JP4603084B2 - Electrode for solid electrolyte - Google Patents

Electrode for solid electrolyte Download PDF

Info

Publication number
JP4603084B2
JP4603084B2 JP2009067599A JP2009067599A JP4603084B2 JP 4603084 B2 JP4603084 B2 JP 4603084B2 JP 2009067599 A JP2009067599 A JP 2009067599A JP 2009067599 A JP2009067599 A JP 2009067599A JP 4603084 B2 JP4603084 B2 JP 4603084B2
Authority
JP
Japan
Prior art keywords
electrode
ruthenium
ruthenium oxide
solid electrolyte
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009067599A
Other languages
Japanese (ja)
Other versions
JP2009186482A (en
Inventor
宗 鈴木
迪夫 山田
孝 後藤
禎一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuya Metal Co Ltd
Original Assignee
Furuya Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuya Metal Co Ltd filed Critical Furuya Metal Co Ltd
Priority to JP2009067599A priority Critical patent/JP4603084B2/en
Publication of JP2009186482A publication Critical patent/JP2009186482A/en
Application granted granted Critical
Publication of JP4603084B2 publication Critical patent/JP4603084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、燃料電池および酸素センサー等に適用される酸素イオン伝導性の固体電解質用電極に関するものである。 The present invention relates to an oxygen ion conductive electrode for solid electrolyte applied to a fuel cell, an oxygen sensor and the like.

酸素イオン伝導性の固体電解質として、酸化ジルコニウムに酸化カルシウムまたは酸化イットリウム等の安定化剤を固溶させた材料が、一般に安定化ジルコニアとして用いられている。   As an oxygen ion conductive solid electrolyte, a material in which a stabilizer such as calcium oxide or yttrium oxide is dissolved in zirconium oxide is generally used as stabilized zirconia.

これらの固体電解質の作動温度は高いため、固体電解質型酸素センサーの電極材料には、高い伝導率と高い耐食性、酸素分子の解離反応に対する触媒活性をもつことが要求され、現在は白金などの貴金属が用いられている。   Since the operating temperature of these solid electrolytes is high, the electrode materials for solid electrolyte oxygen sensors are required to have high conductivity, high corrosion resistance, and catalytic activity for the dissociation reaction of oxygen molecules. Currently, noble metals such as platinum are used. Is used.

それに対して、酸化ルテニウム(RuO)は電子伝導性を持つ金属酸化物であり、高い伝導率(〜10S/cm)と触媒活性を持つことから、新しい酸素センサー用電極として期待される。ここで、固体電解質型酸素センサーの電極として酸化ルテニウムを用いた例としては、特許文献1(特開平8−122297号公報)に開示されている。本公報では、内側電極として酸化ルテニウムを使用している。そして、酸化ルテニウムをペーストにして高温で加熱焼付けを行なって電極を形成させる。 On the other hand, ruthenium oxide (RuO 2 ) is a metal oxide having electronic conductivity, and has high conductivity (−10 5 S / cm) and catalytic activity, and is expected as a new electrode for oxygen sensor. . Here, an example in which ruthenium oxide is used as an electrode of a solid electrolyte type oxygen sensor is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 8-122297). In this publication, ruthenium oxide is used as the inner electrode. Then, ruthenium oxide is used as a paste and heat-baked at a high temperature to form an electrode.

しかし、ペースト焼き付けによる酸化ルテニウム電極の形成法ではペースト中の酸化ルテニウム金属粒子の大きさがサブミクロン〜十数ミクロンと大きく、しかも焼付け時の溶媒気化、残留炭化物等の影響を受けて、酸化ルテニウムが有する本来の高伝導率、高耐食性、酸素分子の解離反応に対する高触媒活性等の要求特性を発揮させることが難しく、固体電解質型酸素センサーの電極材料としては白金電極が現実に用いられている。   However, in the method of forming a ruthenium oxide electrode by paste baking, the size of ruthenium oxide metal particles in the paste is as large as submicron to tens of microns, and it is influenced by solvent vaporization, residual carbides, etc. during baking. It is difficult to demonstrate the required properties such as the original high conductivity, high corrosion resistance, and high catalytic activity for the dissociation reaction of oxygen molecules, and platinum electrodes are actually used as electrode materials for solid electrolyte oxygen sensors .

特開平8−122297号公報JP-A-8-122297

従来から固体電解質として用いられている安定化ジルコニアは、高い酸素イオン伝導を得るために1000℃程度で作動させる必要がある。したがって、安定化ジルコニアを燃料電池や酸素センサーに使用する場合、電極および構成材料に耐熱性が要求され、信頼性や経済性等において課題があった。   Stabilized zirconia conventionally used as a solid electrolyte needs to operate at about 1000 ° C. in order to obtain high oxygen ion conduction. Therefore, when the stabilized zirconia is used for a fuel cell or an oxygen sensor, heat resistance is required for the electrode and the constituent material, and there are problems in reliability and economy.

本発明では固体電解質用電極材料として酸化ルテニウムに着目し、高い作動温度においても高伝導率、高耐食性、高触媒活性等の要求物性を維持するために、酸化ルテニウム本来の物性を最大限に発揮し維持しうる微細構造を有する電極を形成せしめる固体電解質用電極の製造方法を提供することにある。すなわち、高い作動温度で長時間使用されたとしても微細構造に変化のない酸化ルテニウム電極を製造することも目的とする。さらに、固体電解質基板−電極の界面抵抗増加を抑制し、電極界面反応が極めて容易に進行した酸化ルテニウム電極の製造方法を提供することを目的とする。   In the present invention, attention is focused on ruthenium oxide as an electrode material for solid electrolytes, and in order to maintain the required physical properties such as high conductivity, high corrosion resistance, and high catalytic activity even at high operating temperatures, the original physical properties of ruthenium oxide are maximized. It is another object of the present invention to provide a method for producing an electrode for solid electrolyte that forms an electrode having a fine structure that can be maintained. That is, an object is to produce a ruthenium oxide electrode that does not change its microstructure even when used for a long time at a high operating temperature. Furthermore, it aims at providing the manufacturing method of the ruthenium oxide electrode which suppressed the interface resistance increase of a solid electrolyte substrate-electrode, and the electrode interface reaction advanced very easily.

さらに所定の高純度のジピバロイルメタネートルテニウムを原料と使用することで、原料搬送中での副反応進行等による原料使用効率の低下を抑えると共に、固体電解質基板上で均質に原料分解を進めて粒子径の均一な粒子からなる微細構造を有する酸化ルテニウム電極の製造方法を提供することである。   In addition, by using the prescribed high-purity dipivaloylmethanate ruthenium as a raw material, it is possible to suppress degradation of raw material usage due to side reactions during raw material transport, etc., and to uniformly decompose the raw material on the solid electrolyte substrate It is to provide a method for producing a ruthenium oxide electrode having a fine structure composed of particles having a uniform particle diameter.

本発明の固体電解質用電極は、安定化剤を含有する酸化ジルコニウムからなる酸素イオン伝導性の固体電解質基板上に、MOCVD法によって成膜された酸化ルテニウム電極が形成されてなり、走査型電子顕微鏡(SEM)の表面観察によって観察される、前記酸化ルテニウム電極を構成する酸化ルテニウム粒子の粒子径が2μm以下であり、かつ、(条件1)の微細構造評価基準を満足することを特徴とする。
(条件1)前記MOCVD法によって成膜された酸化ルテニウム電極を850℃で8時間熱処理し、処理後に、走査型電子顕微鏡(SEM)の表面観察によって観察される、酸化ルテニウム粒子の粒子径が2μm以下であること。
The electrode for solid electrolyte of the present invention is formed by forming a ruthenium oxide electrode formed by MOCVD on an oxygen ion conductive solid electrolyte substrate made of zirconium oxide containing a stabilizer. The particle diameter of the ruthenium oxide particles constituting the ruthenium oxide electrode observed by (SEM) surface observation is 2 μm or less, and satisfies the microstructure evaluation criteria of (Condition 1) .
(Condition 1) The ruthenium oxide electrode formed by the MOCVD method is heat-treated at 850 ° C. for 8 hours. After the treatment, the particle diameter of the ruthenium oxide particles observed by surface observation with a scanning electron microscope (SEM) is 2 μm. The following.

本発明の固体電解質用電極は、(条件2)の微細構造評価基準を満足することを含む。
(条件2)前記MOCVD法によって成膜された酸化ルテニウム電極を850℃で8時間熱処理し、その処理前後で、走査型電子顕微鏡(SEM)によって観察される酸化ルテニウム粒子が、結晶粒子の粗大化現象を生じていないこと。
The electrode for solid electrolyte of the present invention includes satisfying the microstructure evaluation criteria of (Condition 2) .
(Condition 2) The ruthenium oxide electrode formed by the MOCVD method is heat-treated at 850 ° C. for 8 hours, and before and after the treatment, the ruthenium oxide particles observed by a scanning electron microscope (SEM) are coarsened crystal grains. There is no phenomenon.

本発明の固体電解質用電極は、前記酸化ルテニウム電極の膜厚が2〜3μmであることを含む。
The electrode for solid electrolyte of the present invention includes that the ruthenium oxide electrode has a thickness of 2 to 3 μm.

本発明の固体電解質用電極の製造方法は、いわゆる有機金属CVD法(MOCVD法)に属する電極成膜方法である。有機金属CVD法とは、原料として有機金属を使用したCVD法である。ここでCVD(chemical vapor deposition)法とは、反応系分子の気体あるいはこれと不活性の担体との混合気体を、加熱した基板上に流し、加水分解,自己分解,光分解,酸化還元,置換等の反応による生成物を基板上に蒸着させる方法をいう。   The method for producing an electrode for solid electrolyte of the present invention is an electrode film forming method belonging to a so-called organometallic CVD method (MOCVD method). The organic metal CVD method is a CVD method using an organic metal as a raw material. Here, the CVD (chemical vapor deposition) method means that a gas of a reaction system molecule or a mixed gas of this and an inert carrier is flowed on a heated substrate, and then hydrolysis, self-decomposition, photolysis, redox, substitution The method of vapor-depositing the product by reaction etc. on a board | substrate is said.

本発明により、高い作動温度においても高伝導率、高耐食性、高触媒活性等の要求物性を維持するために、酸化ルテニウム本来の物性を最大限に発揮し維持しうる微細構造を有する電極を形成せしめることが可能となった。すなわちこの電極は、電極界面反応が極めて容易に進行した酸化ルテニウム電極であり、高い作動温度で長時間使用されたとしても微細構造に変化がない。さらに、固体電解質基板−電極の界面抵抗増加が抑制されている。   According to the present invention, in order to maintain the required physical properties such as high conductivity, high corrosion resistance and high catalytic activity even at high operating temperature, an electrode having a fine structure capable of maximizing and maintaining the original physical properties of ruthenium oxide is formed. It became possible to squeeze. That is, this electrode is a ruthenium oxide electrode in which the electrode interface reaction has proceeded very easily, and there is no change in the microstructure even if it is used for a long time at a high operating temperature. Furthermore, an increase in the interface resistance between the solid electrolyte substrate and the electrode is suppressed.

さらに所定の高純度のジピバロイルメタネートルテニウムを原料と使用することで、原料搬送中での副反応進行等による原料使用効率の低下を抑えると共に、固体電解質基板上で均質に原料分解を進めて粒子径の均一な粒子からなる微細構造を有する酸化ルテニウム電極を提供することができる。さらに気化残渣が少ない。   In addition, by using the prescribed high-purity dipivaloylmethanate ruthenium as a raw material, it is possible to suppress degradation of raw material usage due to side reactions during raw material transport, etc., and to uniformly decompose the raw material on the solid electrolyte substrate It is possible to provide a ruthenium oxide electrode having a fine structure composed of particles having a uniform particle diameter. Furthermore, there are few vaporization residues.

本発明により製造した電極は、安定化ジルコニアを燃料電池や酸素センサーに使用する場合、安定化ジルコニアとの相性に優れ、高い酸素イオン伝導を得るために高温で作動させた場合においても、電極の耐熱性に優れ、信頼性や経済性も併せ持っている。   The electrode manufactured according to the present invention has excellent compatibility with the stabilized zirconia when the stabilized zirconia is used in a fuel cell or an oxygen sensor, and even when operated at a high temperature to obtain high oxygen ion conduction, It has excellent heat resistance, reliability and economy.

本発明の実施例による固体電解質用電極の形成に用いられる製造装置を示した概念図である。It is the conceptual diagram which showed the manufacturing apparatus used for formation of the electrode for solid electrolytes by the Example of this invention. 原料の熱重量曲線を示す図であり、Ru(DPM)とRu(AcAc)の二例を示したものである。It is a figure which shows the thermogravimetric curve of a raw material, and shows two examples of Ru (DPM) 3 and Ru (AcAc) 3 . 実施例1の電極の電子顕微鏡写真を示す図であり、(a)は成膜後、(b)は850℃8時間のアニール後、の微細構造である。It is a figure which shows the electron micrograph of the electrode of Example 1, (a) is after the film-forming, (b) is the microstructure after annealing at 850 degreeC for 8 hours. 実施例1の電極のX線回折チャートを示す図である。基板はイットリア安定化酸化ジルコニウムである。3 is an X-ray diffraction chart of an electrode of Example 1. FIG. The substrate is yttria stabilized zirconium oxide. 電極の電子顕微鏡写真を示す図であり、実施例1の成膜後のものと、参考例1の引用したものを示す。It is a figure which shows the electron micrograph of an electrode, The thing after the film-forming of Example 1 and the thing quoted of the reference example 1 are shown. 電極の電子顕微鏡写真を示す図であり、実施例1の成膜後のものと、参考例2の引用したもの、とを示す。It is a figure which shows the electron micrograph of an electrode, and the thing after the film-forming of Example 1 and the thing quoted of the reference example 2 are shown. 実施例1及び比較例1〜6の出力特性図(I−V特性図)である。It is an output characteristic figure (IV characteristic figure) of Example 1 and Comparative Examples 1-6. 実施例1の電極の交流インピーダンス解析を行なった結果を示した図である。It is the figure which showed the result of having performed the alternating current impedance analysis of the electrode of Example 1. FIG. 電極の電極界面抵抗成分について温度−界面伝導度特性を示す図であり、実施例1と比較例1をそれぞれ示す。It is a figure which shows a temperature-interface conductivity characteristic about the electrode interface resistance component of an electrode, and shows Example 1 and Comparative Example 1, respectively.

以下、本発明について実施形態及び実施例を示して詳細に説明するが、本発明はこれらの記載に限定して解釈されない。   Hereinafter, although an embodiment and an example are shown and the present invention is explained in detail, the present invention is limited to these descriptions and is not interpreted.

以下、図1に示すCVD成膜装置を使用して固体電解質基板上に酸化ルテニウム電極を成膜する手順について説明する。図1の製造装置は一例である。このCVD成膜装置は、キャリアガスである不活性ガス発生源1とキャリアガス流量コントローラー2とからなるキャリアガス供給手段3と、酸素ガス発生源4と酸素ガス流量コントローラー5とからなる酸素ガス供給手段6と、キャリアガスを反応官7内部に導入するために、反応管7内部に挿入されたキャリアガス導入管8と、反応管7内であってキャリアガス導入管8内に配置されたジピバロイルメタネートルテニウム粉末を載せるための原料皿9と、原料皿9に載せられたジピバロイルメタネートルテニウム粉末を加熱するために反応管側面に周設した原料加熱用ヒーター10と、キャリアガス導入管8から不活性ガスと共に搬送される気化したジピバロイルメタネートルテニウムと混合可能に導入される酸素ガスを反応管7内部に供給するための酸素ガス供給手段6と接続された酸素ガス導入管11と、酸素ガスと気化したジピバロイルメタネートルテニウムとを均一に混合するミキサー部12と、反応管7内部に設置され基板13を保持する基板ホルダー14と、基板13を加熱するために反応管7側面に周設した基板加熱用ヒーター15と、反応管7内部を所定圧に調整する圧力計16、真空ポンプ17と排気ダクト18からなる排気手段19とを備える。   Hereinafter, a procedure for forming a ruthenium oxide electrode on a solid electrolyte substrate using the CVD film forming apparatus shown in FIG. 1 will be described. The manufacturing apparatus of FIG. 1 is an example. This CVD film forming apparatus includes a carrier gas supply means 3 comprising an inert gas generation source 1 which is a carrier gas and a carrier gas flow rate controller 2, and an oxygen gas supply comprising an oxygen gas generation source 4 and an oxygen gas flow rate controller 5. In order to introduce the means 6 and the carrier gas into the reaction chamber 7, the carrier gas introduction pipe 8 inserted into the reaction pipe 7, and the gas disposed inside the reaction pipe 7 and in the carrier gas introduction pipe 8 are provided. A raw material tray 9 for placing the pivaloylmethanate ruthenium powder, a raw material heating heater 10 provided around the side of the reaction tube to heat the dipivaloylmethanate ruthenium powder placed on the raw material plate 9, Oxygen gas introduced so as to be mixed with the vaporized dipivaloylmethanate ruthenium conveyed together with the inert gas from the carrier gas introduction pipe 8 is introduced into the reaction pipe 7. An oxygen gas introduction pipe 11 connected to an oxygen gas supply means 6 for supplying, a mixer section 12 for uniformly mixing oxygen gas and vaporized dipivaloylmethanate ruthenium, and a reaction pipe 7 are installed. A substrate holder 14 for holding the substrate 13, a substrate heating heater 15 provided around the side of the reaction tube 7 to heat the substrate 13, a pressure gauge 16 for adjusting the inside of the reaction tube 7 to a predetermined pressure, a vacuum pump 17, And an exhaust means 19 including an exhaust duct 18.

まず、ジピバロイルメタネートルテニウムを原料皿9に載せ、図1に示したように反応管7内で且つキャリアガス導入管8の端部付近に設置する。   First, dipivaloylmethanate ruthenium is placed on the raw material tray 9 and installed in the reaction tube 7 and in the vicinity of the end of the carrier gas introduction tube 8 as shown in FIG.

原料は、ジピバロイルメタネートルテニウムが好ましい。ジピバロイルメタネートルテニウム(Ru(DPM))は、β−ジケトン(R1−CO−CH―CO−R2)錯体に属する。例えばアセチルアセトネートルテニウム(Ru(AcAc))では、必要な蒸気圧を得るために高い加熱温度が必要となる。これに対して、ジピバロイルメタネートルテニウムは、気化させるための加熱温度をアセチルアセトネートルテニウムよりも低く設定できる。また、気化後の残渣もほとんどない。したがって、原料の使用効率が高くなる。 The raw material is preferably dipivaloylmethanate ruthenium. Dipivaloylmethanate ruthenium (Ru (DPM) 3 ) belongs to the β-diketone (R 1 —CO—CH 2 —CO—R 2) complex. For example, acetylacetonate ruthenium (Ru (AcAc) 3 ) requires a high heating temperature in order to obtain the required vapor pressure. On the other hand, dipivaloylmethanate ruthenium can set the heating temperature for vaporization lower than acetylacetonate ruthenium. Moreover, there is almost no residue after vaporization. Therefore, the use efficiency of the raw material is increased.

本発明では、三塩化ルテニウムとジピバロイルメタンとをアルカリ性反応促進剤の存在下で反応させてジピバロイルメタネートルテニウムを合成するに際して窒素雰囲気下で還流して粗原料を得、該粗原料をカラムクロマトグラフィー法により精製し、さらに昇華により精製したジピバロイルメタネートルテニウムを使用することがより好ましい。上記の製法により得たジピバロイルメタネートルテニウムは、窒素雰囲気下での還流により合成途中での酸化分解が起こらず、副生成物の含有が少ない。したがって、気化効率が高く気化後の残渣が少ない。また副生成物の含有量が少ないため基板到達前の分解が減少し、基板表面に純度の高いままジピバロイルメタネートルテニウムが供給されることとなる。さらに、ジピバロイルメタネートルテニウム以外の異物ガス、例えば原料の半分解副生成物、炭素系化合物等が少ないため、基板表面での反応が均質に進み、粒子径の揃った粒子からなる酸化ルテニウム薄膜を析出させることが可能となる。なお、ジピバロイルメタネートルテニウム以外の異物ガスが多いと粒子径の揃った粒子からなる酸化ルテニウム薄膜の析出を阻害する要因となると考えられる。   In the present invention, when synthesizing ruthenium dipivaloylmethanate by reacting ruthenium trichloride with dipivaloylmethane in the presence of an alkaline reaction accelerator, a crude material is obtained by refluxing in a nitrogen atmosphere, It is more preferable to use dipivaloylmethanate ruthenium obtained by purifying the crude material by column chromatography and further purifying by sublimation. The dipivaloylmethanate ruthenium obtained by the above production method does not undergo oxidative decomposition during the synthesis due to reflux under a nitrogen atmosphere, and contains a small amount of by-products. Therefore, the vaporization efficiency is high and the residue after vaporization is small. Moreover, since there is little content of a by-product, decomposition | disassembly before a board | substrate arrives will reduce, and dipivaloylmethanate ruthenium will be supplied with high purity to the substrate surface. Furthermore, because there are few foreign gases other than dipivaloylmethanate ruthenium, such as raw material semi-decomposition by-products, carbon compounds, etc., the reaction on the substrate surface proceeds homogeneously, and the oxidation consists of particles of uniform particle size. A ruthenium thin film can be deposited. It should be noted that if there is a large amount of foreign gas other than dipivaloylmethanate ruthenium, it may be a factor that inhibits the precipitation of a ruthenium oxide thin film composed of particles having a uniform particle diameter.

還流条件は、窒素雰囲気下で、例えば100〜230℃、好ましくは、120〜210℃で、15〜25時間、好ましくは18〜22時間である。またアルカリ性反応促進剤としては、例えば炭酸水素ナトリウム、炭酸水素カリウム等が例示できる。   The reflux conditions are, for example, 100 to 230 ° C., preferably 120 to 210 ° C., and 15 to 25 hours, preferably 18 to 22 hours, under a nitrogen atmosphere. Examples of the alkaline reaction accelerator include sodium hydrogen carbonate and potassium hydrogen carbonate.

原料皿は、ジピバロイルメタネートルテニウムに対して不活性の材質の皿が選択され、例えば石英ボートとする。   As the raw material dish, a dish made of a material inert to dipivaloylmethanate ruthenium is selected, for example, a quartz boat.

なお、図1ではジピバロイルメタネートルテニウムを昇華させる方法について述べたが、ジピバロイルメタネートルテニウムを有機溶媒、例えばエタノールに溶解させて気化容器に収納して、バブリングにより原料蒸気を反応管7、例えば石英管の内部に導入しても良い。   Although FIG. 1 describes the method for sublimating dipivaloylmethanate ruthenium, dipivaloylmethanate ruthenium is dissolved in an organic solvent such as ethanol and stored in a vaporization vessel, and the raw material vapor is bubbled. You may introduce | transduce into the inside of the reaction tube 7, for example, a quartz tube.

次に排気手段19によって反応管7内を所定の減圧とする。圧力は13〜4000Pa、好ましくは13〜70Paとする。   Next, the inside of the reaction tube 7 is depressurized by the exhaust means 19. The pressure is 13 to 4000 Pa, preferably 13 to 70 Pa.

基板加熱用ヒーター15を作動させて、基板13を所定温度に加熱する。基板温度は400〜800℃とする。   The substrate heating heater 15 is operated to heat the substrate 13 to a predetermined temperature. The substrate temperature is 400 to 800 ° C.

基板は、安定化剤を含有する酸化ジルコニウムからなる酸素イオン伝導性の固体電解質基板とする。安定化剤としては、酸化マグネシウム、酸化カルシウム、酸化イットリウム又は酸化スカンジウム並びに酸化セリウム等の金属酸化物であることが好ましい。安定化剤を含有する酸化ジルコニウムとは、安定化酸化ジルコニウム又は部分安定化酸化ジルコニウムである。   The substrate is an oxygen ion conductive solid electrolyte substrate made of zirconium oxide containing a stabilizer. The stabilizer is preferably a metal oxide such as magnesium oxide, calcium oxide, yttrium oxide or scandium oxide and cerium oxide. Zirconium oxide containing a stabilizer is stabilized zirconium oxide or partially stabilized zirconium oxide.

次に原料加熱ヒーター15を作動させて、原料26を加熱する。原料加熱温度は、140〜270℃とする。所望の気化速度を得るために原料加熱温度を適宜調整する。   Next, the raw material heater 15 is operated to heat the raw material 26. Raw material heating temperature shall be 140-270 degreeC. In order to obtain a desired vaporization rate, the raw material heating temperature is appropriately adjusted.

次にキャリアガス導入手段3を作動させて、不活性ガス、例えばアルゴンガスを原料皿9に送る。窒素ガスを用いても良い。同時に、酸素ガス導入手段6を作動させて酸素ガスを反応管内に導入する。図1では、キャリアガス導入管8と酸素ガス導入管11とを並列で反応管内に挿入した状態としているが、キャリアガスと酸素ガスとの混合をより確実に行なうためにキャリアガス導入管8の外径よりも大きな内径を有する酸素ガス導入管11を、キャリアガス導入管8が酸素ガス導入管11の内部に挿入される態様で配置しても良い。不活性ガスと酸素ガスの流量は、反応管7の大きさや基板大きさによって適宜調整する。   Next, the carrier gas introduction means 3 is operated to send an inert gas, for example, argon gas, to the raw material tray 9. Nitrogen gas may be used. At the same time, the oxygen gas introduction means 6 is operated to introduce oxygen gas into the reaction tube. In FIG. 1, the carrier gas introduction pipe 8 and the oxygen gas introduction pipe 11 are inserted in the reaction tube in parallel. However, in order to more reliably mix the carrier gas and the oxygen gas, the carrier gas introduction pipe 8 The oxygen gas introduction pipe 11 having an inner diameter larger than the outer diameter may be arranged in such a manner that the carrier gas introduction pipe 8 is inserted into the oxygen gas introduction pipe 11. The flow rates of the inert gas and the oxygen gas are appropriately adjusted according to the size of the reaction tube 7 and the size of the substrate.

原料を含むキャリアガスと酸素ガスとが反応管7内に送られ、ミキサー12で攪拌され、加熱された基板13表面に導入される。なお、基板加熱ヒーター15は原料加熱ヒーター10よりも高い温度に設定されているため、反応管7の内壁面に原料が凝集することはない。   The carrier gas containing the raw material and the oxygen gas are sent into the reaction tube 7, stirred by the mixer 12, and introduced to the heated substrate 13 surface. Since the substrate heater 15 is set at a temperature higher than that of the raw material heater 10, the raw material does not aggregate on the inner wall surface of the reaction tube 7.

基板表面に到達した原料は熱分解して、酸素存在下で基板上に酸化ルテニウムが析出する。なお、原料であるジピバロイルメタネートルテニウムは、ルテニウム原子1個に対して酸素原子が6個含まれているため、原理的には酸素を導入しなくても酸化ルテニウムを析出しうる。しかし、炭素原子が含まれるため、酸素が炭素の燃焼に消費されると還元状態となり、酸素欠損の酸化ルテニウムが析出しやすくなり、又酸化ルテニウム電極中に炭素等の不純物が混入するおそれがある。したがって、これらを防止する範囲内で酸素ガスを導入することが好ましい。   The raw material that has reached the substrate surface is thermally decomposed, and ruthenium oxide is deposited on the substrate in the presence of oxygen. In addition, since dipivaloylmethanate ruthenium which is a raw material contains six oxygen atoms with respect to one ruthenium atom, in principle, ruthenium oxide can be deposited without introducing oxygen. However, since carbon atoms are included, oxygen is reduced when consumed for carbon combustion, and oxygen-deficient ruthenium oxide is likely to be deposited, and impurities such as carbon may be mixed in the ruthenium oxide electrode. . Therefore, it is preferable to introduce oxygen gas within a range that prevents these.

なお、有機溶媒にジピバロイルメタネートルテニウムを溶解してバブリングにより原料蒸気を導入した場合には、反応管7内が有機溶媒により還元雰囲気にされるため、多くの酸素を導入する必要が生ずる。したがって、酸素欠損の酸化ルテニウムが析出しやすくなり、又酸化ルテニウム電極中に炭素等の不純物が混入しやすくなるため、ジピバロイルメタネートルテニウムは昇華により気化させる方がより好ましい。   In addition, when dipivaloylmethanate ruthenium is dissolved in an organic solvent and the raw material vapor is introduced by bubbling, the inside of the reaction tube 7 is brought into a reducing atmosphere by the organic solvent. Therefore, it is necessary to introduce a large amount of oxygen. Arise. Therefore, ruthenium oxide having an oxygen deficiency is likely to be precipitated, and impurities such as carbon are likely to be mixed into the ruthenium oxide electrode. Therefore, it is more preferable to vaporize dipivaloylmethanate ruthenium by sublimation.

このようにして得られた酸化ルテニウムは、電極界面反応が極めて容易に進行し、酸化ルテニウム本来の物性を最大限に発揮し維持しうる微細構造を有する。さらに所定の高純度のジピバロイルメタネートルテニウムを原料と使用することで、原料搬送中での副反応進行等による原料使用効率の低下が抑えられると共に、固体電解質基板上で均質に原料分解を進めて粒子径の均一な粒子からなる微細構造を有する。このような微細構造を有する酸化ルテニウム電極は、高い作動温度で長時間使用されたとしても微細構造に変化がなく、特性劣化がない。また、固体電解質基板−電極の界面抵抗増加が抑制される。なお、粒子径は数原子からなるクラスターから数十ミクロンの粒子まで可能であり、膜厚に左右されるが、1 ナノメートルから100ミクロン程度である。   The ruthenium oxide thus obtained has a fine structure in which the electrode interface reaction proceeds very easily, and the physical properties inherent to ruthenium oxide can be exhibited and maintained to the maximum. Furthermore, by using the specified high-purity dipivaloylmethanate ruthenium as a raw material, it is possible to suppress a decrease in the efficiency of raw material use due to the progress of side reactions during the raw material transport, etc., and to uniformly decompose the raw material on the solid electrolyte substrate To have a fine structure composed of particles having a uniform particle diameter. The ruthenium oxide electrode having such a fine structure has no change in the fine structure even if it is used for a long time at a high operating temperature, and there is no characteristic deterioration. Further, an increase in the interface resistance between the solid electrolyte substrate and the electrode is suppressed. The particle diameter can range from a cluster of several atoms to a particle of several tens of microns, and depends on the film thickness, but is about 1 nanometer to 100 microns.

なお酸化ルテニウム電極は、固体電解質酸素センサーの形状、大きさ等によって最適な膜厚とする。膜厚は、原料の供給量や成膜時間などの条件によって制御することが可能である。   The ruthenium oxide electrode has an optimum film thickness depending on the shape and size of the solid electrolyte oxygen sensor. The film thickness can be controlled by conditions such as the amount of raw material supplied and the film formation time.

(原料の気化テスト)
三塩化ルテニウムとジピバロイルメタンとをアルカリ性反応促進剤の存在下で反応させてジピバロイルメタネートルテニウムを合成するに際して窒素雰囲気下で155〜200℃の範囲内で20時間還流して粗原料を得、この粗原料をカラムクロマトグラフィー法により精製し、さらに昇華により精製したジピバロイルメタネートルテニウムを実施例として熱重量分析を行なった。結果を図2に示す。熱重量曲線から明らかなように、140℃付近から昇華し始め、230℃付近で完全に昇華した。一方、アセチルアセトネートルテニウム(Ru(AcAc))を比較例として同様の昇華テストを行なったところ、200℃付近から昇華し始め、270℃付近で昇華が終了した。したがって、ジピバロイルメタネートルテニウムは、低温でアセチルアセトネートルテニウムよりも高い蒸気圧特性を有する。また気化安定性が良いため残渣が少ない。これはジピバロイルメタネートルテニウムが安定して基板まで到達することを示唆している。
(Raw material vaporization test)
When synthesizing ruthenium dipivaloylmethanate by reacting ruthenium trichloride with dipivaloylmethane in the presence of an alkaline reaction accelerator, the mixture is refluxed for 20 hours in the range of 155 to 200 ° C. in a nitrogen atmosphere. A crude raw material was obtained, and the crude raw material was purified by column chromatography and further subjected to thermogravimetric analysis using dipivaloylmethanate ruthenium purified by sublimation as an example. The results are shown in FIG. As is apparent from the thermogravimetric curve, sublimation started at around 140 ° C. and complete sublimation at around 230 ° C. On the other hand, when a similar sublimation test was performed using acetylacetonate ruthenium (Ru (AcAc) 3 ) as a comparative example, sublimation started from around 200 ° C. and sublimation ended at around 270 ° C. Thus, dipivaloylmethanate ruthenium has higher vapor pressure properties than acetylacetonate ruthenium at low temperatures. Moreover, there is little residue because of good vaporization stability. This suggests that dipivaloylmethanate ruthenium stably reaches the substrate.

(酸化ルテニウム電極の形成)
図1の装置を用いて、イットリア安定化酸化ジルコニウム基板上に酸化ルテニウム電極の形成を行なった。アルゴンをキャリアガスとしてジピバロイルメタネートルテニウムを酸素ガスとともに反応管中に導入した。キャリアガス流量は8.0×10−7/s、酸素ガス流量は3.2×10−7/sとし、基板温度650℃で60分成膜した。
(Formation of ruthenium oxide electrode)
Using the apparatus of FIG. 1, a ruthenium oxide electrode was formed on a yttria-stabilized zirconium oxide substrate. Dipivaloylmethanate ruthenium was introduced into the reaction tube together with oxygen gas using argon as a carrier gas. The carrier gas flow rate was 8.0 × 10 −7 m 3 / s, the oxygen gas flow rate was 3.2 × 10 −7 m 3 / s, and the film was formed at a substrate temperature of 650 ° C. for 60 minutes.

(微細構造評価)
得られた膜を実施例1として、電子顕微鏡(SEM)による微細構造の観察とX線回折(XRD)による相同定を行った。図3(a)に実施例1のSEM観察の結果を示す。直径約0.3μmの球状粒子が生成したことがわかった。また膜は図4に示すように、酸化ルテニウム(RuO)であることをXRDによって確認した。この膜を空気中850℃で8時間熱処理したところ、図3(b)に示すように微細構造はほとんど変化しなかった。これは、粒子径の揃った均一の粒子から酸化ルテニウム電極が形成され、これよりも小さな粒子が少ないため、小さな粒子の融解による結晶粒子の粗大化現象が起きなかったと考えられる。小さな粒子の発生が抑制されたのは、ジピバロイルメタネートルテニウムを原料として基板以外で生ずる副生成物生成反応が少なかったからと考えられる。また、微細構造が変化していないということは、RuOと安定化酸化ジルコニウム基板の組み合わせが非常にいいということにも起因している。なお、膜厚は2〜3μmであった。
(Microstructure evaluation)
Using the obtained film as Example 1, observation of the fine structure by an electron microscope (SEM) and phase identification by X-ray diffraction (XRD) were performed. FIG. 3A shows the result of SEM observation of Example 1. It was found that spherical particles having a diameter of about 0.3 μm were produced. Moreover, as shown in FIG. 4, it was confirmed by XRD that the film was ruthenium oxide (RuO 2 ). When this film was heat-treated in air at 850 ° C. for 8 hours, the microstructure was hardly changed as shown in FIG. This is probably because the ruthenium oxide electrode was formed from uniform particles having a uniform particle size, and there were few particles smaller than this, so that the coarsening phenomenon of crystal particles due to melting of the small particles did not occur. The reason why the generation of small particles was suppressed is thought to be that there were few by-product formation reactions that occurred outside the substrate using dipivaloylmethanate ruthenium as a raw material. Further, the fact that the microstructure is not changed is also due to the very good combination of RuO 2 and the stabilized zirconium oxide substrate. The film thickness was 2-3 μm.

スパッタリングで成膜した白金電極を比較例1とした。熱処理によって微細構造は大きく変化し、島状に凝集した組織が観察された。これに対して実施例1は良好な微細構造を維持しており、耐熱性に優れた電極であることがわかった。   A platinum electrode formed by sputtering was used as Comparative Example 1. The microstructure changed greatly by the heat treatment, and an agglomerated structure was observed. In contrast, Example 1 maintained an excellent microstructure and was found to be an electrode having excellent heat resistance.

Kimら(Electrochemical and Solid−State Letters,4(5)A62−A64(2001)中、図2)は、ルテニウム塩化物のエタノール溶液を加熱した基板上に吹き付けてRuO膜を作製した。この方法で得られた膜は、図5の参考例1で示す通り、微粒子から成っているが、膜は非常に疎である。 Kim et al. (Electrochemical and Solid-State Letters, 4 (5) A62-A64 (2001), FIG. 2) sprayed a ruthenium chloride ethanol solution onto a heated substrate to produce a RuO 2 film. The film obtained by this method is composed of fine particles as shown in Reference Example 1 in FIG. 5, but the film is very sparse.

Limら(Journal of The Electrochemical Society,148(3)A275−A278(2001)中、図2)は、RuOのスパッタによって基板上にRuO膜を堆積させた。この膜は、図6の参考例2で示す通り、数十nm程度の粒子からなっており緻密であるが、粒子の大きさは一様ではない。 (In Journal of The Electrochemical Society, 148 ( 3) A275-A278 (2001), FIG. 2) lim colleagues were deposited RuO 2 film on the substrate by sputtering RuO 2. As shown in Reference Example 2 in FIG. 6, this film is composed of particles of about several tens of nm and is dense, but the size of the particles is not uniform.

図5の参考例1、図6の参考例2と実施例1とを比較すると、実施例1は粒子径の揃った均一な粒子からなる薄膜であるところに特徴がある。均一な大きさの粒子によって構成されているため、安定した電極性能を示す優れた電極であると考えられる。   When Reference Example 1 in FIG. 5 and Reference Example 2 in FIG. 6 are compared with Example 1, Example 1 is characterized in that it is a thin film composed of uniform particles having a uniform particle diameter. Since it is comprised by the particle | grains of a uniform size, it is thought that it is the outstanding electrode which shows the stable electrode performance.

(電気的特性評価)
実施例1の酸化ルテニウム電極表面に金ペースト法で金電極とリード線を付け、直流法による出力特性(I−V特性)の評価、交流インピーダンス法による複素インピーダンスの評価を行った。同様に比較例1のスパッタリングで成膜した白金電極表面に同様の方法で直流法による出力特性(I−V特性)の評価を行なった。図7に出力特性の評価結果、図8に実施例1の交流インピーダンス法による複素インピーダンスの評価結果を示した。
(Electrical characteristics evaluation)
A gold electrode and a lead wire were attached to the surface of the ruthenium oxide electrode of Example 1 by a gold paste method, and output characteristics (IV characteristics) were evaluated by a direct current method, and complex impedances were evaluated by an alternating current impedance method. Similarly, the output characteristics (IV characteristics) were evaluated by the direct current method on the platinum electrode surface formed by sputtering in Comparative Example 1 in the same manner. FIG. 7 shows the evaluation results of the output characteristics, and FIG. 8 shows the evaluation results of the complex impedance by the AC impedance method of Example 1.

(比較例2)
イットリア安定化酸化ジルコニウム基板上に白金超微粉末を含むペーストを塗布し、熱処理を行なって白金電極を得、これを比較例2とした。
(Comparative Example 2)
A paste containing ultrafine platinum powder was applied on a yttria-stabilized zirconium oxide substrate, and heat treatment was performed to obtain a platinum electrode.

(比較例3)
イットリア安定化酸化ジルコニウム基板上にイリジウム超微粉末を含むペーストを塗布し、熱処理を行なってイリジウム電極を得、これを比較例3とした。
(Comparative Example 3)
A paste containing iridium ultrafine powder was applied onto a yttria-stabilized zirconium oxide substrate, and heat treatment was performed to obtain an iridium electrode.

(比較例4)
イットリア安定化酸化ジルコニウム基板上にパラジウム超微粉末を含むペーストを塗布し、熱処理を行なってパラジウム電極を得、これを比較例4とした。
(Comparative Example 4)
A paste containing ultrafine palladium powder was applied on a yttria-stabilized zirconium oxide substrate, and heat treatment was performed to obtain a palladium electrode.

(比較例5)
イットリア安定化酸化ジルコニウム基板上にロジウム超微粉末を含むペーストを塗布し、熱処理を行なってロジウム電極を得、これを比較例5とした。
(Comparative Example 5)
A paste containing ultrafine rhodium powder was applied onto a yttria-stabilized zirconium oxide substrate, and heat treatment was performed to obtain a rhodium electrode.

(比較例6)
イットリア安定化酸化ジルコニウム基板上に金超微粉末を含むペーストを塗布し、熱処理を行なって金電極を得、これを比較例6とした。
(Comparative Example 6)
A paste containing ultrafine gold powder was applied on a yttria-stabilized zirconium oxide substrate, and heat treatment was performed to obtain a gold electrode.

比較例2〜6についても直流法による出力特性の評価を行なった。図7に出力特性の評価結果を併せて示した。   For Comparative Examples 2 to 6, the output characteristics were evaluated by the direct current method. FIG. 7 also shows the evaluation results of the output characteristics.

図7によると、実施例1では出力特性は直線的に変化し、電極として良好な特性が得られていることが確認できた。さらに、500℃、印加電圧5.0kV/mで52A/mの出力電流を示した。この値は、スパッタ法によって作製した白金電極(比較例1)の2〜3倍という非常に高い値である。 According to FIG. 7, in Example 1, the output characteristics changed linearly, and it was confirmed that good characteristics as an electrode were obtained. Furthermore, an output current of 52 A / m 2 was shown at 500 ° C. and an applied voltage of 5.0 kV / m. This value is a very high value of 2 to 3 times that of a platinum electrode (Comparative Example 1) produced by sputtering.

なお、実施例1について、850℃で8時間熱処理したサンプルについて、同様の出力特性の評価を行なったところ、導電性にも変化は見られなかった。これはSEM観察による熱処理前後で微細構造に変化がなかった結果と一致する結果となった。   In addition, about Example 1, when the same output characteristic evaluation was performed about the sample heat-processed at 850 degreeC for 8 hours, a change was not seen by conductivity. This coincided with the result that the microstructure did not change before and after the heat treatment by SEM observation.

図9に実施例1と比較例1について、電極の電極界面抵抗成分の温度依存性について評価した結果を示した。実施例1の酸化ルテニウム電極は、800〜1250℃の範囲内で比較例1よりも電気伝導度が高く、しかも良好な温度−電流特性を有していることが分かった。高い作動温度を必要とする固体電解質型酸素センサーの電極として実施例1は適していることが分かる。   FIG. 9 shows the results of evaluating the temperature dependence of the electrode interface resistance component of Example 1 and Comparative Example 1. It was found that the ruthenium oxide electrode of Example 1 had higher electrical conductivity than Comparative Example 1 within the range of 800 to 1250 ° C., and had good temperature-current characteristics. It can be seen that Example 1 is suitable as an electrode for a solid oxide oxygen sensor that requires a high operating temperature.

図8に、実施例1の電極を用いて交流インピーダンス解析を行なったときの結果を示す。この図から、ほぼ3つの半円があることがわかる。原点付近の小さな半円(C〜10−12F)は電極の種類によらないもので安定化酸化ジルコニウム基板のバルクの伝導度である。続く右側の半円(C=2.1×10−8F)は基板の粒界成分の伝導度を示す。続く右側の四分の一円(C=1.5×10−6F)は基板と電極の界面成分の伝導度を示す。実施例1では、電極の種類に大きく依存し、電極界面抵抗に起因する(C=1.5×10−6F)の四分の一円が小さく、基板と電極の界面成分の伝導度が大きいので、電極界面反応が極めて容易に進行していることがわかる。これは微細構造観察の欄で述べたとおり、酸化ルテニウム電極と安定化酸化ジルコニウムとの相性にも起因する。 FIG. 8 shows the results when AC impedance analysis was performed using the electrode of Example 1. This figure shows that there are almost three semicircles. A small semicircle (C-10 −12 F) near the origin is independent of the type of electrode and is the bulk conductivity of the stabilized zirconium oxide substrate. The following right semicircle (C = 2.1 × 10 −8 F) shows the conductivity of the grain boundary component of the substrate. The subsequent right quarter circle (C = 1.5 × 10 −6 F) indicates the conductivity of the interface component between the substrate and the electrode. In Example 1, the quarter circle of (C = 1.5 × 10 −6 F) due to electrode interface resistance greatly depends on the type of electrode, and the conductivity of the interface component between the substrate and the electrode is small. Since it is large, it can be seen that the electrode interface reaction proceeds very easily. This is also attributed to the compatibility between the ruthenium oxide electrode and the stabilized zirconium oxide, as described in the section on microstructure observation.

以上から、MOCVD法によって作製した酸化ルテニウム膜が優れた電極であることが明らかとなった。   From the above, it became clear that the ruthenium oxide film produced by the MOCVD method is an excellent electrode.

1,不活性ガス発生源
2,キャリアガス流量コントローラー
3,キャリアガス供給手段
4,酸素ガス発生源
5,酸素ガス流量コントローラー
6,酸素ガス供給手段
7,反応官
8,キャリアガス導入管
9,原料皿
10,原料加熱用ヒーター
11,酸素ガス導入管
12,ミキサー部
13,基板
14,基板ホルダー
15,基板加熱用ヒーター
16,圧力計
17,真空ポンプ
18,排気ダクト
19,排気手段
20,熱電対
21,ニードルバルブ
23,24,シール付きフランジ
25,リボンヒーター
26,原料粉末
1, inert gas generation source 2, carrier gas flow rate controller 3, carrier gas supply means 4, oxygen gas generation source 5, oxygen gas flow rate controller 6, oxygen gas supply means 7, reactor 8, carrier gas introduction pipe 9, raw material Dish 10, heater for raw material heating 11, oxygen gas introduction pipe 12, mixer section 13, substrate 14, substrate holder 15, heater for substrate heating 16, pressure gauge 17, vacuum pump 18, exhaust duct 19, exhaust means 20, thermocouple 21, Needle valves 23, 24, Sealed flange 25, Ribbon heater 26, Raw material powder

Claims (3)

安定化剤を含有する酸化ジルコニウムからなる酸素イオン伝導性の固体電解質基板上に、MOCVD法によって成膜された酸化ルテニウム電極が形成されてなり、走査型電子顕微鏡(SEM)の表面観察によって観察される、前記酸化ルテニウム電極を構成する酸化ルテニウム粒子の粒子径が2μm以下であり、かつ、(条件1)の微細構造評価基準を満足することを特徴とする固体電解質用電極。
(条件1)前記MOCVD法によって成膜された酸化ルテニウム電極を850℃で8時間熱処理し、処理後に、走査型電子顕微鏡(SEM)の表面観察によって観察される、酸化ルテニウム粒子の粒子径が2μm以下であること。
A ruthenium oxide electrode formed by MOCVD is formed on an oxygen ion conductive solid electrolyte substrate made of zirconium oxide containing a stabilizer, and is observed by surface observation with a scanning electron microscope (SEM). The solid electrolyte electrode is characterized in that the ruthenium oxide particles constituting the ruthenium oxide electrode have a particle diameter of 2 μm or less and satisfy the fine structure evaluation criteria of (Condition 1) .
(Condition 1) The ruthenium oxide electrode formed by the MOCVD method is heat-treated at 850 ° C. for 8 hours. After the treatment, the particle diameter of the ruthenium oxide particles observed by surface observation with a scanning electron microscope (SEM) is 2 μm. The following.
(条件2)の微細構造評価基準を満足することを特徴とする請求項1に記載の固体電解質用電極。
(条件2)前記MOCVD法によって成膜された酸化ルテニウム電極を850℃で8時間熱処理し、その処理前後で、走査型電子顕微鏡(SEM)によって観察される酸化ルテニウム粒子が、結晶粒子の粗大化現象を生じていないこと。
2. The electrode for solid electrolyte according to claim 1, wherein the microstructural evaluation criteria of (Condition 2) are satisfied .
(Condition 2) The ruthenium oxide electrode formed by the MOCVD method is heat-treated at 850 ° C. for 8 hours, and before and after the treatment, the ruthenium oxide particles observed by a scanning electron microscope (SEM) are coarsened crystal grains. There is no phenomenon.
前記酸化ルテニウム電極の膜厚が2〜3μmであることを特徴とする請求項1又は2に記載の固体電解質用電極。   The electrode for solid electrolyte according to claim 1 or 2, wherein the ruthenium oxide electrode has a thickness of 2 to 3 µm.
JP2009067599A 2009-03-19 2009-03-19 Electrode for solid electrolyte Expired - Fee Related JP4603084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067599A JP4603084B2 (en) 2009-03-19 2009-03-19 Electrode for solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067599A JP4603084B2 (en) 2009-03-19 2009-03-19 Electrode for solid electrolyte

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002080098A Division JP4327405B2 (en) 2002-03-22 2002-03-22 Method for producing electrode for solid electrolyte

Publications (2)

Publication Number Publication Date
JP2009186482A JP2009186482A (en) 2009-08-20
JP4603084B2 true JP4603084B2 (en) 2010-12-22

Family

ID=41069834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067599A Expired - Fee Related JP4603084B2 (en) 2009-03-19 2009-03-19 Electrode for solid electrolyte

Country Status (1)

Country Link
JP (1) JP4603084B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002687A (en) * 1998-06-15 2000-01-07 Riken Corp Electrode for solid electrolyte and its manufacture
JP4327405B2 (en) * 2002-03-22 2009-09-09 株式会社フルヤ金属 Method for producing electrode for solid electrolyte

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3224450B2 (en) * 1993-03-26 2001-10-29 日本酸素株式会社 Ruthenium oxide film forming method
JP3211473B2 (en) * 1993-03-30 2001-09-25 日本電池株式会社 Electrode for solid electrolyte and method for producing the same
JP3290809B2 (en) * 1994-07-07 2002-06-10 日本碍子株式会社 Chlorine compound gas sensor
JP3525532B2 (en) * 1994-09-01 2004-05-10 株式会社デンソー Oxygen concentration detector
JPH08264188A (en) * 1995-03-22 1996-10-11 Idemitsu Kosan Co Ltd Solid electrolyte type fuel cell and its manufacture
JPH10274634A (en) * 1997-03-31 1998-10-13 Akebono Brake Res & Dev Center Ltd Electrode material for gas sensor and gas sensor using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002687A (en) * 1998-06-15 2000-01-07 Riken Corp Electrode for solid electrolyte and its manufacture
JP4327405B2 (en) * 2002-03-22 2009-09-09 株式会社フルヤ金属 Method for producing electrode for solid electrolyte

Also Published As

Publication number Publication date
JP2009186482A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
Abdelkareem et al. Transition metal carbides and nitrides as oxygen reduction reaction catalyst or catalyst support in proton exchange membrane fuel cells (PEMFCs)
KR100917697B1 (en) Transition metal-carbon nitride nanotube hybrids catalyst, fabrication method thereof and method for producing hydrogen using the same
Defilippi et al. HfN nanoparticles: An unexplored catalyst for the electrocatalytic oxygen evolution reaction
JP6158786B2 (en) Electrocatalytic method for producing carbon nanotubes
Kim et al. Iterative oxidation and sulfidation reactions: revival of bulk cobalt sulfide into an active electrocatalyst for the oxygen evolution reaction
Chouki et al. Solvothermal synthesis of iron phosphides and their application for efficient electrocatalytic hydrogen evolution
EA019445B1 (en) Method for preparing oxidation catalyst and catalysts prepared by the method
Mondal et al. A combined experimental and theoretical approach revealing a direct mechanism for bifunctional water splitting on doped copper phosphide
Ehsan et al. Fabrication of CuO–1.5 ZrO 2 composite thin film, from heteronuclear molecular complex and its electrocatalytic activity towards methanol oxidation
Song et al. Crystal Facet Engineering of Single‐Crystalline TiC Nanocubes for Improved Hydrogen Evolution Reaction
JP2024500218A (en) Iridium-containing catalyst for water electrolysis
Ouimet et al. Current status on the manufacturing of nanomaterials for proton exchange membrane energy systems by vapor-based processes
WO2015189284A1 (en) Battery electrode and method for producing the same
JP4327405B2 (en) Method for producing electrode for solid electrolyte
JP4603084B2 (en) Electrode for solid electrolyte
US9073758B2 (en) Synthesis of metal borides
JP4917244B2 (en) ELECTRODE FOR SOLID ELECTROLYTE, METHOD FOR PRODUCING THE SAME, METHOD FOR USE THEREOF, SOLID ELECTROLYTE TYPE OXYGEN SENSOR
Bagherzadeh et al. Texture-evolution of copper-based nanocatalyst via hybrid glow discharge plasma-oxalate-precipitation method for hydrogen production from CH3OH/H2O mixture
Laishram et al. 2D transition metal carbides (MXenes) for applications in electrocatalysis
JP5393538B2 (en) Solid electrolyte oxygen sensor and exhaust gas sensor
JP6531560B2 (en) Catalyst for carbon nanotube synthesis
JP5207461B2 (en) Electrocatalyst and electrode using the same
JP2006347841A (en) Electrode for electrolytic cell
CN110048138B (en) Separator for fuel cell
JP3624196B1 (en) Particle dispersion composite and solid electrolyte sensor using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees