JPH0233978B2 - HAKUMAKUSENSAASOSHINOSEIZOHO - Google Patents

HAKUMAKUSENSAASOSHINOSEIZOHO

Info

Publication number
JPH0233978B2
JPH0233978B2 JP14201281A JP14201281A JPH0233978B2 JP H0233978 B2 JPH0233978 B2 JP H0233978B2 JP 14201281 A JP14201281 A JP 14201281A JP 14201281 A JP14201281 A JP 14201281A JP H0233978 B2 JPH0233978 B2 JP H0233978B2
Authority
JP
Japan
Prior art keywords
gas
thin film
water vapor
diketone
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14201281A
Other languages
Japanese (ja)
Other versions
JPS5844339A (en
Inventor
Kiichiro Kamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14201281A priority Critical patent/JPH0233978B2/en
Priority to EP81110680A priority patent/EP0055459A1/en
Publication of JPS5844339A publication Critical patent/JPS5844339A/en
Publication of JPH0233978B2 publication Critical patent/JPH0233978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/404Oxides of alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/409Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Thermistors And Varistors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、サーミスターをはじめとする各種セ
ンサーを量産し得る薄膜センサー素子の製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a thin film sensor element that can mass produce various sensors including thermistors.

〔従来の技術〕[Conventional technology]

現在、厚膜または薄膜酸化物半導体を用いたセ
ンサーの製造法としては印刷法やスパツター法に
よる方法が多く用いられているが、前者は工程が
繁雑であり、後者は大量生産向きでないという欠
点を有する。
Currently, printing methods and sputtering methods are often used to manufacture sensors using thick-film or thin-film oxide semiconductors, but the former has the disadvantage that the process is complicated, and the latter is not suitable for mass production. have

まず、現行の厚膜センサーの製造法で広く用ら
られている印刷法の例として、サーミスター作成
工程を見ると、その工程は第1〜3図に示すよう
に単純なものではない。
First, if we look at the thermistor manufacturing process as an example of the printing method that is widely used in the current manufacturing method of thick film sensors, the process is not simple as shown in FIGS. 1 to 3.

即ち、酸化物原料粉末の混合、仮焼、粉砕から
始まる一連のサーミスター粉末の作成工程を経て
(第1図)、 次いでそのサーミスター粉末にRuO2やガラス
フリツト等を混合した後、有機ビヒクルを混練す
サーミスターペースト作成工程を行い(第2図)、 更に、基板上に印刷した電極及びサーミスター
ペーストを最終的に約800℃の高温で焼成して厚
膜サーミスターが完成する(第3図参照)。
That is, after going through a series of thermistor powder production processes starting with mixing, calcination, and pulverization of oxide raw material powder (Figure 1), the thermistor powder is then mixed with RuO 2 , glass frit, etc., and then an organic vehicle is added. The process of kneading the thermistor paste is carried out (Fig. 2), and the electrodes and thermistor paste printed on the substrate are finally fired at a high temperature of about 800°C to complete the thick film thermistor (Fig. 3). (see figure).

以上のような印刷法ではサーミスターの微細化
に限界があり、センサーの利用範囲を狭める結果
になつていると同時に、多岐に亘る製造工程の複
雑さは製造コストの増大をもたらしている。
The printing method described above has a limit to miniaturization of the thermistor, which results in narrowing the scope of use of the sensor, and at the same time, the complexity of the various manufacturing processes results in an increase in manufacturing costs.

また、該方法においては混合、仮焼等の各々の
操作が結果的にサーミスターの特性に微妙な影響
を与えるという管理面からの難しさも否定できな
い。
Further, in this method, it cannot be denied that each operation such as mixing and calcination has a subtle influence on the characteristics of the thermistor, making it difficult to manage.

一方、スパツター法による作成法は、真空下で
行なわれる為、装置の大型化や装置費用の増大を
伴うと同時に大量生産に向かないという大きな欠
点を有している。
On the other hand, since the sputtering method is performed under vacuum, it has the major disadvantage that it increases the size of the equipment and the cost of the equipment, and is not suitable for mass production.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、これらの問題点を解決したもので、
サーミスターをはじめとする各種センサーを量産
し得る薄膜センサー素子の製造法を提供すること
を技術的課題とするものである。
The present invention solves these problems, and
The technical objective is to provide a method for manufacturing thin-film sensor elements that can be used to mass-produce various sensors including thermistors.

〔課題を解決するための手段〕[Means to solve the problem]

添付図面を参照して本発明の要旨を説明する。 The gist of the present invention will be explained with reference to the accompanying drawings.

β−ジケトン金属錯体または金属アルコキシド
を主体とする有機金属化合物の蒸気と、キヤリア
ーガスとしての不活性ガスに前記β−ジケトン金
属錯体または金属アルコキシドに含有される金属
の酸化に必要な酸素を含有する水蒸気とを350℃
以上に加熱した電極に接触させ、該電極表面に単
一又は複合酸化薄膜を被着せしめることを特徴と
する薄膜センサー素子の製造法に係るものであ
る。
The vapor of an organometallic compound mainly consisting of a β-diketone metal complex or a metal alkoxide and an inert gas as a carrier gas contain oxygen necessary for oxidizing the metal contained in the β-diketone metal complex or metal alkoxide. 350℃ with water vapor
The present invention relates to a method for manufacturing a thin film sensor element, which is characterized in that the electrode is brought into contact with the heated electrode and a single or composite oxide thin film is deposited on the surface of the electrode.

〔作用並びに実施例〕[Function and Examples]

発明者が先に発明したβ−ジケトン錯体と水蒸
気を用いた化学気相折出法に基づく酸化物被膜の
製造法に関する特願昭55−189561号によれば、
500℃前後の比較的低温で、従来の化学気相折出
法では不可能であつた酸化物を広範囲に含む各種
酸化物薄膜を容易に生成することが可能である。
According to Japanese Patent Application No. 189561/1989, which relates to a method for producing an oxide film based on a chemical vapor deposition method using a β-diketone complex and water vapor, which the inventor had previously invented,
At a relatively low temperature of around 500°C, it is possible to easily produce various oxide thin films containing a wide range of oxides, which was not possible using conventional chemical vapor deposition methods.

以下に、特願昭55−189561号の大意と関連させ
て本発明を説明する。
The present invention will be explained below in connection with the gist of Japanese Patent Application No. 189561/1982.

発明者は、350〜800℃の比較的低温度で安定に
化学折出を行い得る方法としてβ−ジケトン金属
錯体の不活性キヤリアーガスと水蒸気との反応性
について総合的に検討した。
The inventor comprehensively investigated the reactivity of a β-diketone metal complex with an inert carrier gas and water vapor as a method for stably performing chemical precipitation at a relatively low temperature of 350 to 800°C.

まず、Al、Ti、Ba、Zr、Zn、Mn、Fe、Y、
Euなどの重金属元素のβ−ジケトン錯体の合成
については検討の結果、いずれも280℃以下の温
度で化学折出に使用し得る揮発性を有するβ−ジ
ケトン金属錯体の合成が可能であり、またβ−ジ
ケトン錯体と不活性キヤリアーガスとの混合ガス
に水蒸気を混合し、水蒸気の保有する結合酸素と
β−ジケトンが含有する金属原子が、気相化学蒸
着の対象となる酸化物を形成する当量以上の比率
となる如く混合し、350℃以上に加熱した被膜生
成対象基板に抵触させた場合、殆んど定量的に該
当酸化物が折出することを確認した。
First, Al, Ti, Ba, Zr, Zn, Mn, Fe, Y,
As a result of studies on the synthesis of β-diketone complexes of heavy metal elements such as Eu, it is possible to synthesize β-diketone metal complexes with volatility that can be used for chemical precipitation at temperatures below 280°C. When water vapor is mixed with a mixed gas of a β-diketone complex and an inert carrier gas, the combined oxygen possessed by the water vapor and the metal atom contained in the β-diketone are equivalent to form an oxide to be subjected to vapor phase chemical vapor deposition. It was confirmed that when the mixture was mixed at the above ratio and brought into contact with a substrate to be coated that was heated to 350° C. or higher, the corresponding oxide was precipitated almost quantitatively.

水とβ−ジケトン錯体の反応機構の詳細は未だ
明らかに確認していないがβ−ジケトン金属錯体
が一旦水和物を形成し、その水和物が基板表面で
分解して、目的とする金属酸化物とCO2、水素、
炭化水素に分解し、水蒸気の混合比率が大きな場
合は主としてCO2とH2に分解し、装置や基板な
どの腐蝕の問題はない。
The details of the reaction mechanism between water and the β-diketone complex have not yet been clearly confirmed, but once the β-diketone metal complex forms a hydrate, the hydrate decomposes on the substrate surface, and the target metal Oxides and CO 2 , hydrogen,
It decomposes into hydrocarbons, and when the mixing ratio of water vapor is large, it mainly decomposes into CO 2 and H 2 , so there is no problem of corrosion of equipment or substrates.

更に異なつた金属のβ−ジケトン錯体を予定モ
ル比になる如く、設定温度にそれぞれ加熱し、不
活性ガスをキヤリアーガスとして混合し水蒸気と
上述の基準で反応せしめると希望のモル比をもつ
た複合酸化物を容易に得ることができる。
Furthermore, when β-diketone complexes of different metals are heated to a set temperature so as to have the desired molar ratio, and an inert gas is mixed as a carrier gas and reacted with water vapor according to the above criteria, a complex with the desired molar ratio is obtained. Oxides can be easily obtained.

更に揮発性の高いハロゲン化金属化合物と、ハ
ロゲン化合物としては揮発性が低く化学気相折出
法に使用し得ない対象金属のβ−ジケトン錯体に
ついて、両金属のモル比を必要とするキヤリアー
ガスの存在下で、予定比率として、水蒸気と反応
せしめた場合、これまで充分検討できなつかつた
複合酸化物系について、350〜800℃の低温で殆ん
ど定量的な化学気相折出法による複合酸化物を被
膜としてまた微粉末として作成する事を確認する
ことが出来たのである。
Furthermore, a carrier gas that requires a molar ratio of both metals is used for the highly volatile metal halide compound and the β-diketone complex of the target metal, which has low volatility as a halide compound and cannot be used in chemical vapor deposition. When reacting with water vapor at a predetermined ratio in the presence of We were able to confirm that the composite oxide could be created as a film or as a fine powder.

本発明はこうして得られる酸化物薄膜と電極と
の組み合わせにより、従来の印刷法等に比べ格段
に簡素化された工程によりサーミスターを始めと
する各種センサーの製造を可能とするものであ
る。
By combining the oxide thin film and electrode obtained in this manner, the present invention enables the manufacture of various sensors including thermistors through a process that is much simpler than conventional printing methods.

以下に各種センサーの実施例について説明す
る。
Examples of various sensors will be described below.

実施例 1 亜鉛アセチルアセトンZn(C5H7O22のガスを
約3%含む窒素ガス(窒素ガスはキヤリアーであ
る。)を180ml/minの流速でステンレス製2重管
ノズルへ送り込む。
Example 1 Nitrogen gas containing about 3% of zinc acetylacetone Zn (C 5 H 7 O 2 ) 2 (nitrogen gas is a carrier) is fed into a stainless steel double pipe nozzle at a flow rate of 180 ml/min.

同時に約40%の水蒸気ガスを含む窒素ガス(キ
ヤリアー)を600ml/minの流速で同じノズルへ
送り込む。
At the same time, nitrogen gas (carrier) containing approximately 40% water vapor is sent into the same nozzle at a flow rate of 600ml/min.

錯体ガスと水蒸気ガスのモル比は1/44であ
る。
The molar ratio of complex gas to water vapor gas is 1/44.

くし形白金電極を焼付けたアルミナ基板(1cm
×1.5cm)にノズル中で混合されたガスを吹き付
ける。
Alumina substrate (1cm) with baked platinum comb electrodes
x 1.5cm) with the mixed gas in the nozzle.

この混合ガスの吹き付けの際しては過剰な酸素
をともに吹き付けることが望ましいが、周囲の酸
素だけでも十分である。
When spraying this mixed gas, it is desirable to spray excess oxygen together, but ambient oxygen alone is sufficient.

基板温度は500℃で、折出時間は15分である。 The substrate temperature was 500°C and the deposition time was 15 minutes.

作成されたZnO薄膜センサーはプロパンガス
0.1%の条件下で代表的な電流検出法(電源電圧
2V、負荷抵抗1KΩ)により測定された。
The created ZnO thin film sensor uses propane gas
Typical current detection method under 0.1% condition (supply voltage
2V, load resistance 1KΩ).

これを第4図に示す。 This is shown in FIG.

実施例 2 コバルトアセチルアセトンCo(C5H7O22の昇
華性ガスを約2%含む窒素ガス(キヤリアー)を
180ml/minの流速でノズルへ送り込む。
Example 2 Nitrogen gas (carrier) containing about 2% sublimable gas of cobalt acetylacetone Co(C 5 H 7 O 2 ) 2
Feed into the nozzle at a flow rate of 180ml/min.

同時に、約40%の水蒸気ガスを含む窒素ガス
(キヤリアー)を300ml/minの流速で同じノズル
へ送り込む。
At the same time, nitrogen gas (carrier) containing about 40% water vapor is sent into the same nozzle at a flow rate of 300ml/min.

錯体ガスと水蒸気ガスのモル比は1/33であ
る。
The molar ratio of complex gas to water vapor gas is 1/33.

くし形白金電極を焼付けたアルミナ基板(1cm
×1.5cm)にノズル中で混合されたガスを吹き付
ける。
Alumina substrate (1cm) with baked platinum comb electrodes
x 1.5cm) with the mixed gas in the nozzle.

この混合ガスの吹き付けに際しては過剰な酸素
をともに吹き付けることが望ましいが、周囲の酸
素だけでも十分である。
When spraying this mixed gas, it is desirable to spray excess oxygen together, but ambient oxygen alone is sufficient.

基板温度は500℃で折出時間は20分である。 The substrate temperature was 500°C and the deposition time was 20 minutes.

作成されたCoO薄膜センサーの1000℃における
抵抗と酸素分圧の関係は第5図のようにあつた。
The relationship between the resistance and oxygen partial pressure of the prepared CoO thin film sensor at 1000°C was as shown in Figure 5.

実施例 3 ニツケルアセチルアセトンNi(C2H7O22の昇
華性ガスを約3%含む流速180ml/minの窒素ガ
ス(キヤリアー)とリチウムアセチルアセトンLi
(C2H7O2)の昇華性ガスを約3%含む流速60ml/
minの窒素ガスとを混合してノズルへ送り込む。
Example 3 Nitrogen gas (carrier) containing approximately 3% sublimable gas of nickel acetylacetone Ni (C 2 H 7 O 2 ) 2 at a flow rate of 180 ml/min and lithium acetylacetone Li
(C 2 H 7 O 2 ) containing approximately 3% sublimable gas at a flow rate of 60 ml/
Mix with min nitrogen gas and send it to the nozzle.

同時に、約40%no水蒸気ガスを含む窒素ガス
(キヤリアー)を600ml/minの流速で同じノズル
へ送り込む。
At the same time, nitrogen gas (carrier) containing about 40% NO water vapor gas is sent into the same nozzle at a flow rate of 600ml/min.

ニツケルアセチルアセトンガスとリチウムアセ
チルアセトンガス水蒸気ガスとのモル比はそれぞ
れ3:1:1.33である。
The molar ratio of nickel acetylacetone gas, lithium acetylacetone gas and steam gas was 3:1:1.33, respectively.

くし形銀電極を焼付けたアルミナ基板(1cm×
1.5cm)にノズル中で混合したガスを吹き付ける。
Alumina substrate with baked comb-shaped silver electrodes (1 cm x
1.5cm) with the mixed gas in the nozzle.

この混合ガスの吹き付けに際しては過剰な酸素
を吹き付けることが望ましいが、周囲の酸素だけ
でも十分である。
When spraying this mixed gas, it is desirable to spray excess oxygen, but ambient oxygen alone is sufficient.

基板温度は500℃で、折出時間は30分であつた。 The substrate temperature was 500°C and the deposition time was 30 minutes.

作成されたNio−Li2O系薄膜センサーの温度と
抵抗の関係は第6図のようであつた。
The relationship between temperature and resistance of the produced Nio-Li 2 O thin film sensor was as shown in Figure 6.

実施例 4 化学気相折出によりアルミナ基板(1cm×1.5
cm×0.8mm厚)の片面にガスセンサーとしての酸
化スズ薄折出させ、他の面にヒーターとしての酸
化ルテニウム薄膜をそれぞれ折出させ、次いで両
面に平行白金電極を施して酸化物薄膜ガスセンサ
ーを作成した。
Example 4 An alumina substrate (1 cm x 1.5
cm x 0.8 mm thick), a thin film of tin oxide as a gas sensor is deposited on one side, a thin film of ruthenium oxide as a heater is deposited on the other side, and then parallel platinum electrodes are applied to both sides to form an oxide thin film gas sensor. It was created.

まず、スズイソプロポキシド8n(OC3H74のガ
スを約3%含む流速180/minの窒素ガスとトリ
ウムアセチルアセトンTh(C5H7O24のガスを約
2%含む流速30ml/minの窒素ガスとを混合して
ノズルへ送り込む。
First, nitrogen gas containing about 3% tin isopropoxide 8n (OC 3 H 7 ) 4 at a flow rate of 180/min and 30 ml containing about 2% thorium acetylacetone Th (C 5 H 7 O 2 ) 4 gas at a flow rate of 180/min. /min of nitrogen gas and send it to the nozzle.

同時に、約40%の水蒸気ガスを含む窒素ガス
(キヤリアー)を600ml/minの流速で同じノズル
へ送り込む。
At the same time, nitrogen gas (carrier) containing approximately 40% water vapor is sent into the same nozzle at a flow rate of 600 ml/min.

ノズル中で混合されたガスをアルミナ基板の表
面に吹き付け、トリア含有酸化スズ薄膜を作成し
た。
The gases mixed in the nozzle were sprayed onto the surface of the alumina substrate to create a thoria-containing tin oxide thin film.

次いで、アルミナ基板のもう一方の面に、ルテ
ニウムイソプロポキシドRu(OC3H74ガスと水蒸
気ガスを用いて上記と同様な方法で酸化ルテニウ
ム薄膜を作成した。
Next, a ruthenium oxide thin film was formed on the other surface of the alumina substrate in the same manner as above using ruthenium isopropoxide Ru(OC 3 H 7 ) 4 gas and water vapor gas.

更に、これらの両面の酸化物薄膜にそれぞれ平
行形白金電極を焼付けて薄膜ガスセンサーを作成
した。
Further, parallel platinum electrodes were baked onto each of the oxide thin films on both sides to create a thin film gas sensor.

作成したセンサーの構造は第7図のようであつ
た。
The structure of the created sensor was as shown in Figure 7.

第7図中、符号1は基板、符号2a,2bは電
極、符号3は酸化スズ薄膜、符号4はヒータ
(RuO2抵抗体)である。
In FIG. 7, reference numeral 1 is a substrate, 2a and 2b are electrodes, 3 is a tin oxide thin film, and 4 is a heater (RuO 2 resistor).

〔発明の効果〕〔Effect of the invention〕

本発明は、従来のセンサー作成法に比して次の
ような特長を有する。
The present invention has the following features compared to conventional sensor manufacturing methods.

本発明は電極に直接ガスを吹き付けるだけで
電極上に酸化物薄膜を生成せしめる方法である
から従来のように原料を焼成したり粉砕した
り、混練したり、前処理として調製したりする
ような厄介な工程は全く不要となる。
Since the present invention is a method of forming an oxide thin film on an electrode by simply blowing gas directly onto the electrode, it does not require the conventional method of firing, pulverizing, kneading, or preparing raw materials as a pretreatment. Troublesome processes are completely unnecessary.

本発明は各原料から発生する錯体ガスを水蒸
気と混合させ、そのまま水蒸気と反応させて電
極上に酸化物薄膜を形成させる方法を採用して
いる為、微細かつ均一な組織を持つた薄膜酸化
物が生成され、非常にセンサー性能の秀れた薄
膜センサー素子が得られることになる。
The present invention employs a method in which the complex gases generated from each raw material are mixed with water vapor and directly reacted with the water vapor to form a thin oxide film on the electrode, resulting in a thin oxide film with a fine and uniform structure. is produced, resulting in a thin film sensor element with extremely excellent sensor performance.

本発明は、原料ガスを混合し、この混合ガス
を加熱するだけの簡単な工程で、即ち化学気相
折出法の作用により酸化物薄膜を生成する方法
を採用するから大気圧開放下で生成することが
可能であり、従来法に比して効率的に而かも安
価に薄膜センサー素子を量産し得ることにな
る。
The present invention employs a method of generating an oxide thin film through a simple process of mixing raw material gases and heating this mixed gas, that is, through the action of chemical vapor deposition, and is therefore generated under atmospheric pressure. This makes it possible to mass-produce thin film sensor elements more efficiently and at lower cost than conventional methods.

このように本発明は在来の印刷法等によるセン
サーの製造法に比べ格段に秀れた特長を有するも
のである。
As described above, the present invention has features that are significantly superior to conventional sensor manufacturing methods such as printing methods.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すものにして、第
1図はサーミスター粉末の作成工程、第2図はサ
ーミスターペーストの作成工程、第3図は厚膜サ
ーミスターの作成工程、第4図は検出感度と温度
との関係図、第5図は1000℃における抵抗と酸素
分圧の関係図、第6図はNiO−Li2O系センサー
の温度と抵抗の関係図、第7図は酸化スズガスセ
ンサーの構造図である。
The drawings show one embodiment of the present invention, and FIG. 1 shows the thermistor powder manufacturing process, FIG. 2 the thermistor paste manufacturing process, FIG. 3 the thick film thermistor manufacturing process, and FIG. The figure shows the relationship between detection sensitivity and temperature, Figure 5 shows the relationship between resistance and oxygen partial pressure at 1000℃, Figure 6 shows the relationship between temperature and resistance of NiO-Li 2 O sensor, and Figure 7 shows the relationship between resistance and oxygen partial pressure at 1000℃. FIG. 2 is a structural diagram of a tin oxide gas sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 β−ジケトン金属錯体または金属アルコキシ
ドを主体とする有機金属化合物の蒸気と、キヤリ
アーガスとしての不活性ガスに前記β−ジケトン
金属錯体または金属アルコキシドに含有される金
属の酸化に必要な酸素を含有する水蒸気とを350
℃以上に加熱した電極に接触させ、該電極表面に
単一又は複合酸化薄膜を被着せしめることを特徴
とする薄膜センサー素子の製造法。
1. Steam of an organometallic compound mainly consisting of a β-diketone metal complex or metal alkoxide and an inert gas as a carrier gas containing oxygen necessary for oxidation of the metal contained in the β-diketone metal complex or metal alkoxide. water vapor and 350
1. A method for producing a thin film sensor element, which comprises bringing the element into contact with an electrode heated to a temperature of 0.degree. C. or higher, and depositing a single or composite oxide thin film on the surface of the electrode.
JP14201281A 1980-12-29 1981-09-09 HAKUMAKUSENSAASOSHINOSEIZOHO Expired - Lifetime JPH0233978B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14201281A JPH0233978B2 (en) 1981-09-09 1981-09-09 HAKUMAKUSENSAASOSHINOSEIZOHO
EP81110680A EP0055459A1 (en) 1980-12-29 1981-12-22 Process for producing oxides using chemical vapour deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14201281A JPH0233978B2 (en) 1981-09-09 1981-09-09 HAKUMAKUSENSAASOSHINOSEIZOHO

Publications (2)

Publication Number Publication Date
JPS5844339A JPS5844339A (en) 1983-03-15
JPH0233978B2 true JPH0233978B2 (en) 1990-07-31

Family

ID=15305318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14201281A Expired - Lifetime JPH0233978B2 (en) 1980-12-29 1981-09-09 HAKUMAKUSENSAASOSHINOSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0233978B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277730A (en) * 1987-12-16 1994-01-11 At&T Bell Laboratories Methods of recoating spliced lengths of optical fibers
JP3218821B2 (en) * 1993-09-10 2001-10-15 エヌオーケー株式会社 Gas detection element
KR100946701B1 (en) * 2007-12-10 2010-03-12 한국전자통신연구원 Nano-crystalline Composite Oxides Thin Films, Enviromental Gas Sensors Using the Film and Method for Preparing the Sensors
JP5786320B2 (en) * 2010-11-29 2015-09-30 Tdk株式会社 Thermistor, temperature sensor and gas sensor

Also Published As

Publication number Publication date
JPS5844339A (en) 1983-03-15

Similar Documents

Publication Publication Date Title
EP0055459A1 (en) Process for producing oxides using chemical vapour deposition
TW200424338A (en) Method for metal oxide thin film deposition via MOCVD
US4504522A (en) Method of making a titanium dioxide oxygen sensor element by chemical vapor deposition
WO1984003003A1 (en) Thin-film dielectric and process for its production
Zhang et al. A high growth rate atomic layer deposition process for nickel oxide film preparation using a combination of nickel (II) diketonate–diamine and ozone
US6096285A (en) Indium tin oxide fine powder and method for preparing the same
CN104160456B (en) The forming method of conductive film
JPH0233978B2 (en) HAKUMAKUSENSAASOSHINOSEIZOHO
US3019137A (en) Method of manufacturing electrical resistances and articles resulting therefrom
JPS62112788A (en) High temperature shield layer of structural member and its production
Lu et al. Improved Nb–substituted La0. 5Sr0. 5CoO3 ceramics as new and low–cost functional materials for thick–film resistors
WO2022249591A1 (en) Sputtering target and method for forming cesium tungsten oxide film
Martinez et al. The deposition of α–Fe2O3 by aerosol chemical vapor deposition
US3677975A (en) Preparation of solid solutions of metallic oxide mixtures by flame-spraying
JPH031813B2 (en)
Jones et al. Crystal structure of a strontium–tantalum and a magnesium–niobium heterometal alkoxide: precursors for the MOCVD of ferroelectric oxides
Senzaki et al. Preparation of metal ruthenates by spray pyrolysis
JP3211473B2 (en) Electrode for solid electrolyte and method for producing the same
WO1986004362A1 (en) Process for forming thin metal sulfide film
US3414371A (en) Low pressure synthesis of electrically conductive platinum cobalt oxide from a platinum halide and an oxide containing cobalt
Shahid et al. Fabrication of copper–zinc oxide composite thin films from single source precursor by aerosol assisted chemical vapour deposition
JPH085591A (en) Gas sensor and its manufacture
JPS60217619A (en) Manufacture of rigid magnetic film
KR20150126800A (en) Composition comprising metal precursor ink for producing metal precursor powder and metal precursor powder
JPS62197755A (en) Manufacture of oxide semiconductor thin film for gas sensor