JPH03279254A - Copper oxide based conductive ceramics and production thereof - Google Patents

Copper oxide based conductive ceramics and production thereof

Info

Publication number
JPH03279254A
JPH03279254A JP2078380A JP7838090A JPH03279254A JP H03279254 A JPH03279254 A JP H03279254A JP 2078380 A JP2078380 A JP 2078380A JP 7838090 A JP7838090 A JP 7838090A JP H03279254 A JPH03279254 A JP H03279254A
Authority
JP
Japan
Prior art keywords
copper oxide
based conductive
nitrate
copper
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2078380A
Other languages
Japanese (ja)
Other versions
JP2967541B2 (en
Inventor
Hideo Ihara
英雄 伊原
Norio Terada
教男 寺田
Masatoshi Jo
城 昌利
Masayuki Hirabayashi
平林 正之
Riyouji Sugise
良二 杉瀬
Hiroshi Daimon
宏 大門
Kazuhiro Fujii
一宏 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Ube Corp
Original Assignee
Agency of Industrial Science and Technology
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Ube Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP2078380A priority Critical patent/JP2967541B2/en
Priority to US07/639,931 priority patent/US5112783A/en
Priority to DE4101761A priority patent/DE4101761C2/en
Publication of JPH03279254A publication Critical patent/JPH03279254A/en
Application granted granted Critical
Publication of JP2967541B2 publication Critical patent/JP2967541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a conductive ceramics expressed by the formula and having excellent corrosion resistance and mechanical strength by heating a mixture consisting of a nitrate and/or chloride of metal selected from In, Sc, Y, Tl and Ga and Cu at a prescribed temperature. CONSTITUTION:A compound consisting of a nitrate and/or chloride of metal M selected from In, Sc, Y and Ga is prepared. A compound consisting of nitrate and/or chloride of Cu is prepared. Then these compounds are blended except combination of nitrate of the above-mentioned metal M with Cu nitrate and chloride of the above-mentioned metal M and Cu chloride. The blend is heated at 200-600 deg.C to provide the Cu oxide based conductive ceramics. The blend is heated at 200-600 deg.C to provide the Cu oxide based conductive ceramics expressed by the formula (A is Cl or Cl and NO3; x+y=1 and x/y is 0-10; z is 0-8; w is 1-9).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は銅酸化物系導電性セラミックス及びその製造方
法に係り、特に、容易かつ安価に人手可能な原料を用い
て、比較的低温での加熱により製造することができる銅
酸化物系導電性セラミックス及びその製造方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to copper oxide-based conductive ceramics and a method for producing the same, and in particular, the present invention relates to a copper oxide-based conductive ceramic and a method for producing the same. The present invention relates to copper oxide-based conductive ceramics that can be produced by heating and a method for producing the same.

[従来の技術] 導電性セラミックスは、セラミックス特有の耐食性、耐
熱性等の優れた特性を利用して、従来より、電極、発熱
体等どして広い分野で使用されている。例えば、塩素工
業において、Ru O2は電力消費量が小さく、しかも
耐腐食性等に優れるなどの特性から、電極材料として特
に好適である。
[Prior Art] Conductive ceramics have been used in a wide range of fields, such as electrodes and heating elements, by taking advantage of their excellent characteristics such as corrosion resistance and heat resistance, which are unique to ceramics. For example, in the chlorine industry, RuO2 is particularly suitable as an electrode material because of its low power consumption and excellent corrosion resistance.

このRuO2はまた、最近では熱転写プリンターのサー
マルヘッドにも利用されている。
This RuO2 has also recently been used in thermal heads of thermal transfer printers.

更に、導電性セラミックスの他の用途例としては、IT
O(In−3n−0系)セラミックスの透明電極への通
用、PLZT (pb−La−Zn−Ti系)セラミッ
クスの光スィッチ、光シヤツターへの適用など、その応
用分野は拡大しつつある。その他、導電性セラミックス
は、外部環境の変化を電気的な信号に変換するための各
種センサーの電極としても利用されている。また、セラ
ミックスの耐熱性を考慮すれば、La−Cr−0系又は
La−Co−0系セラミツクスは、炉用発熱体、燃料電
池電極としても有用である。
Furthermore, other applications of conductive ceramics include IT
The field of application is expanding, such as the application of O (In-3n-0 series) ceramics to transparent electrodes and the application of PLZT (pb-La-Zn-Ti series) ceramics to optical switches and optical shutters. In addition, conductive ceramics are also used as electrodes for various sensors that convert changes in the external environment into electrical signals. Furthermore, considering the heat resistance of ceramics, La-Cr-0 or La-Co-0 ceramics are useful as heating elements for furnaces and fuel cell electrodes.

[発明が解決しようとする課題] このような導電性セラミックスの通用分野は多岐にわた
り、その有用性が重視されていることから、導電性セラ
ミックスをより安価にかつより容易に製造する技術の出
現が常に望まれている。
[Problem to be solved by the invention] As such conductive ceramics are used in a wide variety of fields and their usefulness is emphasized, it is desirable to develop a technology to manufacture conductive ceramics more cheaply and more easily. always desired.

本発明は上記従来の実情に鑑みてなされたものであり、
容易かつ安価に入手可能な原料を用いて、比較的低温で
加熱することにより、工業的に有利に製造することがで
きる銅酸化物系導電性セラミックス及びその製造方法を
提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional situation,
The purpose of the present invention is to provide copper oxide-based conductive ceramics that can be industrially advantageously produced by heating at relatively low temperatures using easily and inexpensively available raw materials, and a method for producing the same. .

[課題を解決するための手段」 請求項(1)の銅酸化物系導電性セラミックスは、下記
一般式[1]で示されることを特徴とする。
[Means for Solving the Problems] The copper oxide-based conductive ceramic of claim (1) is characterized by being represented by the following general formula [1].

(M。(M.

Cu。Cu.

) 0゜ A。) 0° A.

[ ■ ] 請求項(2) の銅酸化物系導電性セラミックス は下記一般式 [ で示されることを特徴とす る。[ ■ ] Claim (2) copper oxide conductive ceramics is the following general formula [ is characterized by Ru.

Cu7 0゜ A。Cu7 0゜ A.

・・・ [II] 請求項(3)の銅酸化物系導電性セラミックスの製造方
法は、請求項(1)の銅酸化物系導電性セラミックスを
製造する方法であって、I n、Sc、Y、Tl及びG
aよりなる群から選ばれる1種又は2種以上の金属の硝
酸塩群から選ばれる1種又は2種以上の硝酸塩群から選
ばれる1種又は塩化物とからなる混合物(但し、該金属
の硝酸塩と硝酸銅、該金属の塩化物と塩化銅との組み合
わせを除く。)を200〜600℃で加熱することによ
り特許請求の範囲第1項に記載の銅酸化物系導電性セラ
ミックスを製造する方法を特徴とする請求項(4)の銅
酸化物系導電性セラミックスの製造方法は、請求項(2
)の銅酸化物系導電性セラミックスを製造する方法であ
って、硝酸銅と塩化銅との混合物を200〜600℃で
加熱することを特徴とする。
... [II] The method for manufacturing a copper oxide-based conductive ceramic according to claim (3) is a method for manufacturing the copper oxide-based conductive ceramic according to claim (1), wherein In, Sc, Y, Tl and G
A mixture consisting of one or more metal nitrates selected from the group consisting of one or two or more metal nitrates or a chloride (however, a mixture consisting of one or two or more metal nitrates selected from the group consisting of A method for producing copper oxide-based conductive ceramics according to claim 1 by heating copper nitrate (excluding combinations of chlorides of the metal and copper chloride) at 200 to 600°C. The method for producing copper oxide-based conductive ceramics according to claim (4), characterized in that
) is a method for producing copper oxide-based conductive ceramics, which is characterized by heating a mixture of copper nitrate and copper chloride at 200 to 600°C.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の銅酸化物系導電性セラミックスは下記一般式[
I]で示され、 (MX c u、)70. A、++ [Iコ式中、 M: I n、Sc%Y、Tit及びG8よりなる群か
ら選ばれる1種又は2種以上の元素 A : Cu、或いは、CIl及びNo。
The copper oxide conductive ceramic of the present invention has the following general formula [
I], (MX cu,)70. A, ++ [In the formula, M: one or more elements selected from the group consisting of In, Sc%Y, Tit and G8 A: Cu, or CII and No.

x+y=1 0≦x / y≦10、好ましくは0≦x/y≦10≦
Z≦8.1≦W≦9 である。
x+y=1 0≦x/y≦10, preferably 0≦x/y≦10≦
Z≦8.1≦W≦9.

このような本発明の銅酸化物系導電性セラミックスのX
線回折スペクトルのピークとしては、2θで 16.0〜16.8° 29.5〜34.0° 37.
8〜39.5゜54.6〜57.0°のピークが特徴的
である。これらのピークは立方晶系の結晶の面指数 111.222,400,440 に帰属される。軸長aは約9.2〜9.8Aである。
X of such copper oxide-based conductive ceramics of the present invention
The peaks of the line diffraction spectrum are 16.0 to 16.8 degrees 29.5 to 34.0 degrees in 2θ 37.
The peaks at 8-39.5° and 54.6-57.0° are characteristic. These peaks are assigned to cubic system crystal plane indices of 111.222, 400, and 440. The axial length a is approximately 9.2 to 9.8A.

このような本発明の銅酸化物系導電性セラミックスのう
ち、請求項(1)の銅酸化物系導電性セラミックスは、
例えば、請求項(3)の方法に従フて、次のようにして
製造することができる。
Among such copper oxide-based conductive ceramics of the present invention, the copper oxide-based conductive ceramics of claim (1) include:
For example, according to the method of claim (3), it can be manufactured as follows.

即ち、まずMの硝酸塩群から選ばれる1種又は塩化物と
、硝酸銅群から選ばれる1種又は塩化銅との所定量(但
し、Mの硝酸塩と硝酸銅、Mの塩化物と塩化銅の組み合
わせを除く。)を混合し、次いで、得られた混合物を2
00〜600℃で加熱することにより、本発明の銅酸化
物系導電性セラミックスを得る。ここで、加熱温度が6
00℃を超えると絶縁性セラミックスであるCuO又は
M202が分解生成し、導電性セラミックスの生成割合
が減少し、更に高温の場合には全て絶縁性セラミックス
となるため好ましくない。一方、加熱温度が200℃未
満では硝酸塩の分解反応が効率的に進行しない。
That is, first, a predetermined amount of one selected from the nitrate group of M or a chloride and one selected from the copper nitrate group or copper chloride (however, a predetermined amount of M nitrate and copper nitrate, M chloride and copper chloride) ), and then the resulting mixture is mixed with 2
By heating at 00 to 600°C, the copper oxide-based conductive ceramic of the present invention is obtained. Here, the heating temperature is 6
If the temperature exceeds 00° C., CuO or M202, which are insulating ceramics, will be decomposed and produced, and the proportion of conductive ceramics produced will decrease, and if the temperature is higher than that, all the insulating ceramics will become insulating ceramics, which is not preferable. On the other hand, if the heating temperature is less than 200°C, the nitrate decomposition reaction will not proceed efficiently.

この加熱時間は1分〜50時間程度の間で適宜選定され
、加熱は電気炉等の通常の加熱装置を用いて、酸素又は
空気中にて行なうことができる。
The heating time is appropriately selected from about 1 minute to about 50 hours, and the heating can be performed in oxygen or air using a normal heating device such as an electric furnace.

なお、使用される硝酸塩及び塩化物にはその水和物も当
然含まれ、また、硝酸銅としては、塩基性硝酸銅CLI
2  (OH) 3 (NO3)も使用可能である。M
及び銅の硝酸塩群から選ばれる1種又は塩化物の原料化
合物の混合法としては、各々の原料化合物をボールミル
等で粉砕混合する方法、又は、各々の原料化合物水溶液
を混合した後、蒸発乾固して水を除去する方法等を採用
することができる。
Note that the nitrates and chlorides used naturally include their hydrates, and the copper nitrate includes basic copper nitrate CLI.
2 (OH) 3 (NO3) can also be used. M
The method of mixing raw material compounds selected from the group of copper nitrates and chlorides is to grind and mix each raw material compound in a ball mill or the like, or to mix the aqueous solutions of each raw material compound and then evaporate to dryness. A method of removing water by removing water can be adopted.

請求項(2)の銅酸化物系導電性セラミックスは、上記
請求項(3)の方法において、Mの硝酸塩、塩化物を用
いずに硝酸銅及び塩化銅のみを原料として同様に200
〜600℃で加熱することにより製造することができる
The copper oxide-based conductive ceramic according to claim (2) is produced by using the method according to claim (3) using only copper nitrate and copper chloride as raw materials without using M nitrate or chloride.
It can be produced by heating at ~600°C.

[作用] 本発明の銅酸化物系導電性セラミックスのX線回折スペ
クトルのパターンから、本発明の銅酸化物系導電性セラ
ミックスは、Ag70a(NO3)類似組成を有する立
方晶系の結晶であると認められる。この結晶においては
、立方晶の酸素が一部欠損したものも含まれ、M及び銅
の酸化数は+1〜+3の混合価数であると考えられ、こ
れが導電性に寄与するものと推定される。
[Function] From the X-ray diffraction spectrum pattern of the copper oxide conductive ceramic of the present invention, it can be concluded that the copper oxide conductive ceramic of the present invention is a cubic crystal having a composition similar to Ag70a (NO3). Is recognized. In this crystal, some cubic crystal oxygen is partially deficient, and the oxidation number of M and copper is thought to be a mixed valence of +1 to +3, which is presumed to contribute to electrical conductivity. .

しかして、このような本発明の銅酸化物系導電性セラミ
ックスは、本発明の方法に従って、硝酸塩や塩化物とい
った安価で容易に入手可能な原料を用いて、200〜6
00℃といった比較的低い加熱温度にて容易かつ効率的
に製造することができる。
Therefore, such copper oxide-based conductive ceramics of the present invention can be produced using inexpensive and easily available raw materials such as nitrates and chlorides according to the method of the present invention.
It can be easily and efficiently manufactured at a relatively low heating temperature of 00°C.

[実施例コ 以下に実施例を挙げて本発明をより具体的に説明する。[Example code] EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例1 硝酸インジウム三水和物1.797gと塩化第二銅二水
和物0.863gと硝酸銅三水和物7.34g (モル
比1:1:6)を良く混合し、混合物を空気中、420
℃で1θ分間加熱した。
Example 1 1.797 g of indium nitrate trihydrate, 0.863 g of cupric chloride dihydrate, and 7.34 g of copper nitrate trihydrate (molar ratio 1:1:6) were mixed well, and the mixture was in the air, 420
It was heated at ℃ for 1θ minutes.

これをベレットに成型し、金ホイルに包み520℃で3
0分間加熱した。
Form this into a pellet, wrap it in gold foil and heat it at 520℃ for 3 hours.
Heated for 0 minutes.

その結果、第1図に示すような立方晶系のX線回折パタ
ーン(Cu  Ka線線用用を有する銅酸化物系導電性
セラミックスが得られた。このX線回折スペクトルから
、本実施例により(I nr/a Cut7a ) 7
0x Cj2vが生成したことが確認された。この銅酸
化物系導電性セラミックスの温度−比抵抗曲線を第2図
に示す。第2図より得られた銅酸化物系導電性セラミッ
クスは良好な導電性を示すことが明らかである。
As a result, a copper oxide-based conductive ceramic having a cubic X-ray diffraction pattern (for Cu Ka rays) as shown in FIG. 1 was obtained. From this X-ray diffraction spectrum, it was found that (I nr/a Cut7a) 7
It was confirmed that 0x Cj2v was generated. FIG. 2 shows a temperature-resistivity curve of this copper oxide conductive ceramic. It is clear from FIG. 2 that the copper oxide conductive ceramic obtained exhibits good conductivity.

実施例2 硝酸インジウム三水和物1.797gと塩化第二銅二水
和物0.432gと硝酸銅三水和物7.34g (モル
比1:0.5:6)に水10mItを加えて溶解し、こ
れを空気中、480℃で10分間加熱した。
Example 2 10 ml of water was added to 1.797 g of indium nitrate trihydrate, 0.432 g of cupric chloride dihydrate, and 7.34 g of copper nitrate trihydrate (molar ratio 1:0.5:6). This was heated in air at 480° C. for 10 minutes.

その結果、N3図に示すような立方晶系のxg回折パタ
ーン(Cu  Ka線線用用を有する銅酸化物系導電性
セラミックスが得られた。
As a result, a copper oxide conductive ceramic having a cubic xg diffraction pattern (for Cu Ka lines) as shown in the N3 diagram was obtained.

このX線回折スペクトルから、本実施例により(I n
 2/llICu +5yrs)70 t C11wが
生成したことが確認された。なお、陰イオンクロマトグ
ラフィー分析の結果、Nの存在は認められず、Clのみ
の存在が認められた。この銅酸化物系導電性セラミック
スの比抵抗(室温)は9X10−’Ω・cmであった。
From this X-ray diffraction spectrum, according to this example, (I n
It was confirmed that 2/llICu +5yrs)70t C11w was produced. Note that as a result of anion chromatography analysis, the presence of N was not observed, and only Cl was observed. The specific resistance (at room temperature) of this copper oxide-based conductive ceramic was 9×10 −′Ω·cm.

実施例3 硝酸スカンジウム四水和物1.575gと塩化第二銅二
水和物0.886gと硝酸銅三水和物7.538g (
モル比t:1:6)を良く混合し、混合物を空気中、4
80℃で30分間加熱した。
Example 3 1.575 g of scandium nitrate tetrahydrate, 0.886 g of cupric chloride dihydrate, and 7.538 g of copper nitrate trihydrate (
Molar ratio t: 1:6) was mixed well, and the mixture was placed in air at 4
Heated at 80°C for 30 minutes.

その結果、第4図に示すような立方晶系のX線回折パタ
ーン(Cu  Ka線線用用を有する銅酸化物系導電性
セラミックスが得られた。このX線回折スペクトルから
、本実施例により(S e l/I!l Cut7a)
フOx Clawが生成したことが確認された。なお、
陰イオンクロマトグラフィー分析の結果、Nの存在は認
められず、Cl2のみの存在が認められた。この銅酸化
物系導電性セラミックスの比抵抗(室温)は8X10−
’Ω・Cmであった。
As a result, a copper oxide conductive ceramic having a cubic X-ray diffraction pattern (for Cu Ka rays) as shown in FIG. 4 was obtained. From this X-ray diffraction spectrum, it was found that (S e l/I!l Cut7a)
It was confirmed that Ox Claw was generated. In addition,
As a result of anion chromatography analysis, the presence of N was not observed, and only Cl2 was observed. The specific resistance (room temperature) of this copper oxide conductive ceramic is 8X10-
'Ω・Cm.

実施例4 塩化第二銅二水和物1.052gと硝酸銅三水和物8.
948g (モル比1:6)を良く混合し、酸素気流中
、230℃で6時間加熱した。
Example 4 1.052 g of cupric chloride dihydrate and copper nitrate trihydrate 8.
948 g (molar ratio 1:6) were mixed well and heated at 230° C. for 6 hours in an oxygen stream.

その結果、第5図に示すような立方晶系のX線回折パタ
ーン(Cu  K  α 線用用 )を有する生成物が
得られた。このX線回折スペクトルから、本実施例によ
りCu7e。
As a result, a product having a cubic X-ray diffraction pattern (for Cu K α rays) as shown in FIG. 5 was obtained. From this X-ray diffraction spectrum, Cu7e was determined according to this example.

(IQ、No、)wの銅酸化物系導電性セラミックスが
得られたことが確認された。この化合物の赤外線吸収ス
ペクトルは約1360〜1380cm−’に吸収ピーク
を有しており、NO3基の存在を示した。得られた銅酸
化物系導電性セラミックスの比抵抗(室温)はlXl0
−’Ω・cmであった。
It was confirmed that a copper oxide-based conductive ceramic of (IQ, No.)w was obtained. The infrared absorption spectrum of this compound had an absorption peak at about 1360-1380 cm-', indicating the presence of NO3 groups. The specific resistance (room temperature) of the obtained copper oxide conductive ceramic is lXl0
-'Ω·cm.

実施例5 塩化第二銅二水和物0.345gと硝酸銅三水和物2.
936g(モル比1:13)に水10m1を加えて溶解
し、酸素気流中、230℃で6時間加熱した。
Example 5 0.345 g of cupric chloride dihydrate and copper nitrate trihydrate 2.
936 g (molar ratio 1:13) was dissolved in 10 ml of water, and heated at 230° C. for 6 hours in an oxygen stream.

その結果、第6図に示すような立方晶系のX線回折パタ
ーン(Cu  Ka線線用用を有する銅酸化物系導電性
セラミックスが得られた。このX線回折スペクトルから
、本実施例によりCu70H(Cl2.N03)vが生
成したことが確認された。この化合物の赤外線吸収スペ
クトルは約1360〜1380cm−’に吸収ピークを
有しており、NO3基の存在を示した。この銅酸化物系
導電性セラミックスの比抵抗(室温)はlXl0−’Ω
・amであった。
As a result, a copper oxide-based conductive ceramic having a cubic X-ray diffraction pattern (for Cu Ka rays) as shown in FIG. 6 was obtained. From this X-ray diffraction spectrum, it was found that It was confirmed that Cu70H(Cl2.N03)v was produced.The infrared absorption spectrum of this compound had an absorption peak at about 1360 to 1380 cm-', indicating the presence of NO3 groups.This copper oxide The specific resistance (room temperature) of the system conductive ceramics is lXl0-'Ω
・It was am.

[発明の効果] 以上詳述した通り、本発明の銅酸化物系導電性セラミッ
クスによれば、セラミックスの耐熱性、耐食性、機械的
特性と、導電性とを兼備する高特性導電性セラミックス
であって、安価で入手し易い原料を用いて、比較的低温
の加熱により容易かつ効率的に製造することができる銅
酸化物系導電性セラミックスが提供される。
[Effects of the Invention] As detailed above, the copper oxide-based conductive ceramic of the present invention is a high-performance conductive ceramic that has both the heat resistance, corrosion resistance, mechanical properties, and electrical conductivity of ceramics. Thus, there is provided a copper oxide-based conductive ceramic that can be easily and efficiently manufactured by heating at a relatively low temperature using inexpensive and easily available raw materials.

このような本発明の銅酸化物系導電性セラミックスは、
各種の電極、発熱体材料として好適に適用可能であり、
また、近年技術進歩の著しい超伝導体を製造するため原
料としても工業的に極めて有用である。
Such a copper oxide-based conductive ceramic of the present invention is
It can be suitably applied as various electrodes and heating element materials,
It is also industrially extremely useful as a raw material for producing superconductors, which have undergone remarkable technological advances in recent years.

しかして、このような本発明の銅酸化物系導電性セラミ
ックスは、請求項(3)、(4)の本発明の銅酸化物系
導電性セラミックスの製造方法により、容易かつ効率的
に低コストにて製造される。
Therefore, such a copper oxide-based conductive ceramic of the present invention can be easily and efficiently produced at low cost by the method of producing a copper oxide-based conductive ceramic of the present invention according to claims (3) and (4). Manufactured in

【図面の簡単な説明】 第1図は実施例1で得られた銅酸化物系導電性セラミッ
クスのX線回折スペクトルを示す図、第2図は同温度−
比抵抗曲線を示す図である。第3図、第4図、第5図及
び第6図は各々、実施例2.3.4及び5で得られた銅
酸化物系導電性セラミックスのX線回折スペクトルを示
す図である。
[Brief Description of the Drawings] Figure 1 shows the X-ray diffraction spectrum of the copper oxide conductive ceramic obtained in Example 1, and Figure 2 shows the same temperature -
It is a figure showing a resistivity curve. FIG. 3, FIG. 4, FIG. 5, and FIG. 6 are diagrams showing the X-ray diffraction spectra of the cuprate-based conductive ceramics obtained in Examples 2.3.4 and 5, respectively.

Claims (4)

【特許請求の範囲】[Claims] (1)下記一般式[I]で示される銅酸化物系導電性セ
ラミックス。 (M_xCu_y)_7O_zA_w・・・[I][I
]式中、 MはIn、Sc、Y、Tl及びGaより なる群から選ばれる1種又は2種以上の 元素、AはCl、或いはCl及びNO_3 を表わす。 x+y=1 0<x/y≦10 0≦z≦8 1≦w≦9
(1) A copper oxide-based conductive ceramic represented by the following general formula [I]. (M_xCu_y)_7O_zA_w...[I][I
] In the formula, M represents one or more elements selected from the group consisting of In, Sc, Y, Tl and Ga, and A represents Cl or Cl and NO_3. x+y=1 0<x/y≦10 0≦z≦8 1≦w≦9
(2)下記一般式[II]で示される銅酸化物系導電性セ
ラミックス。 Cu_7O_zA_w・・・[II] [II]式中、AはCl、或いはCl及び NO_3を表わす。 0≦z≦8 1≦w≦9
(2) A copper oxide-based conductive ceramic represented by the following general formula [II]. Cu_7O_zA_w... [II] [II] In the formula, A represents Cl, or Cl and NO_3. 0≦z≦8 1≦w≦9
(3)In、Sc、Y、Tl及びGaよりなる群から選
ばれる1種又は2種以上の金属の硝酸塩及び/又は塩化
物と、銅の硝酸塩及び/又は塩化物とからなる混合物(
但し、該金属の硝酸塩と硝酸銅、該金属の塩化物と塩化
銅との組み合わせを除く。)を200〜600℃で加熱
することにより特許請求の範囲第1項に記載の銅酸化物
系導電性セラミックスを製造する方法。
(3) A mixture consisting of a nitrate and/or chloride of one or more metals selected from the group consisting of In, Sc, Y, Tl, and Ga and a nitrate and/or chloride of copper (
However, combinations of nitrates of the metals and copper nitrate, and combinations of chlorides of the metals and copper chloride are excluded. ) at 200 to 600°C.
(4)硝酸銅と塩化物との混合物を200〜600℃で
加熱することにより特許請求の範囲第2項に記載の銅酸
化物系導電性セラミックスを製造する方法。
(4) A method for producing the copper oxide-based conductive ceramics according to claim 2 by heating a mixture of copper nitrate and chloride at 200 to 600°C.
JP2078380A 1990-01-22 1990-03-27 Copper oxide conductive ceramics and method for producing the same Expired - Lifetime JP2967541B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2078380A JP2967541B2 (en) 1990-03-27 1990-03-27 Copper oxide conductive ceramics and method for producing the same
US07/639,931 US5112783A (en) 1990-01-22 1991-01-14 Conductive copper oxide ceramics and process for producing same
DE4101761A DE4101761C2 (en) 1990-01-22 1991-01-22 Electrically conductive copper oxide ceramics and process for their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2078380A JP2967541B2 (en) 1990-03-27 1990-03-27 Copper oxide conductive ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03279254A true JPH03279254A (en) 1991-12-10
JP2967541B2 JP2967541B2 (en) 1999-10-25

Family

ID=13660411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2078380A Expired - Lifetime JP2967541B2 (en) 1990-01-22 1990-03-27 Copper oxide conductive ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP2967541B2 (en)

Also Published As

Publication number Publication date
JP2967541B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
Coffeen Ceramic and dielectric properties of the stannates
Chamberland New defect vanadium dioxide phases
US5227257A (en) Compositions derived from bi4v2011
JPH03279254A (en) Copper oxide based conductive ceramics and production thereof
JP2656415B2 (en) Lithium crystallized glass
JP2979515B2 (en) Copper oxide conductive ceramics and method for producing the same
Kanno et al. Ionic conductivity of tetragonal PbSnF4 substituted by aliovalent cations Zr4+, Al3+, Ga3+, In3+ and Na+
JP2001064021A (en) Complex oxide having high seebeck coefficient and high electroconductivity
JP2865174B2 (en) Copper oxide conductive compound
JP3443638B2 (en) Bismuth-tungsten-cobalt oxide-based and bismuth-tungsten-niobium oxide-based solid solutions for oxide ion conductors and methods for producing the same
US5112783A (en) Conductive copper oxide ceramics and process for producing same
JP3163340B2 (en) Method for producing copper oxide-based conductive ceramics
JPH04108661A (en) Production of electrically conductive ceramics containing copper oxide
JP2710272B2 (en) Bismuth rare earth oxide solid solution having triclinic structure and method for producing the same
JP2526416B2 (en) Compound having an orthorhombic structure represented by Ag2HfS3 and method for producing the same
Bo et al. Synthesis, characterization and electrical properties of the new solid electrolyte materials Ce6− xErxMoO 15-δ (0.0< x< 1.5)
JP2009084098A (en) Method for producing silicon-containing tin dioxide powder
JP3997295B2 (en) Layered tin oxide and method for producing the same
JPH0574528B2 (en)
JPH01275425A (en) Strontium-copper oxide compound having rhombic laminated structure expressed by sr37cu63o100, its production, and electric conductor comprising it
Abrahams et al. BICUVOF: a new copper fluoride doped BIMEVOX
CN102254657B (en) MMC-based negative temperature coefficient power-type NTCR novel thermistor element
JPH0525541B2 (en)
JPH06239615A (en) Production of copper oxide-based electrically conductive ceramic thin film
Khalil Sol-gel synthesis, X-ray, infrared spectra and electrical conductivity of lanthanum/bariumcobaltite systems

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term