carbonate (Ca
CO 3 ), calcium nitrate (Ca (NO 3 ) 2 ), calcium hydroxide (Ca (OH) 2 ), dimethoxycalcium (Ca (OCH 3 ) 2 ), diethoxycalcium (Ca
(OC 2 H 5 ) 2 ), dipropoxy calcium (Ca (O
C 3 H 7 ) 2 ) and the like can be used, and as a Co source, cobalt oxide (CoO, Co 2 O 3 , Co 3 O 4 ), cobalt chloride (C
oCl 2 ), cobalt carbonate (CoCO 3 ), cobalt nitrate (Co (NO 3 ) 2 ), cobalt hydroxide (Co (O
H) 2 ), dipropoxy cobalt (Co (OC 3 H 7 ) 2 )
Etc. can be used.

【0016】焼成手段は特に限定されず、電気加熱炉、
ガス加熱炉等任意の手段を採用でき、酸素気流中、空気
中等の酸化性雰囲気中で焼成すればよい。
The firing means is not particularly limited, and an electric heating furnace,
Any means such as a gas heating furnace can be adopted, and firing may be performed in an oxidizing atmosphere such as an oxygen stream or air.

【0017】焼成温度及び焼成時間については、目的と
する複合酸化物が形成される条件とすればよく、特に限
定されないが、通常、920〜1100℃程度で24時
間〜48時間程度焼成すればよい。尚、原料物質として
炭酸塩や有機化合物等を用いる場合には、焼成する前に
予め仮焼して原料物質を分解させた後、焼成して目的の
複合酸化物を形成することが好ましい。例えば、原料物
質として、炭酸塩を用いる場合には、800〜900℃
程度で24時間程度焼成した後、上記した条件で焼成す
ればよい。
The firing temperature and the firing time are not particularly limited, as long as the desired complex oxide is formed. Usually, the firing may be performed at about 920 to 1100 ° C. for about 24 to 48 hours. . When a carbonate, an organic compound, or the like is used as the raw material, it is preferable that the raw material be decomposed by calcining before firing, and then fired to form a target composite oxide. For example, when a carbonate is used as a raw material, 800 to 900 ° C.
After firing for about 24 hours, firing may be performed under the above conditions.

【0018】生成する複合酸化物中の酸素量は、焼成時
の酸素分圧、焼成温度、焼成時間等により制御すること
ができ、酸素分圧が高い程、上記一般式におけるyの値
を高くすることができる。
The amount of oxygen in the resulting composite oxide can be controlled by the oxygen partial pressure during firing, the firing temperature, the firing time, and the like. The higher the oxygen partial pressure, the higher the value of y in the above general formula can do.

【0019】この様にして得られる本発明の複合酸化物
は、高いゼーベック係数と高い電気伝導度を同時に有す
るものであり、熱電変換素子の熱電変換材料として有効
に用いることができる。
The composite oxide of the present invention thus obtained has a high Seebeck coefficient and a high electric conductivity at the same time, and can be effectively used as a thermoelectric conversion material of a thermoelectric conversion element.

【0020】本発明の複合酸化物を熱電変換材料として
用いた熱電変換素子の一例の模式図を図3に示す。熱電
変換素子の構造は、公知の熱電変換素子と同様であり、
高温部用基板1、低温部用基板2、P型熱電変換材料
3、N型熱電変換材料4、電極5、導線6等により構成
される熱電変換素子において、本発明の複合酸化物をP
型熱電変換材料として用いればよい。
FIG. 3 is a schematic view showing an example of a thermoelectric conversion element using the composite oxide of the present invention as a thermoelectric conversion material. The structure of the thermoelectric conversion element is the same as a known thermoelectric conversion element,
In the thermoelectric conversion element composed of the substrate 1 for the high temperature part, the substrate 2 for the low temperature part, the P-type thermoelectric conversion material 3, the N-type thermoelectric conversion material 4, the electrode 5, the conductive wire 6, etc., the composite oxide of the present invention is P
It may be used as a thermoelectric conversion material.

【0021】[0021]

【発明の効果】本発明の複合酸化物は、高いゼーベック
係数と高い電気伝導度を有し、耐熱性、化学耐久性等に
優れた複合酸化物である。
The composite oxide of the present invention has a high Seebeck coefficient and a high electric conductivity and is excellent in heat resistance, chemical durability and the like.

【0022】該複合酸化物は、従来の金属間化合物材料
では不可能であった、高温での熱電変換材料としての応
用が可能である。従って、本発明の酸化物材料を熱電発
電システム中に組み込むことにより、これまで大気中に
廃棄されていた熱エネルギーを有効に利用することが可
能になると期待される。
The composite oxide can be applied as a high-temperature thermoelectric conversion material, which is impossible with a conventional intermetallic compound material. Therefore, it is expected that by incorporating the oxide material of the present invention into a thermoelectric power generation system, it will be possible to effectively utilize the heat energy that has been discarded in the atmosphere.

【0023】[0023]

【実施例】以下、実施例を示し、本発明の特徴とすると
ころをより一層明確にする。 実施例1 Bi源として酸化ビスマス(Bi23)、Ca源として
炭酸カルシウム(CaCO3)、及びCo源として酸化
コバルト(Co34)を用い、Ca:Bi:Co(モル
比)=2.50:0.50:4.00となる様に、原料
物質を十分に混合した後、アルミナルツボに入れて、電
気炉中で900℃で24時間仮焼した。この仮焼物を粉
砕し、加圧成形後、酸素気流中で、960℃で24時間
焼成して、複合酸化物を合成した。得られた複合酸化物
は、化学式:Ca2.5Bi0.5Co 49.3で表されるもの
であった。
The present invention will be described below with reference to examples.
Make the rollers even clearer. Example 1 As a Bi source, bismuth oxide (BiTwoOThree), As a Ca source
Calcium carbonate (CaCOThree) And oxidation as Co source
Cobalt (CoThreeOFour) Using Ca: Bi: Co (mol
Ratio) = 2.50: 0.50: 4.00
After thoroughly mixing the substances, place them in an alumina crucible and
Calcination was performed in an air furnace at 900 ° C. for 24 hours. Powder this calcined product
After crushing and pressing, in an oxygen stream at 960 ° C. for 24 hours
By firing, a composite oxide was synthesized. The resulting composite oxide
Has the chemical formula: Ca2.5Bi0.5Co FourO9.3Represented by
Met.

【0024】得られた複合酸化物の100℃〜700℃
におけるゼーベック係数(S)の温度依存性を示すグラ
フを図4に示す。図4から、この複合酸化物が、100
℃〜700℃の温度範囲において、100μV/K以上
のゼーベック係数を示すことが判る。
100 ° C. to 700 ° C. of the obtained composite oxide
FIG. 4 is a graph showing the temperature dependence of the Seebeck coefficient (S) in the above. FIG. 4 shows that the composite oxide was 100
It can be seen that the polymer exhibits a Seebeck coefficient of 100 μV / K or more in a temperature range of from 0 ° C. to 700 ° C.

【0025】更に、該複合酸化物について、直流四端子
法により測定した電気伝導度(σ)の温度依存性を示す
グラフを図5に示す。図5から、該複合酸化物の電気伝
導度は、7.0×103S/mを超える高い値を示し、
温度の上昇に伴って増加して、700℃では1×104
S/mという高い値となることが判る。
FIG. 5 is a graph showing the temperature dependence of the electrical conductivity (σ) of the composite oxide measured by the DC four-terminal method. From FIG. 5, the electric conductivity of the composite oxide shows a high value exceeding 7.0 × 10 3 S / m,
It increases with increasing temperature, and 1 × 10 4 at 700 ° C.
It can be seen that the value is as high as S / m.

【0026】また、該複合酸化物について、ゼーベック
係数(S)、電気伝導度(σ)、及びレーザーフラッシ
ュ法で測定した熱伝導率(κ)から算出した性能指数Z
(=S2σ/κ)に温度(T)をかけたZTの温度依存
性を示すグラフを図6に示す。ZTは、一般に熱電変換
材料の変換効率を評価する基準として採用されている指
数である。図6から、本発明の複合酸化物は高い熱電変
換効率を有することが判る。 実施例2〜10 一般式:Ca3-xBixCo4yにおいて、下記表1に示
すx値となる様に原料物質を混合し、仮焼温度と焼成条
件を表1に記載した様に変更したこと以外は、実施例1
と同様にして、複合酸化物を製造した。
The composite oxide has a performance index Z calculated from the Seebeck coefficient (S), the electric conductivity (σ), and the thermal conductivity (κ) measured by a laser flash method.
FIG. 6 is a graph showing the temperature dependency of ZT obtained by multiplying (= S 2 σ / κ) by the temperature (T). ZT is an index generally adopted as a standard for evaluating the conversion efficiency of a thermoelectric conversion material. FIG. 6 shows that the composite oxide of the present invention has high thermoelectric conversion efficiency. Example 2-10 Formula: in Ca 3-x Bi x Co 4 O y, the raw materials are mixed so as the x value shown in Table 1, as the calcining temperature and sintering conditions shown in Table 1 Example 1 except for changing to
In the same manner as in the above, a composite oxide was produced.

【0027】得られた各複合酸化物について、実施例1
と同様にして、700℃におけるゼーベック係数
(S)、電気伝導度(σ)及びZT値を測定した結果を
表1に示す。
For each of the obtained composite oxides, Example 1
Table 1 shows the results of measuring the Seebeck coefficient (S), the electric conductivity (σ), and the ZT value at 700 ° C. in the same manner as described above.

【0028】[0028]

【表1】 [Table 1]

【0029】以上の結果から、本発明の複合酸化物は、
高いゼーベック係数と高い電気伝導度を有し、熱変換効
率が良好であることが判る。
From the above results, the composite oxide of the present invention is:
It turns out that it has a high Seebeck coefficient and a high electrical conductivity, and has good heat conversion efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた複合酸化物の粉末X線回折
パターンを示す図。
FIG. 1 is a view showing a powder X-ray diffraction pattern of a composite oxide obtained in Example 1.

【図2】本発明の複合酸化物の結晶構造を示す模式図。FIG. 2 is a schematic view showing a crystal structure of a composite oxide of the present invention.

【図3】本発明の複合酸化物を熱電変換材料として用い
た熱電変換素子の模式図。
FIG. 3 is a schematic diagram of a thermoelectric conversion element using the composite oxide of the present invention as a thermoelectric conversion material.

【図4】実施例1で得られた複合酸化物のゼーベック係
数の温度依存性を示すグラフ。
FIG. 4 is a graph showing the temperature dependence of the Seebeck coefficient of the composite oxide obtained in Example 1.

【図5】実施例1で得られた複合酸化物の電気伝導度の
温度依存性を示すグラフ。
FIG. 5 is a graph showing the temperature dependence of the electrical conductivity of the composite oxide obtained in Example 1.

【図6】実施例1で得られた複合酸化物のZTの温度依
存性を示すグラフ。
FIG. 6 is a graph showing the temperature dependence of ZT of the composite oxide obtained in Example 1.

【符号の説明】[Explanation of symbols]

1…高温部用基板1、2…低温部用基板、3…P型熱電
変換材料、4…N型熱電変換材料、5…電極、6…導線
DESCRIPTION OF SYMBOLS 1 ... Substrate for high temperature part 1, 2 ... Substrate for low temperature part, 3 ... P-type thermoelectric conversion material, 4 ... N-type thermoelectric conversion material, 5 ... Electrode, 6 ... Conductor wire

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−163080(JP,A) 特開 平4−292904(JP,A) 特開 平4−111369(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 51/00 H01L 35/22 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-163080 (JP, A) JP-A-4-292904 (JP, A) JP-A-4-111369 (JP, A) (58) Field (Int.Cl. 7 , DB name) C01G 51/00 H01L 35/22

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式:Ca3-xBixCo4y0<x≦
、8.5≦y≦10)で表され、ゼーベック係数90
μV/K以上、電気伝導度5×103S/m以上である
ことを特徴とする複合酸化物。
1. A general formula: Ca 3-x Bi x Co 4 O y (0 <x ≦
1 , 8.5 ≦ y ≦ 10) and a Seebeck coefficient of 90
A composite oxide having a μV / K or more and an electric conductivity of 5 × 10 3 S / m or more.
【請求項2】請求項1に記載された一般式において、
0.2≦x≦0.8である請求項1に記載の複合酸化
物。
2. A method according to claim 1, wherein:
2. The composite oxide according to claim 1, wherein 0.2 ≦ x ≦ 0.8.
【請求項3】請求項1又は2に記載の複合酸化物からな
るP型熱電変換材料。
3. A P-type thermoelectric conversion material composed of a composite oxide according to claim 1 or 2.
JP11239123A 1999-08-26 1999-08-26 Composite oxide with high Seebeck coefficient and high electrical conductivity Expired - Lifetime JP3069701B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11239123A JP3069701B1 (en) 1999-08-26 1999-08-26 Composite oxide with high Seebeck coefficient and high electrical conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11239123A JP3069701B1 (en) 1999-08-26 1999-08-26 Composite oxide with high Seebeck coefficient and high electrical conductivity

Publications (2)

Publication Number Publication Date
JP3069701B1 true JP3069701B1 (en) 2000-07-24
JP2001064021A JP2001064021A (en) 2001-03-13

Family

ID=17040140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11239123A Expired - Lifetime JP3069701B1 (en) 1999-08-26 1999-08-26 Composite oxide with high Seebeck coefficient and high electrical conductivity

Country Status (1)

Country Link
JP (1) JP3069701B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1123902A1 (en) * 2000-02-10 2001-08-16 The Secretary of Agency of Industrial Science and Technology Complex oxide having high seebeck coefficient and high electric conductivity
JP2016178107A (en) * 2015-03-18 2016-10-06 日本化学工業株式会社 Manufacturing method of thermoelectric conversion material
US10224473B2 (en) 2015-03-18 2019-03-05 Nippon Chemical Industrial Co., Ltd. Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320095A (en) * 2000-03-03 2001-11-16 Tohoku Techno Arch Co Ltd Oxide thermoelectric material
US6860938B2 (en) 2001-06-25 2005-03-01 National Institute Of Advanced Technology Method for producing single crystal of composite oxide
JP4595071B2 (en) * 2003-07-30 2010-12-08 独立行政法人産業技術総合研究所 Thermoelectric conversion element, thermoelectric conversion module, and thermoelectric conversion method
JP4239010B2 (en) 2004-08-18 2009-03-18 独立行政法人産業技術総合研究所 Composite oxide having p-type thermoelectric conversion characteristics
JP4967772B2 (en) 2006-08-24 2012-07-04 住友化学株式会社 Thermoelectric conversion material and method for producing the same
JP2008124417A (en) 2006-10-17 2008-05-29 Sumitomo Chemical Co Ltd Thermoelectric conversion material, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1123902A1 (en) * 2000-02-10 2001-08-16 The Secretary of Agency of Industrial Science and Technology Complex oxide having high seebeck coefficient and high electric conductivity
JP2016178107A (en) * 2015-03-18 2016-10-06 日本化学工業株式会社 Manufacturing method of thermoelectric conversion material
US10224473B2 (en) 2015-03-18 2019-03-05 Nippon Chemical Industrial Co., Ltd. Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module

Also Published As

Publication number Publication date
JP2001064021A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JP3443641B2 (en) Composite oxides with high Seebeck coefficient and high electrical conductivity
JP3472813B2 (en) Composite oxides with high Seebeck coefficient and high electrical conductivity
JP5252474B2 (en) Oxide composite having n-type thermoelectric properties
JP3069701B1 (en) Composite oxide with high Seebeck coefficient and high electrical conductivity
US7435896B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the material, cooling device and electric apparatus using the element, and electric power generation method and cooling method using the element
EP1895603A1 (en) Thermoelectric conversion material, method for production thereof and thermoelectric conversion element
JP3968418B2 (en) Composite oxide having n-type thermoelectric properties
JP4002964B2 (en) Layered alkali titanate thermoelectric oxide material
JP4292390B2 (en) Composite oxide having n-type thermoelectric properties
JP3089301B1 (en) Thermoelectric conversion material and method for producing composite oxide sintered body
JP4876721B2 (en) Thermoelectric conversion material and method for producing the same
JP5206510B2 (en) N-type thermoelectric conversion material, n-type thermoelectric conversion element, and thermoelectric conversion module
JP2009196821A (en) Perovskite-based oxide, its producing method and thermoelectric element using it
JP4257419B2 (en) Composite oxide having n-type thermoelectric conversion characteristics
JP4221496B2 (en) Composite oxide having n-type thermoelectric properties
US7959833B2 (en) Thermoelectric conversion material, method for producing the same and thermoelectric conversion device
JP3586716B2 (en) Composite oxide with high thermoelectric conversion efficiency
JP2004186572A (en) Thermoelectric transduction material and thermoelectric transducer
JPH0617225B2 (en) Thermoelectric conversion material
JP2003008086A (en) Composite oxide and thermoelectric converter using the same
JP3585696B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP2004288841A (en) Oxychalcogenide and thermoelectric material
JP3950960B2 (en) Potassium-manganese-containing composite oxide
JP4124420B2 (en) Thermoelectric conversion material comprising palladium oxide and method for producing the same
JP2004107151A (en) Metal oxide single crystal and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3069701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term