JPH06239615A - Production of copper oxide-based electrically conductive ceramic thin film - Google Patents

Production of copper oxide-based electrically conductive ceramic thin film

Info

Publication number
JPH06239615A
JPH06239615A JP2522893A JP2522893A JPH06239615A JP H06239615 A JPH06239615 A JP H06239615A JP 2522893 A JP2522893 A JP 2522893A JP 2522893 A JP2522893 A JP 2522893A JP H06239615 A JPH06239615 A JP H06239615A
Authority
JP
Japan
Prior art keywords
thin film
copper
copper oxide
nitrate
conductive ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2522893A
Other languages
Japanese (ja)
Inventor
Ichiro Yazawa
一郎 矢澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2522893A priority Critical patent/JPH06239615A/en
Publication of JPH06239615A publication Critical patent/JPH06239615A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for producing a copper oxide-based electrically conductive ceramic thin film in which the synthesis and formation of the thin film have hitherto been difficult by using a readily available raw material at a low cost. CONSTITUTION:An aqueous solution of a mixture composed of copper nitrate, copper chloride, indium nitrate and lead nitrate is sprayed on a substrate heated at 300-550 deg.C to deposit droplets thereof. Thereby, the objective copper oxide- based electrically conductive ceramic thin film expressed by the formula Cu6(InxPby)O8-zCl [(x+y) is 1; 0<=(x)<1; 0<(y)<=1; 0<=(z)<=1] is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は銅酸化物系導電性セラミ
ックス薄膜の製造方法に係わり、特に、容易かつ安価に
入手可能な原料を用いた銅酸化物系導電性セラミックス
薄膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a copper oxide-based conductive ceramic thin film, and more particularly to a method for producing a copper oxide-based conductive ceramic thin film using raw materials that are easily and inexpensively available.

【0002】[0002]

【従来の技術】導電性セラミックスはセラミックス特有
の耐食性、耐熱性等の優れた特性を利用して従来より電
極、発熱体等として広い分野で使用されている。例えば
RuO 2 は電極材料、熱転写プリンターのサーマルヘッ
ド等に利用されている。更に、導電性セラミックス薄膜
の他の用途例としてはITOセラミックスの透明電極へ
の適用、PLZTセラミックスの光スイッチへの適用な
どその応用分野は拡大しつつある。
2. Description of the Related Art Conductive ceramics are peculiar to ceramics
Because of its excellent properties such as corrosion resistance and heat resistance,
It is used in a wide range of fields such as poles and heating elements. For example
RuO 2Is the electrode material and the thermal head of the thermal transfer printer.
It is used as a service. Furthermore, conductive ceramic thin film
Another example of application is to use transparent electrodes of ITO ceramics.
Application of PLZT ceramics to optical switches
The fields of application are expanding.

【0003】ところで、Cu6 8 PbClなる組成式
で表される化合物はマードカイトという名で天然に存在
する鉱物結晶として知られており、導電性を有するセラ
ミックス材料の一つとして種々の応用が期待されてい
る。また、前記組成式中のPbの一部をInで置換する
ことにより更に良好な導電性を有するセラミックス材料
を得ることが可能である。
By the way, the compound represented by the composition formula Cu 6 O 8 PbCl is known as a naturally occurring mineral crystal under the name of Murdkite, and various applications are expected as one of electrically conductive ceramic materials. Has been done. Further, by substituting In for a part of Pb in the above composition formula, it is possible to obtain a ceramic material having better conductivity.

【0004】なお、マードカイトは、塩化銅と水酸化鉛
との混合水溶液から水熱反応によって合成する製造方法
も知られているが、反応の再現性に乏しく、またPb2
CuCl2 (OH)4 の副生成物として生成するに過ぎ
ないため大量に合成することは困難であった。
[0004] It is noted that a production method of merkudite is known by a hydrothermal reaction from a mixed aqueous solution of copper chloride and lead hydroxide, but the reproducibility of the reaction is poor and Pb 2
It was difficult to synthesize a large amount because it was only produced as a by-product of CuCl 2 (OH) 4 .

【0005】他方、前記マードカイト及びIn置換マー
ドカイトを薄膜化し電極材料等への応用に供することは
極めて困難であった。
On the other hand, it has been extremely difficult to make the above-mentioned mardkites and In-substituted mardkites into thin films and apply them to electrode materials and the like.

【0006】[0006]

【発明が解決しようとする課題】このように導電性セラ
ミックスは広い分野で使用されており、その有用性が重
視されていることから、導電性セラミックス薄膜を安価
かつ容易に製造する方法が常に望まれている。よって本
発明の課題とするところは、容易かつ安価に入手可能な
原料を用いて、従来合成及び薄膜化が困難であった銅酸
化物系導電性セラミックス薄膜の製造方法を提供するこ
とを目的とする。
As described above, since conductive ceramics are used in a wide range of fields and importance is attached to their usefulness, a method for inexpensively and easily manufacturing a conductive ceramic thin film is always desired. It is rare. Therefore, the object of the present invention is to provide a method for producing a copper oxide-based conductive ceramic thin film, which has been difficult to synthesize and thin in the related art, by using raw materials that are easily and inexpensively available. To do.

【0007】[0007]

【課題を解決するための手段】本発明は、一般式、Cu
6 (Inx Pby )O8-z Cl〔但し、x+y=1,0
≦x<1,0<y≦1,0≦z≦1〕で表わされる銅酸
化物系導電性セラミックス薄膜の製造方法であって、硝
酸銅、塩化銅、硝酸インジウム、および硝酸鉛とからな
る混合物水溶液を300℃〜550℃に加熱された基板
上に噴霧化し、その液滴を堆積させることを特徴とする
銅酸化物系導電性セラミックス薄膜の製造方法である。
The present invention is based on the general formula Cu
6 (In x Pb y) O 8-z Cl [where, x + y = 1,0
A method for producing a copper oxide-based conductive ceramic thin film represented by ≦ x <1,0 <y ≦ 1,0 ≦ z ≦ 1], which comprises copper nitrate, copper chloride, indium nitrate, and lead nitrate. It is a method for producing a copper oxide-based conductive ceramics thin film, which comprises atomizing an aqueous solution of a mixture onto a substrate heated to 300 ° C. to 550 ° C. and depositing droplets thereof.

【0008】以下、本発明を詳述する。まず硝酸銅、塩
化銅、硝酸インジウムおよび硝酸鉛をモル比5:1:
(x+y)、但し(x+y)=1、すなわち、混合物中
の含有金属のモル比がCu:(In+Pb)=6:1と
なるように秤量・混合し、適当な濃度の水溶液とする。
The present invention will be described in detail below. First, copper nitrate, copper chloride, indium nitrate and lead nitrate were mixed at a molar ratio of 5: 1 :.
(X + y), where (x + y) = 1, that is, the molar ratio of the contained metals in the mixture is Cu: (In + Pb) = 6: 1, and weighed and mixed to obtain an aqueous solution having an appropriate concentration.

【0009】この時、Cuのモル比がInおよびPbの
和に対して6を越えると後述する加熱後に得られる導電
性セラミックスの中にCuOまたはCu2 (NO2
(OH)3 等の過剰な銅に起因する不純物が混入するた
め好ましくない。また、これとは反対にCuのモル比が
InおよびPbの和に対して6より小さいとIn
2 3、PbO等の過剰なInおよびPbに起因する不
純物が混入するため好ましくない。
At this time, if the molar ratio of Cu exceeds 6 with respect to the sum of In and Pb, CuO or Cu 2 (NO 2 ) is contained in the conductive ceramic obtained after heating described later.
It is not preferable because impurities such as (OH) 3 resulting from excess copper are mixed. On the contrary, when the Cu molar ratio is less than 6 with respect to the sum of In and Pb, In
Impurities resulting from excessive In and Pb such as 2 O 3 and PbO are mixed, which is not preferable.

【0010】また、硝酸銅と塩化銅の混合比について言
えば、硝酸銅のモル比が塩化銅に対して5を越えると上
に示した一般式〔I〕中のCl元素の一部が(NO3
基で置換された熱的に不安定な化合物、Cu6 (Inx
Pby )O8-z Cl1-m (NO3 m が生成するため好
ましくない。反対に硝酸銅のモル比が塩化銅に対して5
より小さいと導電性セラミックスの生成割合が減少し、
絶縁性物質であるCu 2 OCl2 が多く生成するため、
好ましくない。
The mixing ratio of copper nitrate and copper chloride is also mentioned.
For example, if the molar ratio of copper nitrate exceeds 5 with respect to copper chloride,
A part of the Cl element in the general formula [I] shown in3)
Group-substituted thermally labile compound, Cu6(Inx
Pby) O8-zCl1-m(NO3)mIs good for
Not good. On the contrary, the molar ratio of copper nitrate to copper chloride is 5
If it is smaller, the production rate of conductive ceramics decreases,
Insulating material Cu 2OCl2Is generated,
Not preferable.

【0011】InとPbの混合割合に関して言えば、上
で述べたように両者の和のモル数が銅の1/6となって
いれば良く、特に制限はない。
As for the mixing ratio of In and Pb, as described above, it is sufficient that the total number of moles of both is 1/6 of copper, and there is no particular limitation.

【0012】次いで得られた混合物水溶液を超音波噴霧
器等を用いて噴霧化し、その液滴を予め300〜550
℃に加熱された基板上に堆積することにより、導電性セ
ラミックスを得る。ここで加熱温度が550℃を超える
と絶縁性セラミックスであるCuO及びIn2 3 が分
解生成し、導電性セラミックスの生成割合が減少し更に
高温の場合には全て絶縁性セラミックスとなるため好ま
しくない。一方加熱温度が300℃未満では硝酸塩の分
解反応が効率的に進行しない。
Next, the obtained mixture aqueous solution is atomized by using an ultrasonic atomizer or the like, and its droplets are preliminarily 300-550.
Conductive ceramics are obtained by depositing on a substrate heated to ℃. Here, if the heating temperature exceeds 550 ° C., CuO and In 2 O 3 which are insulating ceramics are decomposed and generated, the generation ratio of the conductive ceramics is reduced, and when the temperature is higher, all become insulating ceramics, which is not preferable. . On the other hand, if the heating temperature is less than 300 ° C, the decomposition reaction of nitrate does not proceed efficiently.

【0013】この加熱時間は30分〜15時間程度の間
で適宜選定され、加熱は電気炉等の通常の加熱装置を用
いて行なうことが出来る。
The heating time is appropriately selected from the range of 30 minutes to 15 hours, and the heating can be carried out by using an ordinary heating device such as an electric furnace.

【0014】硝酸銅、塩化銅、硝酸インジウム、および
硝酸鉛の原料化合物の混合方法としては、各々の原料化
合物をボールミル等で粉砕混合する方法が一般的である
が、均一な水溶液を得るものであれば特に方法を限るも
のではない。
As a method of mixing the raw material compounds of copper nitrate, copper chloride, indium nitrate, and lead nitrate, a method of pulverizing and mixing each raw material compound with a ball mill or the like is generally used, but a method for obtaining a uniform aqueous solution is obtained. If so, the method is not particularly limited.

【0015】又、混合水溶液を噴霧化する方法について
も超音波噴霧器に限ったものではなく、スプレー法など
の他の手段を採用することも出来る。
Further, the method of atomizing the mixed aqueous solution is not limited to the ultrasonic atomizer, and other means such as a spray method can be adopted.

【0016】基板の材料についても特に限定はされない
が、例えばサファイア、酸化マグネシウム、チタン酸ス
トロンチウムなどを用いる事ができる。
The material of the substrate is not particularly limited, but sapphire, magnesium oxide, strontium titanate, etc. can be used.

【0017】[0017]

【作用】本発明の製造方法によって得られた導電性セラ
ミックスはそのX線回折スペクトルから、マードカイト
と同様な空間群Fm3mに属する立方晶系であると認め
られる。この結晶においては立方晶の酸素が一部欠損し
たものも含まれ、銅の酸化数は+2〜+3の混合価数で
あると考えられ、これが導電性に寄与すると推定され
る。
The X-ray diffraction spectrum of the conductive ceramics obtained by the manufacturing method of the present invention is recognized to be a cubic system belonging to the space group Fm3m, which is similar to Murdocite. In this crystal, cubic oxygen partially deficient is also included, and the oxidation number of copper is considered to have a mixed valence of +2 to +3, which is presumed to contribute to conductivity.

【0018】このように本発明に従えば硝酸塩や塩化物
といった安価で容易に入手可能な原料を用いて銅酸化物
系導電性セラミックス薄膜を容易に製造することが出来
る。
As described above, according to the present invention, the copper oxide type conductive ceramics thin film can be easily manufactured using inexpensive and easily available raw materials such as nitrates and chlorides.

【0019】なお、前記銅酸化物系導電性セラミックス
中の鉛原子の一部は任意の割合でInで置換することが
可能である。
Incidentally, some of the lead atoms in the copper oxide type conductive ceramics can be replaced with In at an arbitrary ratio.

【0020】この際、本発明によれば金属塩の混合水溶
液を原料とするため、組成の制御が極めて容易であり、
こうすることによりさらに比抵抗値の低い導電性に優れ
たセラミックス薄膜を容易に得ることが出来る。
At this time, according to the present invention, since the mixed aqueous solution of the metal salt is used as the raw material, the composition control is extremely easy,
By doing so, it is possible to easily obtain a ceramic thin film having a lower specific resistance value and excellent conductivity.

【0021】[0021]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples.

【0022】〔実施例1〕硝酸銅三水和物7.824
g、塩化第二銅二水和物1.104g、および硝酸鉛
1.073gとからなる混合物を良く混合し水を加えて
1mol/lの水溶液とした。この水溶液を超音波噴霧
器によりミスト化し、350℃に加熱された電気炉中に
導入し炉内に置かれた酸化マグネシウム基板上に液滴を
堆積させた。
Example 1 Copper nitrate trihydrate 7.824
g, 1.104 g of cupric chloride dihydrate, and 1.073 g of lead nitrate were thoroughly mixed, and water was added to obtain a 1 mol / l aqueous solution. This aqueous solution was made into a mist by an ultrasonic atomizer and introduced into an electric furnace heated to 350 ° C. to deposit droplets on a magnesium oxide substrate placed in the furnace.

【0023】このような処理を5時間行った結果、図1
に示すような立方晶系のX線回折スペクトル(使用管
球:CuKα)を有する銅酸化物系導電性セラミックス
が得られた。このX線回折スペクトルから本実施例によ
りCu6 PbO8 Clが生成したことが確認された。こ
のようにして得られた導電性セラミックスの比抵抗は室
温において1Ω・cmであった。
As a result of performing such processing for 5 hours, FIG.
A copper oxide-based conductive ceramic having a cubic X-ray diffraction spectrum (used tube: CuKα) as shown in (3) was obtained. From this X-ray diffraction spectrum, it was confirmed that Cu 6 PbO 8 Cl was produced in this example. The specific resistance of the conductive ceramics thus obtained was 1 Ω · cm at room temperature.

【0024】〔実施例2〕硝酸銅三水和物7.4g、塩
化第二銅二水和物1.044g、硝酸インジウム三水和
物1.149g、および硝酸鉛0.406gとからなる
混合物を良く混合し水を加えて1mol/lの水溶液と
した。この水溶液を超音波噴霧器によりミスト化し、5
20℃に加熱された電気炉中に導入し炉内に置かれた酸
化マグネシウム基板上に液滴を堆積させた。
Example 2 A mixture consisting of 7.4 g of copper nitrate trihydrate, 1.044 g of cupric chloride dihydrate, 1.149 g of indium nitrate trihydrate and 0.406 g of lead nitrate. Was mixed well and water was added to make a 1 mol / l aqueous solution. This aqueous solution is made into a mist by an ultrasonic atomizer, and 5
Droplets were deposited on a magnesium oxide substrate placed in an electric furnace heated to 20 ° C. and placed in the furnace.

【0025】このような処理を20分行った結果、図2
に示すような立方晶系のX線回折スペクトルを有する銅
酸化物系導電性セラミックスが得られた。このX線回折
スペクトルから本実施例によりCu6 (In0.4 Pb
0.6 )O8 Clが生成したことが確認された。このよう
にして得られた導電性セラミックスの比抵抗は室温にお
いて10mmΩ・cmであった。
As a result of performing such processing for 20 minutes, as shown in FIG.
A copper oxide-based conductive ceramic having a cubic X-ray diffraction spectrum as shown in (3) was obtained. From this X-ray diffraction spectrum, Cu 6 (In 0.4 Pb)
It was confirmed that 0.6 ) O 8 Cl was produced. The specific resistance of the conductive ceramics thus obtained was 10 mmΩ · cm at room temperature.

【0026】[0026]

【発明の効果】以上詳述したとおり、本発明の銅酸化物
系導電性セラミックス薄膜の製造方法によれば従来作成
困難であった、結晶性・均一性に優れた銅酸化物系導電
性セラミックス薄膜を容易に製造することが可能であ
る。
As described above in detail, according to the method for producing a copper oxide type conductive ceramics thin film of the present invention, it is difficult to prepare the copper oxide type conductive ceramics thin film, which is excellent in crystallinity and uniformity. The thin film can be easily manufactured.

【0027】この銅酸化物系導電性セラミックスは、各
種の電極、発熱体原料として好適に適用可能である。し
かして、このような材料の薄膜を安価かつ容易に提供す
る本発明の意義は極めて深いものである。
The copper oxide type conductive ceramics can be suitably applied as various electrodes and raw materials for heating elements. Therefore, the significance of the present invention to provide a thin film of such a material inexpensively and easily is extremely deep.

【0028】[0028]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた銅酸化物系導電性セラミッ
クスのX線回折スペクトルを示すグラフ図である。
FIG. 1 is a graph showing an X-ray diffraction spectrum of a copper oxide-based conductive ceramic obtained in Example 1.

【図2】実施例2で得られた銅酸化物系導電性セラミッ
クスのX線回折スペクトルを示すグラフ図である。
2 is a graph showing an X-ray diffraction spectrum of the copper oxide-based conductive ceramic obtained in Example 2. FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式、Cu6 (Inx Pby )O8-z
l〔但し、x+y=1,0≦x<1,0<y≦1,0≦
z≦1〕で表わされる銅酸化物系導電性セラミックス薄
膜の製造方法であって、硝酸銅、塩化銅、硝酸インジウ
ム、および硝酸鉛とからなる混合物水溶液を300℃〜
550℃に加熱された基板上に噴霧化し、その液滴を堆
積させることを特徴とする銅酸化物系導電性セラミック
ス薄膜の製造方法。
1. A general formula, Cu 6 (In x Pb y ) O 8-z C
l [however, x + y = 1,0 ≦ x <1,0 <y ≦ 1,0 ≦
z ≦ 1], the method for producing a copper oxide-based conductive ceramics thin film, wherein a mixed aqueous solution of copper nitrate, copper chloride, indium nitrate, and lead nitrate is added at 300 ° C.
A method for producing a copper oxide-based conductive ceramic thin film, which comprises atomizing onto a substrate heated to 550 ° C. and depositing the droplets.
JP2522893A 1993-02-15 1993-02-15 Production of copper oxide-based electrically conductive ceramic thin film Pending JPH06239615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2522893A JPH06239615A (en) 1993-02-15 1993-02-15 Production of copper oxide-based electrically conductive ceramic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2522893A JPH06239615A (en) 1993-02-15 1993-02-15 Production of copper oxide-based electrically conductive ceramic thin film

Publications (1)

Publication Number Publication Date
JPH06239615A true JPH06239615A (en) 1994-08-30

Family

ID=12160117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2522893A Pending JPH06239615A (en) 1993-02-15 1993-02-15 Production of copper oxide-based electrically conductive ceramic thin film

Country Status (1)

Country Link
JP (1) JPH06239615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699710A2 (en) 1994-09-01 1996-03-06 Bridgestone Corporation Polymeric reticulated structure and method for making

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699710A2 (en) 1994-09-01 1996-03-06 Bridgestone Corporation Polymeric reticulated structure and method for making

Similar Documents

Publication Publication Date Title
Rao Chemical synthesis of solid inorganic materials
JPH09504500A (en) Chemical vapor deposition process for making superlattice materials
JP2002284525A (en) Solution composition containing metal complex coordinated with specific ligands onto specific metal species, solution composition for producing superconductive film of rare earths, amorphous solid of specific metal complex, method for producing solution containing metal complex coordinated with specific ligands onto specific metal species, method for producing solution for producing superconductive film of rare earths, and method for forming superconductive thin film
Zanetti et al. Preparation and characterization of nanosized SrBi2Nb2O9 powder by the combustion synthesis
JPH06239615A (en) Production of copper oxide-based electrically conductive ceramic thin film
Hong et al. Preparation of Pb (Mg13Nb23) O3 powder using a citrate-gel derived columbite MgNb2O6 precursor and its dielectric properties
Dhage et al. Co-precipitation technique for the preparation of nanocrystalline ferroelectric SrBi2Ta2O9
JP2001233604A (en) Application solution for forming thin oxide film, method for producing the same and method for producing thin oxide film
JP3500787B2 (en) Method for producing bismuth compound and dielectric substance of bismuth compound
JP3163340B2 (en) Method for producing copper oxide-based conductive ceramics
JP3472814B2 (en) Composite oxide with excellent thermoelectric conversion performance
Wang et al. Synthesis of Pb1− xEux (Zr0. 52Ti0. 48) O3 nanopowders by a modified sol–gel process using zirconium oxynitrate source
Dhage et al. A co-precipitation technique for the preparation of ferroelectric BaBi2Ta2O9
JP2979515B2 (en) Copper oxide conductive ceramics and method for producing the same
KR100346900B1 (en) Solution of metal polyoxyalkylated precursors dispersed in octane solvent, process for producing precursor solution and process for producing thin film for integrated circuit using this precursor solution
US6210752B1 (en) All-alkoxide synthesis of strontium-containing metal oxides
JPH02212308A (en) Manufacture of ceramic oxide having supercondctivity
Lee et al. Synthesis of perovskite Pb (Zn1/3Nb2/3) O3 powders via a polymer complex solution route with a large excess of polyethylene glycol
JP2865174B2 (en) Copper oxide conductive compound
JPH0233978B2 (en) HAKUMAKUSENSAASOSHINOSEIZOHO
JP3997295B2 (en) Layered tin oxide and method for producing the same
JPH08183605A (en) Production of metal oxide film by coating
Shaikh et al. Comparative studies on structural and electrical properties of lead titanate synthesized by ceramic and co-precipitation method
JP2002284526A (en) Solution composition containing metal complex coordinated with specific ligands onto specific metal species, solution composition for producing superconductive film of rare earths, amorphous solid of specific metal complex, method for producing solution containing metal complex coordinated with specific ligands onto specific metal species, method for producing solution for producing superconductive film of rare earths, and method for producing superconductive thin film
Sebastian et al. New lithium-ion conducting perovskite oxides related to (Li, La) TiO 3