JP3211473B2 - Electrode for solid electrolyte and method for producing the same - Google Patents

Electrode for solid electrolyte and method for producing the same

Info

Publication number
JP3211473B2
JP3211473B2 JP09526793A JP9526793A JP3211473B2 JP 3211473 B2 JP3211473 B2 JP 3211473B2 JP 09526793 A JP09526793 A JP 09526793A JP 9526793 A JP9526793 A JP 9526793A JP 3211473 B2 JP3211473 B2 JP 3211473B2
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
substrate
iridium
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09526793A
Other languages
Japanese (ja)
Other versions
JPH06290789A (en
Inventor
山地  正矩
実 水谷
寿 塚本
田中  義則
敏雄 平井
孝 後藤
ロバート バルガス ガルシア ジョージ
Original Assignee
日本電池株式会社
敏雄 平井
孝 後藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社, 敏雄 平井, 孝 後藤 filed Critical 日本電池株式会社
Priority to JP09526793A priority Critical patent/JP3211473B2/en
Publication of JPH06290789A publication Critical patent/JPH06290789A/en
Application granted granted Critical
Publication of JP3211473B2 publication Critical patent/JP3211473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池および酸素セ
ンサー等に適用される酸素イオン伝導性の固体電解質用
電極およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen ion-conductive solid electrolyte electrode applied to a fuel cell, an oxygen sensor and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】酸素イオン伝導性の固体電解質として、
酸化ジルコニウムに酸化カルシウムまたは酸化イットリ
ウム等を固溶させた材料が、一般に安定化ジルコニアと
して用いられている。
2. Description of the Related Art As an oxygen ion conductive solid electrolyte,
A material in which calcium oxide, yttrium oxide, or the like is dissolved in zirconium oxide is generally used as stabilized zirconia.

【0003】これらの固体電解質の作動温度は高いた
め、電極材料として白金,ニッケルおよびペロブスカイ
ト型酸化物等( LaCoO3 等)が用いられている。
Since the operating temperatures of these solid electrolytes are high, platinum, nickel, perovskite oxides (LaCoO 3 etc.) are used as electrode materials.

【0004】これらの電極材料を用いて、固体電解質基
板上に電極を形成する方法として、焼結,CVDおよび
溶射等が行なわれている。
[0004] As a method of forming an electrode on a solid electrolyte substrate using these electrode materials, sintering, CVD, thermal spraying and the like are performed.

【0005】[0005]

【発明が解決しようとする課題】従来から固体電解質と
して用いられている安定化ジルコニアは、高い酸素イオ
ン伝導を得るために1000℃程度で作動させる必要があ
る。
The stabilized zirconia conventionally used as a solid electrolyte must be operated at about 1000 ° C. in order to obtain high oxygen ion conductivity.

【0006】従って、安定化ジルコニアを燃料電池や酸
素センサーに使用する場合、電極および構成材料に耐熱
性が要求され、信頼性や経済性等において課題があっ
た。
Therefore, when using stabilized zirconia for a fuel cell or an oxygen sensor, heat resistance is required for the electrodes and constituent materials, and there have been problems in reliability, economy and the like.

【0007】この課題を改善するために 600℃以下の温
度で作動させることが要求されるが、この場合には、固
体電解質の酸素イオン伝導の低下および電極界面抵抗が
著しく増加するという問題があった。
In order to solve this problem, it is required to operate at a temperature of 600 ° C. or less. However, in this case, there is a problem that the oxygen ion conduction of the solid electrolyte is reduced and the electrode interface resistance is significantly increased. Was.

【0008】本発明では、上記の問題における電極界面
抵抗の増加を抑制し、電極界面反応を極めて容易に進行
させる電極を提供することを目的とする。
[0008] It is an object of the present invention to provide an electrode which suppresses an increase in the electrode interface resistance in the above-mentioned problem and makes the electrode interface reaction proceed very easily.

【0009】[0009]

【課題を解決するための手段】本発明は、酸素イオン伝
導性の固体電解質基板上に、有機金属CVD法(MOC
VD法)によってイリジウム電極を形成するものであ
る。
SUMMARY OF THE INVENTION According to the present invention, a metal organic chemical vapor deposition (MOC) method is provided on an oxygen ion conductive solid electrolyte substrate.
(VD method) to form an iridium electrode.

【0010】有機金属CVD法とは、原料として有機金
属を使用したCVD法である。
[0010] The organic metal CVD method is a CVD method using an organic metal as a raw material.

【0011】ここにCVD(chemical vapor depositio
n)法とは、反応系分子の気体あるいはこれと不活性の担
体との混合気体を、加熱した基板上に流し、加水分解,
自己分解,光分解,酸化還元,置換等の反応による生成
物を基板上に蒸着させる方法をいう。
Here, CVD (chemical vapor depositio)
The n) method is a method in which a gas of a reaction system molecule or a mixed gas of the reaction system molecule and an inert carrier is flowed over a heated substrate, and hydrolysis,
It refers to a method of depositing a product resulting from a reaction such as self-decomposition, photolysis, oxidation-reduction, or substitution on a substrate.

【0012】[0012]

【作用】本発明では、従来よりも低い温度において、電
極界面抵抗を著しく低下させることが可能になる。すな
わち、作動温度を下げることによる特性の低下が抑制さ
れるために作動温度を下げることが可能となった。
According to the present invention, it is possible to remarkably reduce the electrode interface resistance at a lower temperature than in the prior art. That is, it is possible to lower the operating temperature because the deterioration of the characteristics due to the lowering of the operating temperature is suppressed.

【0013】従って、従来では電極および構成材料に高
い耐熱性が求められていたが、作動温度の低下によって
使用する材料の制約が低減され、信頼性および経済性等
が改善される。
Therefore, conventionally, high heat resistance has been required for the electrodes and the constituent materials. However, the restriction on the materials to be used is reduced due to the lowering of the operating temperature, and the reliability and economy are improved.

【0014】[0014]

【実施例】以下本発明を実施例に基づき詳細に説明す
る。 [実施例]本発明による電極を以下のようにして製作し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments. [Example] An electrode according to the present invention was manufactured as follows.

【0015】イリジウムアセチル、アセトネートを原料
として、これを 180℃で気化し、アルゴンガスで搬送
し、イットリウム安定化ジルコニア(YSZ)基板上に
イリジウムを堆積させて電極が得られた。合成装置を図
1に示す。
Using iridium acetyl and acetonate as raw materials, this was vaporized at 180 ° C., transported with argon gas, and iridium was deposited on a yttrium-stabilized zirconia (YSZ) substrate to obtain an electrode. The synthesis device is shown in FIG.

【0016】最も優れた特性を示す電極が得られた条件
を以下に示す。
The conditions under which the electrode exhibiting the most excellent characteristics was obtained are shown below.

【0017】原料温度 : 150 −300 ℃ 基板温度 : 400 −800 ℃ 炉内全圧力 : 2 −100torr 原料アルゴンガス流量 : 50cm3 /min [比較例1]実施例1のイリジウムアセチルアセトネー
トの変わりに白金アセチルアセトネートを用いた以外は
同様にして、YSZ基板上に白金電極が得られた。 [比較例2]YSZ基板上に白金超微粉末を含むペース
トを塗布し、熱処理を行なって白金電極が得られた。
Material temperature: 150-300 ° C. Substrate temperature: 400-800 ° C. Furnace total pressure: 2-100 torr Material argon gas flow rate: 50 cm 3 / min [Comparative Example 1] Instead of iridium acetylacetonate of Example 1 A platinum electrode was obtained on a YSZ substrate in the same manner except that platinum acetylacetonate was used. [Comparative Example 2] A paste containing ultrafine platinum powder was applied on a YSZ substrate and heat-treated to obtain a platinum electrode.

【0018】図2に、これらの電極を用いて交流インピ
ーダンス解析を行なったときの結果を示す。この図か
ら、ほぼ2つの半円があることがわかる。原点付近の小
さな半円は電極の種類によらないものでYSZのバルク
の伝導度である。他方の半円は電極の種類に大きく依存
し、電極界面抵抗に起因するものである。比較例1,2
の電極には、大きい半円が認められ、界面抵抗が大きい
ことがわかる。しかし、本発明による実施例の電極に
は、界面抵抗の半円がほとんど認められず、電極界面反
応が極めて容易に進行していることがわかる。
FIG. 2 shows the results obtained when an AC impedance analysis was performed using these electrodes. From this figure, it can be seen that there are almost two semicircles. The small semicircle near the origin is independent of the type of electrode and is the bulk conductivity of YSZ. The other semicircle greatly depends on the type of electrode and is caused by the electrode interface resistance. Comparative Examples 1 and 2
A large semicircle is recognized in the electrode of, indicating that the interface resistance is large. However, in the electrodes of the examples according to the present invention, a semicircle of the interface resistance was hardly recognized, indicating that the electrode interface reaction proceeded extremely easily.

【0019】図3には、各種電極の電極界面抵抗成分に
ついてのみまとめたものである。 600℃以下の温度範囲
において、本発明による実施例が非常に高い界面伝導度
を有していることがわかる。
FIG. 3 summarizes only the electrode interface resistance components of various electrodes. It can be seen that in the temperature range below 600 ° C., the examples according to the invention have a very high interfacial conductivity.

【0020】なお、上記実施例ではイリジウムアセチル
アセトネートを原料として使用したが、他のイリジウム
の有機金属(アリルイリジウム等)を使用しても同様な
結果が得られる。
In the above embodiment, iridium acetylacetonate was used as a raw material. However, similar results can be obtained by using other iridium organic metals (such as allyl iridium).

【0021】[0021]

【発明の効果】以上詳述したように、本発明によれば従
来よりも低温で固体電解質が作動する。よって本発明を
燃料電池や酸素センサー等に応用すれば、従来よりも低
い温度で作動し、限界電流密度を大きくすることや電圧
を高くすることが可能となる。また、従来では電極およ
び構成材料に高い耐熱性が求められていたが、作動温度
の低下によって使用する材料の制約が低減され、信頼性
および経済性等を改善することができる。
As described in detail above, according to the present invention, the solid electrolyte operates at a lower temperature than in the prior art. Therefore, if the present invention is applied to a fuel cell, an oxygen sensor, or the like, it is possible to operate at a lower temperature than before, to increase the limit current density, and to increase the voltage. Conventionally, high heat resistance has been required for the electrodes and the constituent materials. However, the restriction on the materials to be used due to the lowering of the operating temperature can be reduced, and the reliability and economy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による固体電解質用電極の形成
に用いられる製造装置を示した図。
FIG. 1 is a view showing a manufacturing apparatus used for forming an electrode for a solid electrolyte according to an embodiment of the present invention.

【図2】本発明による電極と比較例による電極の交流イ
ンピーダンス解析を行なった結果を示した図。
FIG. 2 is a diagram showing the results of AC impedance analysis of the electrode according to the present invention and the electrode according to a comparative example.

【図3】本発明による電極と比較例による電極の電極界
面抵抗成分についてまとめた図。
FIG. 3 is a diagram summarizing electrode interface resistance components of an electrode according to the present invention and an electrode according to a comparative example.

【符号の説明】[Explanation of symbols]

1 ヒーター 2 石英管, 3 石英皿 4 有機金属粉末 5 リボンヒーター 6 基板ホルダー 7 基板 8 ニードルバルブ 9 フランジ 10 熱電対 11 シール DESCRIPTION OF SYMBOLS 1 Heater 2 Quartz tube, 3 Quartz dish 4 Organometallic powder 5 Ribbon heater 6 Substrate holder 7 Substrate 8 Needle valve 9 Flange 10 Thermocouple 11 Seal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚本 寿 京都市南区吉祥院西ノ庄猪之馬場町1番 地 日本電池株式会社内 (72)発明者 田中 義則 京都市南区吉祥院西ノ庄猪之馬場町1番 地 日本電池株式会社内 (72)発明者 平井 敏雄 宮城県仙台市泉区高森3丁目4−91 (72)発明者 後藤 孝 宮城県仙台市太白区郡山6丁目5−8− 205 (72)発明者 ジョージ ロバート バルガス ガルシ ア 宮城県仙台市青葉区片平2丁目1−1 東北大学金属材料研究所内 審査官 高木 康晴 (56)参考文献 特開 昭49−76038(JP,A) 特開 昭54−39835(JP,A) 特開 平1−227362(JP,A) 特開 平5−41217(JP,A) 特開 平5−174833(JP,A) 特開 平5−270955(JP,A) 特開 平6−256076(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 H01M 8/02 H01M 8/12 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor, Hisashi Tsukamoto No. 1, Nishino-sho, Ino Babacho, Kichijo-in, Minami-ku, Kyoto Inside Nippon Battery Co., Ltd. (72) Inventor, Yoshinori Tanaka, Yoshinori, Tadashi No. 1, Nobaba-cho Within Nihon Battery Co., Ltd. (72) Inventor Toshio Hirai 3-4-91, Takamori, Izumi-ku, Sendai, Miyagi Prefecture (72) Inventor Takashi Goto 6-5-8, Koriyama, Taishiro-ku, Sendai City, Miyagi Prefecture 205 (72) Inventor George Robert Vargas Garcia 2-1-1 Katahira, Aoba-ku, Sendai City, Miyagi Prefecture Examiner, Institute of Metals, Tohoku University Yasuharu Takagi (56) References JP-A-49-76038 (JP, A) JP-A-54-39835 (JP, A) JP-A-1-227362 (JP, A) JP-A-5-41217 (JP, A) JP-A-5-174833 (JP, A) JP-A-5-270955 (JP, A) JP, ) Patent flat 6-256076 (JP, A) (58 ) investigated the field (Int.Cl. 7, DB name) H01M 4/86 H01M 8/02 H01M 8/12

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸素イオン伝導性の固体電解質基板上に、
有機金属CVD法によりイリジウム電極を形成してなる
固体電解質用電極。
1. An oxygen ion conductive solid electrolyte substrate comprising:
An electrode for a solid electrolyte formed by forming an iridium electrode by an organic metal CVD method.
【請求項2】酸素イオン伝導性の固体電解質基板上に、
有機金属CVD法によりイリジウム電極を形成すること
を特徴とする固体電解質用電極の製造方法。
2. An oxygen ion-conductive solid electrolyte substrate comprising:
A method for producing an electrode for a solid electrolyte, comprising forming an iridium electrode by an organometallic CVD method.
【請求項3】原料としてイリジウムアセチルアセトネー
トを使用し、これを気化し不活性ガスで搬送して、上記
固体電解質である安定化ジルコニア基板上にイリジウム
電極を形成することを特徴とする固体電解質用電極の製
造方法。
3. A solid electrolyte, wherein iridium acetylacetonate is used as a raw material, which is vaporized and conveyed by an inert gas to form an iridium electrode on the stabilized zirconia substrate as the solid electrolyte. Method of manufacturing electrodes.
JP09526793A 1993-03-30 1993-03-30 Electrode for solid electrolyte and method for producing the same Expired - Fee Related JP3211473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09526793A JP3211473B2 (en) 1993-03-30 1993-03-30 Electrode for solid electrolyte and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09526793A JP3211473B2 (en) 1993-03-30 1993-03-30 Electrode for solid electrolyte and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06290789A JPH06290789A (en) 1994-10-18
JP3211473B2 true JP3211473B2 (en) 2001-09-25

Family

ID=14132997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09526793A Expired - Fee Related JP3211473B2 (en) 1993-03-30 1993-03-30 Electrode for solid electrolyte and method for producing the same

Country Status (1)

Country Link
JP (1) JP3211473B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271077B1 (en) 1995-03-27 2001-08-07 Fujitsu Limited Thin film deposition method, capacitor device and method for fabricating the same, and semiconductor device and method for fabricating the same
US5874364A (en) * 1995-03-27 1999-02-23 Fujitsu Limited Thin film deposition method, capacitor device and method for fabricating the same, and semiconductor device and method for fabricating the same
JP4603084B2 (en) * 2009-03-19 2010-12-22 株式会社フルヤ金属 Electrode for solid electrolyte

Also Published As

Publication number Publication date
JPH06290789A (en) 1994-10-18

Similar Documents

Publication Publication Date Title
EP0180289B1 (en) High temperature solid electrolyte electrochemical cells
EP0188056A1 (en) High temperature solid electrolyte electrochemical cells
US4851303A (en) Solid compositions for fuel cells, sensors and catalysts
White et al. Perovskite anode electrocatalysis for direct methanol fuel cells
US4861345A (en) Method of bonding a conductive layer on an electrode of an electrochemical cell
JPS61225778A (en) Manufacture of electrode
US5134042A (en) Solid compositions for fuel cells, sensors and catalysts
EP3099836B1 (en) A method of producing sofc cathode diffusion barrier layer and a sofc
US4598467A (en) Protective interlayer for high temperature solid electrolyte electrochemical cells
KR20110074528A (en) Electrolyte for an sofc battery, and method of making same
US20020122967A1 (en) Method for manufacturing a single high-temperature fuel cell and its components
Choy et al. Fabrication of cathode for solid oxide fuel cells using flame assisted vapour deposition technique
Wang et al. Deposition, Structure, and Properties of Cermet Thin Films Composed of Ag and Y‐Stabilized Zirconia
Zscherp et al. Epitaxial growth and structural characterization of ceria deposited by atomic layer deposition on high-surface porous yttria-stabilized zirconia thin films
NO960616L (en) Process for Preparing an Electrode Layer on a Solid Oxidic Electrolyte in a Solid Fuel Cell
JP3211473B2 (en) Electrode for solid electrolyte and method for producing the same
KR102105763B1 (en) A Fabrication Method of Combustion Waves Based Palladium Oxides Composites And A Fabrication Method of pH Sensor
RU2125324C1 (en) Method for producing single high-temperature fuel element and its components: cathode, electrolyte, anode, current duct, interface and insulating layers
US4692274A (en) Protective interlayer for high temperature solid electrolyte electrochemical cells
Van Dieten et al. Thin film techniques for solid oxide fuel cells
Rij et al. A novel Ni-CERMET electrode based on a proton conducting electrolyte
KR102294730B1 (en) Method for manufacturing fuel cell separator
Goto et al. Electrochemical properties of iridium-carbon nano composite films prepared by MOCVD
JP3236860B2 (en) Manufacturing method of thermal infrared sensor
Song et al. Deposition of Y2O3 stabilized ZrO2 thin films from Zr (DPM) 4 and Y (DPM) 3 by aerosol-assisted MOCVD

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees