JPH0784341B2 - Method for producing oxide-based superconducting compact - Google Patents

Method for producing oxide-based superconducting compact

Info

Publication number
JPH0784341B2
JPH0784341B2 JP62201526A JP20152687A JPH0784341B2 JP H0784341 B2 JPH0784341 B2 JP H0784341B2 JP 62201526 A JP62201526 A JP 62201526A JP 20152687 A JP20152687 A JP 20152687A JP H0784341 B2 JPH0784341 B2 JP H0784341B2
Authority
JP
Japan
Prior art keywords
oxygen
oxide
atmosphere
powder
based superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62201526A
Other languages
Japanese (ja)
Other versions
JPS6445763A (en
Inventor
憲嗣 榎本
直樹 宇野
靖三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP62201526A priority Critical patent/JPH0784341B2/en
Publication of JPS6445763A publication Critical patent/JPS6445763A/en
Publication of JPH0784341B2 publication Critical patent/JPH0784341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物系超電導成形体の製造方法に関するもの
である。
The present invention relates to a method for producing an oxide-based superconducting molded article.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

アルカリ土金属、希土類元素、銅及び酸素からなる酸化
物系超電導成形体は、前記金属類の酸化物、炭酸塩等を
原料とし、これらの原料粉体を混合して予備焼成する事
によって複合酸化物とし、これを粉砕後、所望の形状に
成形して焼結する事によって製造されている。前記超電
導成形体における臨界温度(TC)、臨界電流密度(JC
等の超電導特性は、原料の組成、焼成条件等によって大
きく変化し、良好な超電導特性を得る為には、各種出発
原料の混合割合、予備焼成条件等をコントロールして、
超電導状態の発現に最適な組成及び構造の複合酸化物と
し、この組成及び構造を維持したまま緻密な成形体が得
られる様に焼結する事が必要である。
Oxide-based superconducting compacts consisting of alkaline earth metals, rare earth elements, copper and oxygen are made of oxides, carbonates, etc. of the metals mentioned above as raw materials. It is manufactured by crushing this product, molding it into a desired shape and sintering it. Critical temperature (T C ), critical current density (J C ) in the superconducting compact
The superconducting properties such as are greatly changed depending on the composition of raw materials, firing conditions, etc., and in order to obtain good superconducting properties, the mixing ratio of various starting materials, pre-firing conditions, etc. are controlled,
It is necessary to use a composite oxide having a composition and structure most suitable for developing a superconducting state, and perform sintering so as to obtain a dense compact while maintaining this composition and structure.

前記焼結は、従来大気中又は酸素雰囲気中で行われてい
るが、前者の場合は、緻密な成形体は得られるものの、
焼結時に酸素量の減少等により複合酸化物の組成及び構
造が変化して良好な超電導特性を発揮する成形体を得る
事が出来なかった。又後者の場合は、組成及び構造の変
化は少ないものの、焼結性が悪くて緻密な成形体が得ら
れなく、特にリング、コイル等の形状に成形した場合に
は、得られる成形体にクラック等が入りやすく、そのた
め超電導特性の低下を生じていた。
The sintering is conventionally performed in the air or an oxygen atmosphere. In the former case, although a dense compact can be obtained,
It was not possible to obtain a molded product exhibiting good superconducting properties because the composition and structure of the composite oxide changed due to a decrease in the amount of oxygen during sintering. In the latter case, although the composition and the structure are not significantly changed, a compact compact cannot be obtained due to poor sinterability. In particular, when the compact is molded into a ring, coil or the like, cracks are generated in the compact. Etc. tended to enter, resulting in deterioration of superconducting properties.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は上記の点に鑑み鋭意検討の結果なされたもので
あり、その目的とするところは、良好な超電導特性が得
られる様な酸化物系弔電導成形体の製造方法を提供する
事である。
The present invention has been made as a result of intensive studies in view of the above points, and an object thereof is to provide a method for producing an oxide-based conical conductive molded body that can obtain good superconducting properties. .

即ち本発明は、アルカリ土金属、希土類元素、銅及び酸
素からなる酸化物系超電導成形体を製造するにあたり、
原料粉体を酸素分圧10-5〜200Torrの減圧雰囲気下で500
〜1000℃で予備焼成した後粉砕、分級し、この様にして
得られた同一組成の粒径0.05〜1μmの微細粒粉と6〜
12μmの粗大粒粉とを、微細粒粉の割合が10〜90wt%の
範囲で混合した後成形し、ついで該成形体を酸素雰囲気
中で焼結し、しかる後に同じく酸素雰囲気中で焼成する
事を特徴とする酸化物系超電導成形体の製造方法であ
る。
That is, the present invention, in producing an oxide-based superconducting molded body consisting of alkaline earth metal, rare earth element, copper and oxygen,
The raw material powder is 500 in a reduced pressure atmosphere with an oxygen partial pressure of 10 -5 to 200 Torr.
Pre-baked at ~ 1000 ℃, then crushed and classified, thus obtained fine powder with the same composition having a particle size of 0.05-1 μm and 6-
12 μm coarse powder is mixed with a fine powder in the range of 10 to 90 wt% and then molded, and then the molded body is sintered in an oxygen atmosphere and then fired in an oxygen atmosphere. And a method for producing an oxide-based superconducting compact.

本発明において原料粉体としては、アルカリ土金属、希
土類元素及び銅の酸化物、ハロゲン化物、炭酸塩、硝酸
塩、硫酸塩の内のいずれか1種、又は2種以上との混合
物の粉体を用いる事が望ましい。
In the present invention, the raw material powder is a powder of an alkaline earth metal, a rare earth element and an oxide of copper, a halide, a carbonate, a nitrate, or a sulfate, or a mixture of two or more thereof. It is desirable to use.

本発明は、各種出発原料の混合粉体を酸素分圧10-5〜20
0Torrの減圧雰囲気下で500〜1000℃で予備焼成し、超電
導状態の発現に必要な組成及び構造に比べて酸素欠乏状
態の複合酸化物とし、これを粉砕、成形後酸素雰囲気中
で焼結する事によって、一種の酸素との反応焼結を伴っ
た形で焼結して、密度が95%以上の緻密な焼結体を得る
と同時に、超電導状態の発現に必要な組成及び構造にす
るものである。前記原料粉体の予備焼成は、酸素分圧が
200Torrを超えると、充分に酸素が欠乏した状態になら
なくて、酸素雰囲気中で焼結する際に充分に緻密な焼結
体を得る事が出来なく、また酸素分圧が10-5Torr未満で
あると、酸素が極端に欠乏しすぎて、これを粉砕、成形
後酸素雰囲気中で焼結しても、超電導状態の発現に必要
な組成及び構造にならない為、酸素分圧10-5〜200Torr
の雰囲気下で予備焼成する。又前記予備焼成は、1000℃
を超えると各原料が溶解して超電導状態の発現に必要な
組成及び構造にならなく、500℃未満では反応が充分に
進行しない為、500〜1000℃の温度範囲内で行なう。
The present invention provides a mixed powder of various starting materials with an oxygen partial pressure of 10 −5 to 20 −20.
Pre-baking at 500-1000 ℃ in a reduced pressure atmosphere of 0 Torr to make a composite oxide that is in an oxygen-deficient state compared to the composition and structure required to develop a superconducting state, crush it, and sinter it in an oxygen atmosphere after molding. Depending on the circumstances, it is possible to obtain a dense sintered body with a density of 95% or more by simultaneously sintering it with a kind of reaction sintering with oxygen, and at the same time make it have the composition and structure necessary for manifesting the superconducting state. Is. Pre-firing of the raw material powder has a partial oxygen pressure of
If it exceeds 200 Torr, it will not be sufficiently deficient in oxygen, and it will not be possible to obtain a sufficiently dense sintered body when sintering in an oxygen atmosphere, and the oxygen partial pressure will be less than 10 -5 Torr. If so, oxygen is extremely deficient, and even if it is crushed and sintered in an oxygen atmosphere after molding, the composition and structure necessary for developing a superconducting state will not be obtained, so the oxygen partial pressure 10 -5 ~ 200Torr
Pre-fire in the atmosphere. The pre-baking is 1000 ° C
If the temperature exceeds 500 ° C., the respective raw materials are dissolved and the composition and structure required to develop the superconducting state are not obtained, and if the temperature is less than 500 ° C., the reaction does not proceed sufficiently, so the reaction is carried out within the temperature range of 500 to 1000 ° C.

尚前記酸素分圧10-5〜200Torrの減圧雰囲気を得る為の
方法としては、予備焼成炉をそのまま、又は酸素ガスで
置換した状態で真空引きして、所定の酸素分圧迄減圧し
ても良く、或いはアルゴン、窒素等の不活性ガスで置換
して該不活性ガス中の酸素量が所定の酸素分圧になる様
に調整しても差し支えないが、原料粉体の分解を促進す
る為には、減圧雰囲気下で予備焼成する。
As a method for obtaining a reduced pressure atmosphere having an oxygen partial pressure of 10 −5 to 200 Torr, the pre-firing furnace is evacuated as it is or in a state of being replaced with oxygen gas, and the pressure is reduced to a predetermined oxygen partial pressure. It is also possible to adjust the oxygen content in the inert gas to a predetermined oxygen partial pressure by substituting it with an inert gas such as argon or nitrogen, but to accelerate the decomposition of the raw material powder. In this case, preliminary firing is performed in a reduced pressure atmosphere.

本発明は更に、前記予備焼成粉を粉砕、分級する事によ
って得られた、粒径がそれぞれ0.05〜1μm及び6〜12
μmである微細粒粉と粗大粒粉とを、微細粒粉の割合が
10〜90wt%の範囲内で、均一に混合して成形した後、焼
結処理を行なう事によって、緻密な焼結体を得ると共
に、電流パス(経路)欠絡の原因となり得る粒界の割合
を減少させて、臨界電流密度(JC)を向上させようとす
るものである。
The present invention further has a particle size of 0.05 to 1 μm and 6 to 12 obtained by crushing and classifying the pre-baked powder.
The ratio of the fine-grained powder is 100 μm and the coarse-grained powder is
Within the range of 10 to 90 wt%, after uniformly mixing and molding, the sintering process is performed to obtain a dense sintered body and the ratio of grain boundaries that can cause current path (path) disentanglement. To decrease the critical current density (J C ) by increasing

又酸素雰囲気中での焼結及び焼成は、600〜1100℃で行
なう事が望ましい。
Moreover, it is desirable to perform sintering and firing in an oxygen atmosphere at 600 to 1100 ° C.

〔作用〕[Action]

本発明においては、原料粉体を酸素分圧10-5〜200Torr
の減圧雰囲気下で500〜1000℃で予備焼成し、超電導状
態の発現に必要な組成及び構造に比べて酸素欠乏状態の
複合酸化物とし、これを粉砕、成形後酸素雰囲気中で焼
結しているので、一種の酸素との反応焼結を伴った形で
焼結が行われて、密度が95%以上の緻密な焼結体が得ら
れると同時に、超電導状態の発現に最適な組成及び構造
になり、更に、前記予備焼成粉を粉砕、分級する事によ
って得られた特定の粒径の微細粒粉と粗大粒粉とを、特
定の配合割合にて均一に混合して成形した後、焼結処理
を行なっているので、得られる成形体は電流パス(経
路)欠絡の原因となり得る粒界の割合も減少し、良好な
超電導特性を発揮する成形体を得る事が出来る。
In the present invention, the oxygen partial pressure of the raw material powder is 10 −5 to 200 Torr.
Pre-calcined in a reduced pressure atmosphere at 500-1000 ° C to obtain a composite oxide that is in an oxygen-deficient state compared to the composition and structure required to develop the superconducting state, crush it, and sinter it in an oxygen atmosphere after molding. Therefore, it is possible to obtain a dense sintered body with a density of 95% or more by performing the sintering accompanied with a kind of reaction sintering with oxygen, and at the same time, have the optimum composition and structure for developing the superconducting state. Further, the pre-calcined powder is pulverized and classified to obtain a fine-grained powder having a specific particle size and a coarse-grained powder, which are uniformly mixed at a specific blending ratio, and then baked. Since the binding treatment is performed, the ratio of grain boundaries that can cause current path (path) entanglement is reduced in the obtained molded product, and a molded product exhibiting excellent superconducting properties can be obtained.

〔実施例1〕 次に本発明を実施例により更に具体的に説明する。原料
粉体としてBaCO3、Y2O3及びCuOを用い、モル比で(Y+
Ba):Cu=1:1となる様に混合した。前記混合物500gを、
酸素ガスで置換した後真空引きして、6×10-3Torrの酸
素分圧迄減圧した雰囲気下で、950℃×6hr予備焼成し
た。而して得た焼成物を粉砕、分級して、平均粒子径0.
3μmの微細粒粉及び平均粒子径7μmの粗大粒粉を用
意し、微細粒粉の割合が40wt%なる様に両者を均一に混
合した。しかる後この様にして得られた混合粉末を外径
50mm、内径30mm、厚さ7mmのリング及び直径25mm、厚さ5
mmのペレットに成形した。而して得たこれら成形体を酸
素雰囲気中で950℃×2hr焼結した後、更に酸素雰囲気中
で800℃×6hr焼成し、800〜400℃間を1℃/minで徐冷し
て超電導成形体を得た。
Example 1 Next, the present invention will be described more specifically by way of examples. BaCO 3 , Y 2 O 3 and CuO were used as raw material powders, and the molar ratio of (Y +
Ba): Cu were mixed to be 1: 1. 500 g of the mixture,
After substituting with oxygen gas, it was evacuated, and pre-baked at 950 ° C. for 6 hours in an atmosphere reduced to an oxygen partial pressure of 6 × 10 −3 Torr. The fired product thus obtained was crushed and classified to have an average particle size of 0.
A fine powder of 3 μm and a coarse powder having an average particle diameter of 7 μm were prepared, and both were uniformly mixed so that the ratio of the fine powder was 40 wt%. After that, the mixed powder obtained in this way
50mm, inner diameter 30mm, thickness 7mm ring and diameter 25mm, thickness 5
Molded into mm pellets. The compacts thus obtained are sintered in an oxygen atmosphere at 950 ° C. for 2 hours, then fired in an oxygen atmosphere at 800 ° C. for 6 hours, and slowly cooled at 800 to 400 ° C. at 1 ° C./min for superconductivity. A molded body was obtained.

〔実施例2〕 実施例1と同様にして作った同一組成の予備焼成粉を用
い、線径2mm、外径50mの5回巻きコイル及び外径10mm、
内径8mm、長さ100mmのパイプに成形し、これらを酸素雰
囲気中で900℃×2hr焼結した後、更に酸素雰囲気中で85
0℃×20hr焼成し、800×400℃間を1℃/minで徐冷し
て、クラック等の発生が無い超電導成形体を得た。
[Example 2] A pre-baked powder of the same composition prepared in the same manner as in Example 1 was used, and a 5-turn coil having a wire diameter of 2 mm and an outer diameter of 50 m and an outer diameter of 10 mm,
After forming a pipe with an inner diameter of 8 mm and a length of 100 mm and sintering these in an oxygen atmosphere at 900 ° C for 2 hours, 85
It was fired at 0 ° C for 20 hours and gradually cooled at a temperature of 800 ° C / 400 ° C at 1 ° C / min to obtain a superconducting molded body free from cracks and the like.

〔比較例1〕 実施例1と同様にして作った同一組成の原料粉体の混合
物を、酸素分圧0.6気圧(残部は窒素で、全圧で1気
圧)の雰囲気下で950℃×6hr予備焼成した。これを粉
砕、分級して得た平均粒子径0.5μmの予備焼成粉を用
いて、実施例1と同様に成形並びに焼結及び焼成処理を
行なって、超電導成形体を得た。
[Comparative Example 1] A mixture of raw material powders having the same composition prepared in the same manner as in Example 1 was preliminarily prepared at 950 ° C for 6 hours under an atmosphere of oxygen partial pressure of 0.6 atm (the balance was nitrogen, and the total pressure was 1 atm). Baked. The pre-baked powder having an average particle size of 0.5 μm obtained by pulverizing and classifying the powder was subjected to molding, sintering and firing in the same manner as in Example 1 to obtain a superconducting molded body.

前記実施例1〜2並びに比較例1によって得られた超電
導成形体について、密度並びに臨界温度(TC)、臨界電
流密度(JC)等の超電導特性を測定し、これらの結果を
まとめて第1表に示した。
With respect to the superconducting compacts obtained in Examples 1 and 2 and Comparative Example 1, the superconducting properties such as density and critical temperature (T C ) and critical current density (J C ) were measured, and the results are summarized below. The results are shown in Table 1.

第1表から明らかな様に、本発明の方法により製造した
実施例1〜2品は、いずれも理論密度の95%以上の緻密
な成形体が得られており、TC、JC等の超電導特性も良好
であった。一方原料粉体の予備焼成を低酸素分圧の雰囲
気下で行わなかった比較例1品は、成形体の密度が低
く、TC、JC等も低い値しか得られなかった。
As is clear from Table 1, in each of the products of Examples 1 and 2 produced by the method of the present invention, a dense compact having a theoretical density of 95% or more was obtained, and T C , J C and the like were obtained. The superconducting property was also good. On the other hand, in the product of Comparative Example 1 in which the raw material powder was not pre-fired in an atmosphere of low oxygen partial pressure, the density of the molded body was low, and T C , J C, etc. were low.

〔発明の効果〕〔The invention's effect〕

本発明の方法によれば、緻密で超電導特性が良好なセラ
ミックス超電導成形体を得る事が出来、工業上顕著な効
果を奏するものである。
According to the method of the present invention, it is possible to obtain a dense ceramic superconducting molded body having excellent superconducting properties, and to exert a remarkable effect industrially.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H01B 12/00 ZAA ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // H01B 12/00 ZAA

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アルカリ土金属、希土類元素、銅及び酸素
からなる酸化物系超電導成形体を製造するにあたり、原
料粉体を酸素分圧10-5〜200Torrの減圧雰囲気下で500〜
1000℃で予備焼成した後粉砕、分級し、この様にして得
られた同一組成の粒径0.05〜1μmの微細粒粉と6〜12
μmの粗大粒粉とを、微細粒粉の割合が10〜90wt%の範
囲で混合した後成形し、ついで該成形体を酸素雰囲気中
で焼結し、しかる後に同じく酸素雰囲気中で焼成する事
を特徴とする酸化物系超電導成形体の製造方法。
1. When manufacturing an oxide superconducting compact comprising an alkaline earth metal, a rare earth element, copper and oxygen, the raw material powder is 500 to 500 in a reduced pressure atmosphere with an oxygen partial pressure of 10 -5 to 200 Torr.
After pre-baking at 1000 ° C, pulverization and classification were performed, and 6 to 12 fine particles of the same composition with a particle size of 0.05 to 1 µm were obtained.
Coarse with a coarse particle size of μm in the range of 10 to 90 wt% of fine particle size, and then molding, and then sintering the molded body in an oxygen atmosphere, and then firing in an oxygen atmosphere. A method for producing an oxide-based superconducting molded article, comprising:
【請求項2】原料粉体が、アルカリ土金属、希土類元素
及び銅の酸化物、ハロゲン化物、炭酸塩、硝酸塩、硫酸
塩の内のいずれか1種、又は2種以上との混合物の粉体
である事を特徴とする特許請求の範囲第1項記載の酸化
物系超電導成形体の製造方法。
2. The raw material powder is a powder of an alkaline earth metal, a rare earth element and an oxide of copper, a halide, a carbonate, a nitrate, or a sulfate, or a mixture of two or more of them. The method for producing an oxide-based superconducting molded article according to claim 1, wherein
【請求項3】酸素雰囲気中での焼結を、600〜1100℃で
行なう事を特徴とする特許請求の範囲第1項記載の酸化
物系超電導成形体の製造方法。
3. The method for producing an oxide-based superconducting compact according to claim 1, wherein the sintering is performed in an oxygen atmosphere at 600 to 1100 ° C.
【請求項4】酸素雰囲気中での焼成を、600〜1100℃で
行なう事を特徴とする特許請求の範囲第1項記載の酸化
物系超電導成形体の製造方法。
4. The method for producing an oxide-based superconducting molded article according to claim 1, wherein the firing in an oxygen atmosphere is carried out at 600 to 1100 ° C.
JP62201526A 1987-08-12 1987-08-12 Method for producing oxide-based superconducting compact Expired - Lifetime JPH0784341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62201526A JPH0784341B2 (en) 1987-08-12 1987-08-12 Method for producing oxide-based superconducting compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62201526A JPH0784341B2 (en) 1987-08-12 1987-08-12 Method for producing oxide-based superconducting compact

Publications (2)

Publication Number Publication Date
JPS6445763A JPS6445763A (en) 1989-02-20
JPH0784341B2 true JPH0784341B2 (en) 1995-09-13

Family

ID=16442506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62201526A Expired - Lifetime JPH0784341B2 (en) 1987-08-12 1987-08-12 Method for producing oxide-based superconducting compact

Country Status (1)

Country Link
JP (1) JPH0784341B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469556A (en) * 1987-09-08 1989-03-15 Mitsubishi Cable Ind Ltd Production of superconducting substance
JPH0193459A (en) * 1987-10-02 1989-04-12 Mitsubishi Cable Ind Ltd Production of superconducting substance
JP2800844B2 (en) * 1990-07-27 1998-09-21 株式会社島津製作所 TOC analyzer sample introduction device

Also Published As

Publication number Publication date
JPS6445763A (en) 1989-02-20

Similar Documents

Publication Publication Date Title
JP2721189B2 (en) Method for producing oxide superconductor, composite oxide powder as precursor of oxide superconductor, and method for producing the same
EP0495677B1 (en) Oxide superconducting material and process for producing the same
JPH0649613B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPH0712981B2 (en) Method for manufacturing aluminum nitride sintered body
JPH0784341B2 (en) Method for producing oxide-based superconducting compact
US6068786A (en) Low-fire ferrite composition and a process for manufacturing ceramic articles using the said composition
KR940007596B1 (en) Manufacturing method of superconducting ceramic
JP2567891B2 (en) Method for producing oxide superconducting molded body
JP3160899B2 (en) Method for producing oxide high-temperature superconductor
JPH01164730A (en) Superconducting material and its production
JP2677830B2 (en) Method for producing bismuth oxide superconductor
JPH01176270A (en) Production of oxide superconducting molding
JP2969221B2 (en) Manufacturing method of oxide superconductor
JPH02263755A (en) Production of oxide superconducting molded body
JPH07242424A (en) Oxide superconducting structure and production thereof
JPH0692717A (en) Production of bi based oxiee superconductor
KR910009891B1 (en) Process for producing superconductive ceramic sinter
JP3165921B2 (en) Manufacturing method of oxide superconducting sintered body
JP2528356B2 (en) Conductive ceramics and manufacturing method thereof
JPS63277575A (en) Production of formed article of oxide superconductor
JPH0248459A (en) Production of compound oxide superconductor
JPH01176268A (en) Production of high-temperature superconductor
JPS63304530A (en) Manufacture of ceramic superconductive wire rod
JPH01172259A (en) Production of ceramic superconducting molded body
JPH01257160A (en) High density oxide superconducting sintered body and sintering method therefor