JP2656415B2 - Lithium crystallized glass - Google Patents

Lithium crystallized glass

Info

Publication number
JP2656415B2
JP2656415B2 JP30809891A JP30809891A JP2656415B2 JP 2656415 B2 JP2656415 B2 JP 2656415B2 JP 30809891 A JP30809891 A JP 30809891A JP 30809891 A JP30809891 A JP 30809891A JP 2656415 B2 JP2656415 B2 JP 2656415B2
Authority
JP
Japan
Prior art keywords
lithium
crystallized glass
glass
based composite
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30809891A
Other languages
Japanese (ja)
Other versions
JPH05139781A (en
Inventor
秀雄 細野
良弘 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP30809891A priority Critical patent/JP2656415B2/en
Publication of JPH05139781A publication Critical patent/JPH05139781A/en
Application granted granted Critical
Publication of JP2656415B2 publication Critical patent/JP2656415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、リチウム系結晶化ガ
ラスとその製造法に関するものである。さらに詳しく
は、この発明は、高リチウムイオン導電性の高エネルギ
ー密度電池等に有用なリチウム系複合酸化物の結晶化ガ
ラスとその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium crystallized glass and a method for producing the same. More specifically, the present invention relates to a crystallized glass of a lithium-based composite oxide useful for a high energy density battery or the like having high lithium ion conductivity and a method for producing the same.

【0002】[0002]

【従来の技術とその課題】従来より、エレクトロニクス
や各種の産業機器の技術高度化とともに、より小型の高
エネルギー密度の電池や高性能イオン導電性材料への要
請が強まっており、このような材料として有望視されて
いるリチウム系複合酸化物材料についても、その組成構
造や結晶技術、ガラス化技術等について精力的な検討が
進められている。
2. Description of the Related Art Conventionally, with the advancement of technology in electronics and various industrial equipment, there has been an increasing demand for smaller batteries of high energy density and high-performance ionic conductive materials. As for lithium-based composite oxide materials, which are regarded as promising, vigorous studies are being made on their composition structure, crystal technology, vitrification technology, and the like.

【0003】たとえば、最近、化学的に安定なLi1+x
Alx Ti2-x (PO4 3 がLi 3 NやLISICO
Nに匹敵する高い導電度を有することが報告されている
(J.Electrochem.Soc.136, 590 (1989) )。この新たに
報告されたリチウム系複合酸化物は、今後の新しい高リ
チウムイオン導電性固体を示唆するものとして注目され
る。
For example, recently, chemically stable Li1 + x
AlxTi2-x(POFour)ThreeIs Li ThreeN or LISICO
Reported to have high conductivity comparable to N
(J. Electrochem. Soc. 136, 590 (1989)). This new
The reported lithium-based composite oxide is expected to be
Attention has been drawn as a suggestion of a thion ion conductive solid.
You.

【0004】しかしながら、これまでの検討において
は、これらのリチウム系複合酸化物はいずれも焼結体で
あって、これらを結晶化ガラスとすることは実現されて
いない。高リチウムイオン導電性固体としてのリチウム
系複合酸化物がガラスの結晶化によって得られるのであ
れば、形状付与性やプロセスの単純化などが可能とな
り、これまでに報告されている粉末焼結法に比べてその
メリットは極めて大きなものとなる。
[0004] However, in the studies so far, all of these lithium-based composite oxides are sintered bodies, and it has not been realized to use them as crystallized glass. If a lithium-based composite oxide as a high lithium ion conductive solid can be obtained by crystallization of glass, shape imparting properties and simplification of the process can be achieved. The merits are much greater.

【0005】だが、現状では焼結体のみが示唆されてい
るにすぎないことから、今後の高イオン導電性リチウム
系複合酸化物の工業的展開にとって大きな問題が残され
ているのが実情である。そこでこの発明は、以上の通り
の事情に鑑みてなされたものであり、今後の新しい展開
を可能とする高リチウムイオン導電性固体としてのリチ
ウム系複合酸化物について、その結晶化ガラスと、その
ためのガラス結晶化の方法を提供することを目的として
いる。
[0005] However, at present, only a sintered body is suggested, so that a large problem remains in the future industrial development of a highly ion-conductive lithium-based composite oxide. . Therefore, the present invention has been made in view of the above-described circumstances, and a lithium-based composite oxide as a high lithium-ion conductive solid that enables a new development in the future, the crystallized glass thereof, It is intended to provide a method for glass crystallization.

【0006】[0006]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、次式(I)
The present invention solves the above-mentioned problems by providing the following formula (I):

【0007】[0007]

【化2】 Li1+XAlTi2−X(PO(0≦X≦1.
0)
Embedded image Li 1 + X Al X Ti 2-X (PO 4 ) 3 (0 ≦ X ≦ 1.
0)

【0008】で表わされるリチウム系複合酸化物からな
る結晶化ガラスを提供する。また、この発明は、前記の
結晶化ガラスをはじめとするリチウム系結晶化ガラスの
製造法をも提供する。すなわち、この発明は、高リチウ
ムイオン導電性固体として注目される前記式(I)で表
されるリチウム系複合酸化物について、焼結体としてで
はなしに、これを結晶化ガラスとして提供することを本
質的な特徴とし、これまでに知られていない新規な物質
構成とそのための方法を開示する。
A crystallized glass comprising a lithium-based composite oxide represented by the formula: The present invention also provides a method for producing a lithium-based crystallized glass including the above-mentioned crystallized glass. That is, the present invention provides a lithium-based composite oxide represented by the formula (I), which is attracting attention as a high lithium-ion conductive solid, not as a sintered body but as a crystallized glass. Disclose a novel material constitution and a method therefor, which are essential features and have not been known so far.

【0009】また、この発明においては、通常ではガラ
ス化しないリチウム系複合酸化物について、ガラス化の
ためにCa3 (PO4 2 を使用し、このCa3 (PO
4 2 との2相析出結晶化ガラスを製造することに方法
上の第一の特徴がある。この場合、リチウム系複合酸化
物とCa3 (PO4 2 とを融解してガラス化し、次い
で熱処理して結晶化する。また、第二の特徴は、このよ
うにして得られたリチウム系複合酸化物とCa3 (PO
4 2 との結晶化ガラスを酸処理してCa3(PO4
2 を溶出させ、多孔質のリチウム系結晶化ガラスを得る
ことにある。この多孔質化によって、連続した細孔を有
する結晶化ガラスが実現され、たとえば2次電池用イン
ターカレーション電極材料等として有用なリチウムイオ
ン導電性物質が選択的に取得可能となる。
Further, in the present invention, usually,
For lithium-based composite oxides that do not turn into
Ca forThree(POFour)TwoUsing this CaThree(PO
Four) TwoMethod for producing two-phase precipitated crystallized glass with
There is the first feature above. In this case, lithium-based composite oxidation
Things and CaThree(POFour)TwoIs melted and vitrified, and then
Heat treatment for crystallization. The second feature is this
The lithium-based composite oxide thus obtained and CaThree(PO
Four)TwoAcid treatment of the crystallized glass withThree(POFour)
TwoTo obtain porous lithium-based crystallized glass
It is in. This porosity makes continuous pores
Crystallized glass is realized.
Lithium ion useful as a catalysis electrode material
Conductive material can be selectively obtained.

【0010】リチウム系複合酸化物には、Liのほか、
Al,Ti,Zr,Nb,Cr,W,Mo,Hf,P等
の諸元素からなるものが使用される。以下、実施例を示
し、さらに詳しくこの発明について説明する。
[0010] Lithium-based composite oxides include, in addition to Li,
Materials composed of various elements such as Al, Ti, Zr, Nb, Cr, W, Mo, Hf, and P are used. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0011】[0011]

【実施例】LiCO3 ,TiO2 (アナターゼ),Al
(OH)3 およびH3 PO4 (85%液),さらにCa
CO3 を原料とし、(1+x)Li2 O・6.6 CaO・
(4−2x)TiO2 ・xAl2 3 ・5.2 P2
5 (モル比)となるようにシリカガラスビーカーに入
れ、水を加えた後に攪拌し、乾燥後、200 °Cに加熱
し、12時間保持した。
EXAMPLE LiCO 3 , TiO 2 (anatase), Al
(OH) 3 and H 3 PO 4 (85% solution), and further Ca
Using CO 3 as a raw material, (1 + x) Li 2 O · 6.6 CaO ·
(4-2x) TiO 2 · xAl 2 O 3 · 5.2 P 2 O
The mixture was placed in a silica glass beaker at 5 (molar ratio), stirred after adding water, dried, heated to 200 ° C., and held for 12 hours.

【0012】より具体的には、前記xの値を0〜1の範
囲で各種変更し、かつ、前記式(I)で表わされるリチ
ウム系複合酸化物と、Ca3 (PO4 2 とのモル比を
各種変更して上記の操作を行った。得られた乾燥生成物
をPtルツボに入れ、通常の融液急冷法によりガラス化
した。上記モル比が1:1.1 において最も安定したガラ
スが得られた。
More specifically, the value of x is variously changed in the range of 0 to 1, and the lithium complex oxide represented by the formula (I) is mixed with Ca 3 (PO 4 ) 2 . The above operation was performed with various changes in the molar ratio. The obtained dried product was put in a Pt crucible and vitrified by a usual melt quenching method. The most stable glass was obtained at the above molar ratio of 1: 1.1.

【0013】次いで、空気中で580 °C、20時間、続
いて680 〜700 °Cで12時間の2段階の熱処理を行
い、結晶化した。この結晶化により、LiTi2 (PO
4 3 :Alと、β−Ca3 (PO4 2 の2相が析出
した緻密な結晶化ガラスがクラックの変形をともなわず
に得られた。
[0013] Then, continue in the air at 580 ° C for 20 hours.
And a two-stage heat treatment at 680 to 700 ° C for 12 hours.
And crystallized. By this crystallization, LiTiTwo(PO
Four)Three: Al and β-CaThree(POFour) TwoPrecipitation of two phases
Dense crystallized glass without crack deformation
Was obtained.

【0014】図1は、x=0.4 の場合のX線回折(XR
D)パターンを示したものであり、また、図2は、これ
らの結晶化ガラスとその母ガラスの電気導電度の温度変
化を示したものである。図2中の符号G,GCは、各々
母ガラスと結晶化ガラスを示し、かつ、この符号の後の
数字は、xの値を示している。どの組成でもガラスを結
晶化すると数桁電導度が増大することがわかる。x=0.
4 が最大の電導度をあたえ、300Kで5×10-2 s/c
m 、600Kで2×10-2s/mとなる。このときの活性
化エネルギーは約30KJ/molであった。
FIG. 1 shows an X-ray diffraction (XR) when x = 0.4.
D) shows a pattern, and FIG. 2 shows a change in the electric conductivity of the crystallized glass and its mother glass with temperature. Symbols G and GC in FIG. 2 indicate a mother glass and a crystallized glass, respectively, and the number after the symbol indicates the value of x. It can be seen that the conductivity increases by several orders of magnitude when the glass is crystallized in any composition. x = 0.
4 gives maximum conductivity, 5 × 10 -2 s / c at 300K
m, 2 × 10 −2 s / m at 600K. The activation energy at this time was about 30 KJ / mol.

【0015】なお、電気電導度の測定は、結晶化ガラス
については複素インピーダンスプロットによって、また
母ガラスについては直流法により求めた。試料中のTi
3+濃度はESRにより測定した。この結果から明らかな
ように、ガラスを結晶化することにより電導度が飛躍的
に増大する。これはこの発明の一つの重要な効果であ
る。
The electric conductivity was measured by a complex impedance plot for crystallized glass and by a direct current method for mother glass. Ti in the sample
The 3+ concentration was measured by ESR. As is apparent from this result, the conductivity is dramatically increased by crystallizing the glass. This is one important effect of the present invention.

【0016】次いで、得られた結晶化ガラスを塩酸もし
くは硝酸に浸漬する。たとえばIN−塩酸に、20〜10
0 °Cの温度で24時間浸漬する。これにより、Ca3
(PO4 2 を選択的に溶出した。その結果、直径15
0〜200nmの連続した細孔からなるバルク状の前記式
(I)出表される多孔質結晶化ガラスを得た。この多孔
質リチウム系複合酸化物は図2に示した結晶化ガラスと
ほぼ同等の高導電性を示し、、比表面積は40〜70m
2 と大きかった。また、上記の結晶化過程において各種
の形状に形状付与し、さらに酸処理することにより所望
の形状のものが容易に得られた。
Next, the obtained crystallized glass is immersed in hydrochloric acid or nitric acid. For example, 20- 10
Soak at a temperature of 0 ° C. for 24 hours. Thereby, Ca 3
(PO 4 ) 2 was eluted selectively. As a result, the diameter 15
A bulk porous crystallized glass represented by the above formula (I) having continuous pores of 0 to 200 nm was obtained. This porous lithium-based composite oxide shows almost the same high conductivity as the crystallized glass shown in FIG. 2, and has a specific surface area of 40 to 70 m.
It was 2 and big. In the above-mentioned crystallization process, a desired shape was easily obtained by giving shapes to various shapes and further performing an acid treatment.

【0017】[0017]

【発明の効果】以上詳しく説明したとおり、この発明に
より、形状付与性やプロセスの簡便化に優れ、極めて高
い電導度のリチウム系複合酸化物が得られる。電池材料
として極めて有用である。
As described in detail above, according to the present invention, a lithium-based composite oxide having excellent shape imparting properties and simplification of the process and having extremely high conductivity can be obtained. It is extremely useful as a battery material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】リチウム系複合酸化物とCa3 (PO4 2
の結晶化ガラスのX線回折パターンである。
FIG. 1 is an X-ray diffraction pattern of a crystallized glass of a lithium-based composite oxide and Ca 3 (PO 4 ) 2 .

【図2】リチウム系複合酸化物Ca3 (PO4 2 の電
導度と温度変化との相関図である。
FIG. 2 is a correlation diagram between the conductivity of lithium-based composite oxide Ca 3 (PO 4 ) 2 and a change in temperature.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 次式(I) 【化1】 Li1+XAlTi2−X(PO(0≦X≦1.
0) で表わされるリチウム系結晶化ガラス。
(1) The following formula (I): Li 1 + X Al X Ti 2-X (PO 4 ) 3 (0 ≦ X ≦ 1.
0) A lithium-based crystallized glass represented by the formula:
【請求項2】 リチウム系複合酸化物をCa3 (P
4 2 とともに融解してガラス化し、次いで熱処理し
て結晶化させ、さらに酸処理してCa3 (PO4 2
溶出させることを特徴とするリチウム系結晶化ガラスの
製造法。
2. The method according to claim 1, wherein the lithium-based composite oxide is Ca 3 (P
A method for producing a lithium-based crystallized glass, comprising fusing together with O 4 ) 2 to form a glass, then heat-treating the crystal, and further performing acid treatment to elute Ca 3 (PO 4 ) 2 .
JP30809891A 1991-11-22 1991-11-22 Lithium crystallized glass Expired - Lifetime JP2656415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30809891A JP2656415B2 (en) 1991-11-22 1991-11-22 Lithium crystallized glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30809891A JP2656415B2 (en) 1991-11-22 1991-11-22 Lithium crystallized glass

Publications (2)

Publication Number Publication Date
JPH05139781A JPH05139781A (en) 1993-06-08
JP2656415B2 true JP2656415B2 (en) 1997-09-24

Family

ID=17976843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30809891A Expired - Lifetime JP2656415B2 (en) 1991-11-22 1991-11-22 Lithium crystallized glass

Country Status (1)

Country Link
JP (1) JP2656415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195232A1 (en) 2016-05-10 2017-11-16 株式会社住田光学ガラス Method for producing ltp or latp crystal particle

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211532B2 (en) * 1995-11-15 2007-05-01 Kabushiki Kaisha Ohara Alkali ion conductive glass-ceramics and electric cells and gas sensors using the same
EP1029828B1 (en) * 1996-10-28 2003-02-26 Kabushiki Kaisha Ohara Lithium ion conductive glass-ceramics and electric cells and gas sensors using the same
DE69722272T2 (en) * 1997-02-06 2004-04-01 Kabushiki Kaisha Ohara, Sagamihara Lithium-ion conductive glass ceramics and electrical cells and gas sensors manufactured with them
JP3643289B2 (en) 1999-04-30 2005-04-27 株式会社オハラ Glass ceramic composite electrolyte and lithium secondary battery
JP4691777B2 (en) * 2000-11-15 2011-06-01 株式会社豊田中央研究所 Method for producing lithium ion conductor
JP6438798B2 (en) * 2015-02-24 2018-12-19 株式会社住田光学ガラス Method for producing LTP or LATP crystal particles
CN104876447B (en) * 2015-05-14 2017-04-26 西安交通大学 Preparation method of Li-Al-Si porous microcrystalline glass
WO2020158666A1 (en) 2019-01-29 2020-08-06 日本化学工業株式会社 Method for producing lithium titanium phosphate
JP6903387B2 (en) 2019-01-29 2021-07-14 日本化学工業株式会社 Manufacturing method of lithium titanium phosphate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195232A1 (en) 2016-05-10 2017-11-16 株式会社住田光学ガラス Method for producing ltp or latp crystal particle
US10611665B2 (en) 2016-05-10 2020-04-07 Sumita Optical Glass, Inc. Method of producing LTP or LATP crystal particle

Also Published As

Publication number Publication date
JPH05139781A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
Anantharamulu et al. A wide-ranging review on Nasicon type materials
Voskanyan et al. Entropy stabilization of TiO2–Nb2O5 Wadsley–Roth shear phases and their prospects for lithium-ion battery anode materials
Kanno et al. Lithium ionic conductor thio-LISICON: the Li2 S GeS2 P 2 S 5 system
Leo et al. Lithium conducting glass ceramic with Nasicon structure
CN103402939B (en) The glass ceramics of conducting lithium ions and the purposes of described glass ceramics
JP2656415B2 (en) Lithium crystallized glass
JP2000034134A (en) Lithium ion conductive glass ceramics and cell or battery and gas sensor using the same
Wu et al. Synthesis and characterization of Li4SiO4 nano-powders by a water-based sol–gel process
JP3012211B2 (en) Lithium ion conductive glass ceramics and batteries and gas sensors using the same
CN109195918B (en) Low-symmetry garnet-related structure solid electrolyte and lithium-ion secondary battery
JP2018052755A (en) Lithium ion conductive material
JP3126306B2 (en) Lithium ion conductive glass ceramics and method for producing the same
CN101746834B (en) Preparation method of perovskite composite oxide La1-xCaxFeO3 ultrafine powder
JPH11157872A (en) Lithium ion conductive glass ceramics and cell and gas sensor using same
JP3854985B2 (en) Vanadate glass and method for producing vanadate glass
CN113666420A (en) A kind of bimetallic niobium oxide and its carbon composite material, preparation method and application
Mizrahi et al. New phases in the binary system PbO–BiVO 4: Pb 2 BiVO 6 and Pb 4 BiVO 8
Ivanov-Schitz et al. Li3Fe2 (PO4) 3 solid electrolyte prepared by ultrasonic spray pyrolysis
JP2000026135A (en) Lithium-ionically conductive glass-ceramics and cell and gas sensor, using the same
Bejaoui et al. Spectroscopic investigations on vanthoffite ceramics partially doped with cobalt
JP2002252005A (en) Oxide ion electric conductor and its manufacturing method
JPH1131413A (en) Solid electrolyte and method for producing the same
Jemmali et al. Polycrystalline powder synthesis methods
JP2003277024A (en) Oxide ion conductor and manufacturing method thereof
Zheng et al. Effects of heat treatment on Na-ion conductivity and conduction pathways of fluorphosphate glass-ceramics

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090530

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110530

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110530

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120530

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 15