JP2528356B2 - Conductive ceramics and manufacturing method thereof - Google Patents
Conductive ceramics and manufacturing method thereofInfo
- Publication number
- JP2528356B2 JP2528356B2 JP63328871A JP32887188A JP2528356B2 JP 2528356 B2 JP2528356 B2 JP 2528356B2 JP 63328871 A JP63328871 A JP 63328871A JP 32887188 A JP32887188 A JP 32887188A JP 2528356 B2 JP2528356 B2 JP 2528356B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- cuo
- raw material
- firing
- resistivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は導電性セラミックス磁器またはセラミックス
電子部品の電極材料として用いられる導電性セラミック
スおよびその製造方法に関する。TECHNICAL FIELD The present invention relates to a conductive ceramic used as an electrode material for a conductive ceramic porcelain or a ceramic electronic component, and a method for producing the same.
従来の技術 導電性セラミックス材料として知られるペロブスカイ
ト型構造のBaPbO3(以下BPOと略記する)は抵抗率が10
-4〜10-3Ωcm程度と低く、酸性化雰囲気に強い上、材料
として安価であるなどの点から、導電性セラミックスと
して用いられている。またこのBPOは、他のセラミック
ス(誘電体、半導体)との接合性が良好であるため、セ
ラミックス電子部品の電極材料にも用いられている。2. Description of the Related Art BaPbO 3 (hereinafter abbreviated as BPO) having a perovskite structure known as a conductive ceramic material has a resistivity of 10 or less.
It is used as a conductive ceramic because it is as low as -4 to 10 -3 Ωcm, is resistant to acidified atmosphere, and is inexpensive as a material. In addition, this BPO is used as an electrode material for ceramic electronic components because it has good bondability with other ceramics (dielectrics, semiconductors).
導電性セラミックスとして、あるいは導電ペースト用
導電酸化物として使用されるBPOは一般に次のような工
程により作成されている。BPO used as a conductive ceramic or a conductive oxide for a conductive paste is generally produced by the following steps.
1.原料配合 2.酸素存在雰囲気下での仮焼成(850℃、3時間) 3.粉砕 4.酵素存在雰囲気下での仮焼成(850℃、3時間) 5.粉砕 6.プレス成型 7.酸素存在雰囲気下での本焼成(1,050〜1,110℃,3時
間) 以上のような工程を経て抵抗率が10-4Ωcm代の導電性
セラミックス磁器が作成できるが、一方、導電性ペース
ト用の原料となるBPO粉末は前記の本焼成工程後のバル
ク状のセラミックスを微粉砕することにより調製するこ
とができる。1. Raw material blending 2. Pre-baking in an oxygen atmosphere (850 ° C, 3 hours) 3. Crushing 4. Pre-baking in an enzyme atmosphere (850 ° C, 3 hours) 5. Crushing 6. Press molding 7. Main firing in an oxygen atmosphere (1,050 to 1,110 ℃, 3 hours) Through the above steps, a conductive ceramic porcelain with a resistivity of 10 -4 Ωcm can be made. On the other hand, a raw material for conductive paste The BPO powder to be obtained can be prepared by finely pulverizing the bulk ceramics after the main firing step.
発明が解決しようとする課題 従来技術によれば、前述の如く抵抗率10-4Ωcm代のBP
Oセラミックスを得るためには、酸素存在雰囲気中にお
いて仮焼と粉砕を繰返し、かつ本焼成工程において満足
すべき焼結体を得るため1,050℃以上の焼成温度で焼成
することが不可欠である。Problems to be Solved by the Invention According to the prior art, as described above, BP having a resistivity of 10 −4 Ωcm
In order to obtain O ceramics, it is indispensable to repeat calcination and pulverization in an oxygen atmosphere and to sinter at a calcination temperature of 1,050 ° C or higher in order to obtain a satisfactory sintered body in the main calcination step.
したがって、本発明の目的は、従来技術のBPOの製法
における仮焼工程を必要とせず、本焼成においても800
〜950℃、好ましくは800〜920℃という低い焼成温度で
従来技術によるものと同等な特性、例えば10-4Ωcm程度
の抵抗率を有する稠密な焼結体を得ることのできる製造
方法およびセラミックス構造に特徴をもつ焼結体を提供
することである。この目的は、PbO2−BaCO3−CuO系原料
を適当な配合比すなわち組成式(Pb1-xBax)1-yCuyO
z(但し0.1≦x≦0.6,0<y≦0.9,0.3≦z≦2.0)であ
らわされる如く配合した混合粉末にバインダーを混合
し、加圧成形し、この成形物を大気中800〜950℃、好ま
しくは800〜920℃の範囲で焼成することからなる本発明
の製造方法によって達成される。上記の組成式における
xおよびyの範囲は実験結果に基づいて決定されたもの
であり、zは焼成の結果、自動的に定まる値である。な
お、本発明の製造方法によって得られた焼結体はその組
織構造がPbBaO3およびその中に粒子状に析出したCuOか
らなることを特徴とする。Therefore, the object of the present invention does not require the calcination step in the prior art BPO manufacturing method,
To 950 ° C., preferably 800 to 920 ° C., a manufacturing method and a ceramic structure capable of obtaining a dense sintered body having characteristics similar to those of the prior art, for example, a resistivity of about 10 −4 Ωcm at a low firing temperature. It is to provide a sintered body characterized by the above. The purpose is to use a PbO 2 —BaCO 3 —CuO-based raw material with an appropriate compounding ratio, that is, a composition formula (Pb 1-x Ba x ) 1-y Cu y O
A binder is mixed with a mixed powder compounded as represented by z (however, 0.1 ≦ x ≦ 0.6, 0 <y ≦ 0.9, 0.3 ≦ z ≦ 2.0) and pressure-molded. And preferably by firing in the range of 800 to 920 ° C. The ranges of x and y in the above composition formula are determined based on experimental results, and z is a value automatically determined as a result of firing. The sintered body obtained by the production method of the present invention is characterized in that its structural structure is composed of PbBaO 3 and CuO precipitated in the form of particles therein.
課題を解決するための手段及び作用 本発明の製造方法によれば、PbO2−BaCO3−CuO系原料
を前述のような適当な配合比で混合処理した成形物が80
0〜950℃好ましくは800〜920℃の温度範囲で大気中で焼
成されるので、従来技術に基づくPbO2−BaCO3系原料に
よる導電性セラミックスBaPbO3(BPOと称する)の製造
工程に不可欠な仮焼工程を必要とせず、また焼成工程に
おける焼成温度は後者に比較して100〜300℃も低い温
度、最も一般的には180〜200℃も低い温度で焼結するこ
とが可能である。したがって、本発明によれば、例えば
抵抗値10-4Ωcm代の特性を有するBPOに匹敵する導電性
セラミックスの製造が、適切な配合比、例えばPb:Ba:Cu
=3:3:4、を選ぶことによって原料を大気中920℃で焼成
するだけで実現可能となったのである。Means and Actions for Solving the Problems According to the production method of the present invention, a molded article obtained by mixing and treating a PbO 2 —BaCO 3 —CuO-based raw material at an appropriate mixing ratio as described above is 80
0 to 950 ° C. Since preferably it is calcined in the atmosphere at a temperature in the range of eight hundred to nine hundred and twenty ° C., essential in a manufacturing process for according to the prior art PbO 2 -BaCO 3 based material by the conductive ceramic BaPbO 3 (referred to as BPO) A calcination step is not required, and the firing temperature in the firing step can be as low as 100 to 300 ° C., most commonly 180 to 200 ° C. lower than the latter. Therefore, according to the present invention, for example, production of a conductive ceramic comparable to BPO having characteristics of a resistance value of 10 −4 Ωcm can be performed with an appropriate mixing ratio, for example, Pb: Ba: Cu.
By choosing = 3: 3: 4, it was possible to achieve this simply by firing the raw material at 920 ° C in the atmosphere.
本発明の方法ではBa−Pb−Cu系原料を用いるのでこれ
ら原料が焼結してBaPbO3が析出する際に銅あるいは銅酸
化物が液相を形成して、固相反応の際の原子の移動を容
易にするため、焼結が従来技術の場合に比べて低温度で
すみやかに進行するのであると推定される。すなわち本
発明のPbO2−BaCO3−CuO系においては主としてCuOが溶
剤となって液相を形成し、BaCO3結晶粒の表面をぬらす
ことによって固相反応が進行し、BaPbO3が析出する一
方、BaPbO3の結晶成長に伴いCuOは押し出され粒状に析
出する。Since the method of the present invention using the Ba-Pb-Cu based material and copper or copper oxide in these raw materials BaPbO 3 sintered is deposited to form a liquid phase, the atoms during the solid-phase reaction It is presumed that the sintering proceeds promptly at a lower temperature than in the prior art in order to facilitate the transfer. That is, in the PbO 2 —BaCO 3 —CuO system of the present invention, mainly CuO serves as a solvent to form a liquid phase, and the solid phase reaction proceeds by wetting the surface of the BaCO 3 crystal grains, while BaPbO 3 precipitates. , CuO is extruded and precipitates in the form of grains with the crystal growth of BaPbO 3 .
したがって、本発明の方法によるセラミックス焼結体
は、その組織構造においてBaPbO3とその中に粒子状に析
出したCuOとが存在するのが特徴である。第2図中
「●」を付けた位置のピークはCuOの存在によるもので
あり、第1図にはないものである。Therefore, the ceramic sintered body according to the method of the present invention is characterized by the presence of BaPbO 3 and CuO precipitated in the form of particles in its structure. The peak at the position marked with "●" in Fig. 2 is due to the presence of CuO and is not shown in Fig. 1.
以下、実施例により、本発明をさらに詳細に説明す
る。Hereinafter, the present invention will be described in more detail with reference to examples.
実施例 1 (1) 原料粉末としてPbO2(半井化学薬品製、純度9
9.5%)、BaCO3(関東化学製、純度99.5%)およびCuO
(キシダ化学製、純度99.5%)をPb:Ba:Cuのモル比がl:
m:n(l=1,2,…8;m=1,2,…8;l+m+n=10)となる
ように配合して、 組成式(Pb1-xBax)1-yCuyOz(0.1≦x≦0.6,0<y≦0.
9,0.3≦z≦2.0)で表わされる原料配合物をつくり、ボ
ールミルによりエタノール中24時間混合した。Example 1 (1) PbO 2 (manufactured by Hanai Chemical Co., purity 9
9.5%), BaCO 3 (Kanto Chemical, purity 99.5%) and CuO
(Manufactured by Kishida Chemical Co., Ltd., purity 99.5%) with a Pb: Ba: Cu molar ratio of l:
m: n (l = 1,2, ... 8; m = 1,2, ... 8; l + m + n = 10), and the composition formula (Pb 1-x Ba x ) 1-y Cu y O z (0.1 ≦ x ≦ 0.6, 0 <y ≦ 0.
9, 0.3 ≦ z ≦ 2.0) was prepared and mixed in ethanol by a ball mill for 24 hours.
(2) 得られた混合粉末にバインダー(AS−5904:東
亜合成製)を5〜6重量%混合し、造粒した後、2000kg
/cm2の圧力で加圧成形した。(2) A binder (AS-5904: manufactured by Toagosei) is mixed in the obtained mixed powder in an amount of 5 to 6% by weight, and after granulation, 2000 kg
Pressure molding was performed at a pressure of / cm 2 .
(3) この成形物をアルミナ板上にのせ、パイプ炉に
て大気中800℃で6時間焼成し、焼結体を作製した。(3) This molded product was placed on an alumina plate and fired in a pipe furnace at 800 ° C. for 6 hours to produce a sintered body.
(4) 得られた焼結体を2×2×10(mm)程度の拍子
木状にカットし、これに銀電極を焼付けて四端子法によ
る抵抗率測定を行った。測定結果を第1表に示す。(4) The obtained sintered body was cut into a timepiece pattern of about 2 × 2 × 10 (mm), and a silver electrode was baked on this, and the resistivity was measured by the four-terminal method. The measurement results are shown in Table 1.
なお、以下の表において、m,∞等の表示はそれぞれ下
記を示すものである。In addition, in the following table, the indications such as m and ∞ are as follows.
m…溶融 ∞…抵抗値が高すぎるため測定不能 第1表の結果から明らかであるように、組成式(Pb
1-xBax)1-yCuyOz………(1) におけるxの値が0.6を越えるとPb:Ba:Cuの配合をどの
ように調節しても10-4〜10-3Ωcm程度の抵抗率を有する
導電性セラミックスを得ることはできなかった。一方、
yの値は0<y0.9の広い範囲にわたって変え得るこ
とがわかった。zの値は焼成条件により自動的に定まる
値であるが、理論的な推定値が表の該当欄に示す通りで
あることから、0.3≦z≦2.0と記すことができるので、
これを付記したものである。m… Melting ∞… Measurement is impossible because the resistance value is too high As is clear from the results in Table 1, the composition formula (Pb
1-x Ba x ) 1-y Cu y O z ………… If the value of x in (1) exceeds 0.6, no matter how the Pb: Ba: Cu composition is adjusted, it will be 10 -4 to 10 -3. It was not possible to obtain a conductive ceramic having a resistivity of about Ωcm. on the other hand,
It was found that the value of y can be varied over a wide range of 0 <y0.9. The value of z is a value automatically determined by the firing conditions, but since the theoretical estimated value is as shown in the relevant column of the table, it can be written as 0.3 ≦ z ≦ 2.0,
This is a supplementary note.
実施例 2 Pb:Ba:Cuの配合比を改めて様々に定め、焼成温度を90
0℃としたこと以外は実施例1の場合と同様にして焼結
体を作製し、抵抗率測定を行った。結果を第2表に示
す。Example 2 The composition ratio of Pb: Ba: Cu was variously determined and the firing temperature was set to 90.
A sintered body was prepared in the same manner as in Example 1 except that the temperature was 0 ° C., and the resistivity was measured. The results are shown in Table 2.
第2表の結果からも、前述の組成式(1)におけるx
の値が0.6以下でなければ10-4〜10-3Ωcm程度の抵抗率
を持つ導電性セラミックスは得られないことが理解され
る。 Also from the results in Table 2, x in the above composition formula (1)
It is understood that a conductive ceramic having a resistivity of about 10 -4 to 10 -3 Ωcm cannot be obtained unless the value of is less than 0.6.
実施例 3 Pb:Ba:Cuの配合比を改めて様々に定め、焼成温度を92
0℃としたこと以外は実施例1の場合と同様にして焼結
体を作製し、抵抗率測定を行った。結果を第3表に示
す。Example 3 The composition ratio of Pb: Ba: Cu was variously determined and the firing temperature was set to 92.
A sintered body was prepared in the same manner as in Example 1 except that the temperature was 0 ° C., and the resistivity was measured. The results are shown in Table 3.
第3表の結果からも、前述の組成式(1)におけるx
の値は0.6以下でなければ10-4〜10-3Ωcm程度の抵抗率
を持つ導電性セラミックスは得られないことが理解され
る。 Also from the results of Table 3, x in the above composition formula (1)
It is understood that unless the value of is less than 0.6, a conductive ceramic having a resistivity of about 10 −4 to 10 −3 Ωcm cannot be obtained.
実施例 4 Pb:Ba:Cuの配合比を4:4:2に定め(x=0.5,y=0.2に
相当する)、焼成温度を940℃としたこと以外は実施例
1の場合と同様にして焼結体を作製し、抵抗率測定を行
なった。ρ=9.92mΩcmの抵抗率を持つ焼結体が得られ
ていることがわかった。ただし焼成時に、基板(アルミ
ナ)とはげしく反応したことが認められた。Example 4 The same as Example 1 except that the mixing ratio of Pb: Ba: Cu was set to 4: 4: 2 (corresponding to x = 0.5, y = 0.2) and the firing temperature was 940 ° C. Then, a sintered body was produced and the resistivity was measured. It was found that a sintered body having a resistivity of ρ = 9.92 mΩcm was obtained. However, it was confirmed that during firing, it reacted violently with the substrate (alumina).
上記のことから、本発明の方法で導電性セラミックス
を製造するために採用できる温度は最も広い範囲として
は800〜950℃であると言えるが、940℃では既にやゝ高
過ぎるきらいがあり、800〜920℃が最適温度範囲である
と結論できる。From the above, it can be said that the temperature that can be adopted for producing the conductive ceramics by the method of the present invention is 800 to 950 ° C. as the widest range, but at 940 ° C., there is already a little too high, 800 It can be concluded that ~ 920 ° C is the optimum temperature range.
比較例 1 (1) 原料粉末PbO2,BaCO3をPb:Ba=1:1となるように
配合してボールミルでエタノール中24時間混合した。Comparative Example 1 (1) Raw material powders PbO 2 and BaCO 3 were blended so as to be Pb: Ba = 1: 1 and mixed in ethanol in a ball mill for 24 hours.
(2) 得られた混合粉末をアルミナボートに入れ、酸
素ガスを通過させたパイプ炉で850℃3時間仮焼し、炉
から取出して粉砕した。さらにこの仮焼、粉砕工程を再
度繰返した。(2) The obtained mixed powder was put into an alumina boat, calcined in an oxygen gas-passing pipe furnace at 850 ° C. for 3 hours, taken out of the furnace and pulverized. Furthermore, this calcination and crushing process was repeated again.
(3) 得られた仮焼粉末を2,000kg/cm2の圧力で加圧
成形した。(3) The obtained calcined powder was pressure-molded at a pressure of 2,000 kg / cm 2 .
(4) この成形物をアルミナ板上にのせ、パイプ炉に
て大気中1,100℃で1時間焼成し焼結体を得た。(4) This molded product was placed on an alumina plate and fired in a pipe furnace at 1,100 ° C. for 1 hour in the air to obtain a sintered body.
(5) 得られた焼結体を実施例1と同様に抵抗率測定
を行った。結果を第4表に示す。(5) The resistivity of the obtained sintered body was measured in the same manner as in Example 1. The results are shown in Table 4.
比較例 2 (1)原料粉末PbO2,BaCO3をPb:Ba=1:1となるように配
合してボールミルでエタノール中24時間混合した。Comparative Example 2 (1) Raw material powders PbO 2 and BaCO 3 were blended so as to be Pb: Ba = 1: 1 and mixed in ethanol in a ball mill for 24 hours.
(2) 得られた混合粉末にバインダーを5〜6重量%
混合し、造粒した後、2,000kg/cm2の圧力で加圧成形し
た。(2) 5-6% by weight of binder in the obtained mixed powder
After mixing and granulating, pressure molding was performed at a pressure of 2,000 kg / cm 2 .
(3) この成形物をアルミナ板上にのせ、パイプ炉に
て大気中1,000℃で6時間焼成し焼結体を作製した。(3) This molded product was placed on an alumina plate and fired in a pipe furnace at 1,000 ° C. for 6 hours to produce a sintered body.
(4) 得られた焼結体を実施例1と同様にして抵抗率
を測定した。結果を同じく第4表に示す。(4) The resistivity of the obtained sintered body was measured in the same manner as in Example 1. The results are also shown in Table 4.
比較例 3 比較例2において焼成温度を1,100とした以外は同様
にして焼結体を作製し、抵抗率を測定した。結果を同じ
く第4表に示す。Comparative Example 3 A sintered body was prepared in the same manner as in Comparative Example 2 except that the firing temperature was 1,100, and the resistivity was measured. The results are also shown in Table 4.
第1〜3表の抵抗率測定結果から、本発明の好ましい
実施態様を次のように要約することができる。 From the resistivity measurement results in Tables 1 to 3, the preferred embodiments of the present invention can be summarized as follows.
(1) 本発明によれば、従来方法に基づく比較例1に
示したBPOの10-4Ωcm代の特性を持つ導電性セラミック
スが例えば配合原料中の金属元素のモル比がPb:Ba:Cu=
3:3:4の試料を920℃で6時間大気中で焼成することによ
り得られる。(1) According to the present invention, the conductive ceramic having the characteristic of BPO of 10 −4 Ωcm shown in Comparative Example 1 based on the conventional method has, for example, the molar ratio of metal elements in the compounding raw material of Pb: Ba: Cu. =
It is obtained by baking a 3: 3: 4 sample at 920 ° C. for 6 hours in the atmosphere.
(2) 例えば金属元素のモル比がPb:Ba:Cu=4:4:2、
または3:4:3、または2:2:6の組成をもつ原料を大気中92
0℃で焼成するか、あるいはPb:Ba:Cu=5:4:1、または4:
4:2、または3:3:4の組成をもつ原料を大気中900℃で焼
成することにより、比較例3に示したBPO(1,100℃焼
成)とほぼ同等な特性を持つ導電性セラミックスを得る
ことができる。(2) For example, the metal element molar ratio is Pb: Ba: Cu = 4: 4: 2,
Or 92: 3: 4: 3, or 2: 2: 6
Bake at 0 ° C or Pb: Ba: Cu = 5: 4: 1 or 4:
By firing a raw material having a composition of 4: 2 or 3: 3: 4 at 900 ° C. in the atmosphere, a conductive ceramic having substantially the same characteristics as BPO (calcined at 1,100 ° C.) shown in Comparative Example 3 is obtained. be able to.
(3) また、例えば金属元素のモル比がPb:Ba:Cu=5:
3:2、または3:4:3、または3:2:5、または2:2:6の組成を
もつ原料を大気中900℃で焼成するか、あるいはPb:Ba:C
u=5:4:1、または4:4:2、または4:2:4、または3:3:4、
または2:3:5、または2:2:6の組成をもつ原料を大気中80
0℃で6時間焼成することにより、比較例2に示したBPO
の10-3Ωcm代の特性(1,000℃で焼成)とほぼ同等な特
性を持つ導電性セラミックスを得ることができる。(3) Further, for example, the molar ratio of the metal elements is Pb: Ba: Cu = 5:
A raw material having a composition of 3: 2, or 3: 4: 3, or 3: 2: 5, or 2: 2: 6 is calcined in air at 900 ° C., or Pb: Ba: C is used.
u = 5: 4: 1, or 4: 4: 2, or 4: 2: 4, or 3: 3: 4,
Or a raw material having a composition of 2: 3: 5 or 2: 2: 6 in the air 80
BPO shown in Comparative Example 2 was obtained by firing at 0 ° C. for 6 hours.
It is possible to obtain conductive ceramics having characteristics almost equivalent to those of the 10 -3 Ωcm generation (calcined at 1,000 ° C).
発明の効果 以上述べた如く、本発明の導電性セラミックスの製造
方法では、Ba−Pb系酸化物原料を用いてBaPbO3を作成す
る場合に比較して仮焼工程の必要がなく、本焼成だけで
所望の導電性セラミックス焼結体を製造することがで
き、焼成温度も100℃以上低い温度で焼結させることが
可能となり、さらに適切な原料配合割合を選べば焼成率
(理論密度に対する焼結密度の比率)もBaPbO3の場合の
85.9%(例えば比較例1)に対して例えばPb:Ba:Cu=3:
3:4における92.1%のようにより稠密な焼結体を得るこ
とができる。Effects of the Invention As described above, in the method for producing a conductive ceramics of the present invention, there is no need for a calcination step as compared with the case of producing BaPbO 3 using a Ba-Pb-based oxide raw material, and only main firing is required. The desired conductive ceramics sintered body can be manufactured with, and it becomes possible to sinter at a firing temperature lower than 100 ° C, and if the proper raw material mixture ratio is selected, the firing rate (sintering to theoretical density Density ratio) is also for BaPbO 3
For example, Pb: Ba: Cu = 3: for 85.9% (for example, Comparative Example 1).
A denser sintered body can be obtained such as 92.1% at 3: 4.
第1図は比較例1のBPOのX線回折パターンを示す図、
第2図は本発明の配合割合Pb:Ba:Cu=3:3:4で920℃焼成
の場合のX線回折パターンを示す図である。 図中●印はCuOの存在を明示するために付した記号であ
る。FIG. 1 is a diagram showing an X-ray diffraction pattern of BPO of Comparative Example 1,
FIG. 2 is a diagram showing an X-ray diffraction pattern in the case of firing at 920 ° C. with the compounding ratio Pb: Ba: Cu = 3: 3: 4 of the present invention. The symbol ● in the figure is a symbol added to indicate the presence of CuO.
Claims (2)
≦0.9,0.3≦z≦2.0)で表される如く配合してなる焼結
体であって、その組織構造がPbBaO3およびその中に粒子
状に析出したCuOからなることを特徴とするPb−Ba−Cu
系導電性セラミックス。1. A composition formula (Pb 1-x Ba x ) 1-y Cu y O z (where 0.1 ≦ x ≦ 0.6,0 <y is used for a PbO 2 —BaCO 3 —CuO-based raw material.
≦ 0.9, 0.3 ≦ z ≦ 2.0), which is a sintered body compounded as expressed by PbBaO 3 and CuO precipitated in the form of particles into the sintered body. Ba-Cu
Series conductive ceramics.
≦0.9,0.3≦z≦2.0)で表される如く配合した混合粉末
にバインダーを混合し、加圧成形し、この成形物を大気
中800〜950℃の範囲で焼成することを特徴とするPb−Ba
−Cu系導電性セラミックスの製造方法。 2. A composition formula (Pb 1-x Ba x ) 1-y Cu y O z (where 0.1 ≦ x ≦ 0.6,0 <y is used for the PbO 2 —BaCO 3 —CuO-based raw material.
≦ 0.9, 0.3 ≦ z ≦ 2.0), mixed with a binder to the mixed powder, pressure-molded, and calcining the molded product in the range of 800 to 950 ° C. in the atmosphere. −Ba
-Method for producing Cu-based conductive ceramics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63328871A JP2528356B2 (en) | 1988-12-28 | 1988-12-28 | Conductive ceramics and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63328871A JP2528356B2 (en) | 1988-12-28 | 1988-12-28 | Conductive ceramics and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02175648A JPH02175648A (en) | 1990-07-06 |
JP2528356B2 true JP2528356B2 (en) | 1996-08-28 |
Family
ID=18215025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63328871A Expired - Lifetime JP2528356B2 (en) | 1988-12-28 | 1988-12-28 | Conductive ceramics and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2528356B2 (en) |
-
1988
- 1988-12-28 JP JP63328871A patent/JP2528356B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02175648A (en) | 1990-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2608921B2 (en) | High dielectric constant ceramic composition | |
JP2528356B2 (en) | Conductive ceramics and manufacturing method thereof | |
JPH075363B2 (en) | PTC porcelain composition and method for producing the same | |
JP2608924B2 (en) | High dielectric constant ceramic composition | |
JPH07297009A (en) | Positive temperature coefficient thermistor and manufacturing method thereof | |
JP2866484B2 (en) | Manufacturing method of oxide superconductor | |
JP2608923B2 (en) | High dielectric constant ceramic composition | |
JP2915546B2 (en) | Manufacturing method of oxide superconducting material | |
JP3461654B2 (en) | Manufacturing method of oxide superconductor | |
JP3237502B2 (en) | Manufacturing method of grain boundary insulated semiconductor ceramic capacitor | |
CN115020050A (en) | Zn 7 Sb 2 O 12 Method for preparing ZnO piezoresistor by pre-synthesis | |
JP3160899B2 (en) | Method for producing oxide high-temperature superconductor | |
JP2647347B2 (en) | Manufacturing method of aluminum nitride sintered body heat sink | |
JPH0784341B2 (en) | Method for producing oxide-based superconducting compact | |
JP2969221B2 (en) | Manufacturing method of oxide superconductor | |
JP2538440B2 (en) | Method for producing lead-based dielectric ceramic composition | |
JPH029753A (en) | Ceramic composition having high dielectric constant | |
JP2791408B2 (en) | Method for manufacturing high-density and highly-oriented oxide superconductor | |
JP2974171B2 (en) | Dielectric porcelain composition | |
JPH04130019A (en) | Electrically conductive oxide | |
JPH029754A (en) | Ceramic composition having high dielectric constant | |
JPH07142207A (en) | Barium titanate semiconductor ceramic and its manufacture | |
JPS63319241A (en) | High-dielectric constant ceramic composition | |
JPH0360457A (en) | Production of y-ba-cu-based oxide superconductor | |
JPH01160857A (en) | Superconducting ceramic and production thereof |