JPH04126993A - Deciding method for deterioration of adiabatic layer of hot isotropic pressurizer - Google Patents

Deciding method for deterioration of adiabatic layer of hot isotropic pressurizer

Info

Publication number
JPH04126993A
JPH04126993A JP25120690A JP25120690A JPH04126993A JP H04126993 A JPH04126993 A JP H04126993A JP 25120690 A JP25120690 A JP 25120690A JP 25120690 A JP25120690 A JP 25120690A JP H04126993 A JPH04126993 A JP H04126993A
Authority
JP
Japan
Prior art keywords
temperature
furnace chamber
pressure
insulating layer
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25120690A
Other languages
Japanese (ja)
Inventor
Masakazu Murakami
雅一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25120690A priority Critical patent/JPH04126993A/en
Publication of JPH04126993A publication Critical patent/JPH04126993A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/005Control arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To eliminate means for measuring electric to be applied to a heater and to decide aging deterioration of an adiabatic layer by calculating a furnace chamber temperature drop time constant from a temperature in a furnace chamber and a measuring time point, and deciding deterioration of the layer. CONSTITUTION:Pressure medium gas is heated by a heater 4 in a furnace chamber 3, high temperature and high pressure medium gas is operated at a material 5 to be treated, and treated. A thermocouple 6 for measuring the temperature in the furnace chamber is connected to a thermoelectric converter 7, and a thyristor 8 controls power to be applied to the heater 4 through a transformer 9. A temperature regulating meter 11 has a comparator 12, a PID controller 13, compares a set temperature from a temperature setter 10 with a measured temperature from the converter 7, and so controls the thyristor 8 through a thyristor control unit 14 that the temperature in the furnace becomes the set temperature. A calculator 16 measures the temperature in the chamber 3 at a plurality of time points by the thermocouple 6 after the material 5 is completely treated, a furnace chamber temperature drop time constant is calculated from the measured temperature in the chamber 3 and the measured time, and when the time constant becomes a predetermined value or less, it is decided as the deterioration of an adiabatic layer 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱間等方圧加圧装置の断熱層の劣化判定方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for determining deterioration of a heat insulating layer of a hot isostatic pressurizing device.

(従来の技術) 高圧容器内に高圧の圧媒ガスをm入すると共に、高圧容
器内に断熱層を配して炉室となし、この炉室内に配した
ヒータにより圧媒ガスを加熱することで炉室内に配置し
た被処理品に高温 高圧の圧媒ガスを作用させて処理を
行う熱間等方圧加圧装置(以下HI P装置という)が
ある。
(Prior art) High-pressure pressure gas is charged into a high-pressure container, a heat insulating layer is placed inside the high-pressure container to form a furnace chamber, and the pressure gas is heated by a heater placed inside the furnace chamber. There is a hot isostatic pressurizing device (hereinafter referred to as a HIP device) that processes a workpiece placed in a furnace chamber by applying high temperature and high pressure pressure medium gas.

従来、HT P装置の断熱層の劣化判定方法として、運
転毎のヒータの定常状態保持電力を記録し、その推移か
ら断ρ1層の劣化を判定している。即ち、定常状態保持
電力とは、第5図に示すように、温度・圧力の保持開始
から30〜60分で略一定となるヒータ投入電力をいう
。換言すれば、ヒータオフ直前のヒータ投入電力という
ことになる。この定常状態保持電力は、処理条件(温度
、圧力の保持条件)により異なるが、処理条件が同しで
あれば、被処理品の有無に関係なく略一定の値となる。
Conventionally, as a method for determining the deterioration of the heat insulating layer of an HTP device, the steady-state holding power of the heater is recorded for each operation, and the deterioration of the ρ1 layer is determined from the change. That is, as shown in FIG. 5, the steady state holding power refers to the heater input power that becomes approximately constant within 30 to 60 minutes from the start of maintaining the temperature and pressure. In other words, it is the power input to the heater immediately before the heater is turned off. This steady-state holding power varies depending on the processing conditions (temperature and pressure holding conditions), but if the processing conditions are the same, it will be a substantially constant value regardless of the presence or absence of a workpiece.

そして、断熱層が劣化してきた場合には、同し処理条件
でも定常状態保持電力は、第6図に示すように、増加傾
向を示す。従って、この定常状態保持電力の変化から断
熱層の劣化を判定することができる。
When the heat insulating layer deteriorates, the steady-state holding power tends to increase, as shown in FIG. 6, even under the same processing conditions. Therefore, deterioration of the heat insulating layer can be determined from the change in the steady state power.

(発明が解決しようとする課題) 従来の定常状態保持電力の推移による断熱層の劣化判定
を自動化するためには、ヒータへの投入電力を計測する
手段が不可欠となる。また、物理的には、温度・圧力保
持中には十分時間が経過すれば熱収支が定常状態となり
電力値はほぼ一定となる。
(Problems to be Solved by the Invention) In order to automate the conventional determination of deterioration of a heat insulating layer based on changes in steady state power, a means for measuring the power input to the heater is essential. Physically, if enough time passes while maintaining the temperature and pressure, the heat balance becomes steady and the power value becomes approximately constant.

しかし、温度保持時間の設定により、例えば炉の時定数
(被処理品を含む)に対して設定された保持時間が短け
れば、見かIJ l一定植に電力がお5ついたようにな
ったとしても、定常状態に炉がなっていない場合が十分
ありえる。このときの見かけ上の定常電力は必ずしも炉
の定常状態における電力値ではない。
However, depending on the setting of the temperature holding time, for example, if the holding time set for the time constant of the furnace (including the product to be processed) is short, the electric power will be reduced to a constant value of 5. Even so, it is quite possible that the furnace is not in a steady state. The apparent steady power at this time is not necessarily the power value in the steady state of the furnace.

従って、定常状態保持電力は、保持時間が短いときに真
の定常状態保持電力ではないので、これの推移で劣化判
定をしても、その判定精度は正確ではない。
Therefore, since the steady state holding power is not the true steady state holding power when the holding time is short, even if deterioration is determined based on the transition of this power, the determination accuracy is not accurate.

本発明は、かかる従来の課題ムこ鑑み、ヒータへの投入
電力を計測する手段を要することなく判定でき、また処
理条件が変わった場合でも確実で正6イCな判定できる
H I P装置の断熱層の判定方法を提供することを目
的とする。
In view of these conventional problems, the present invention provides an HIP device that can determine the power input to the heater without requiring a means to measure it, and can reliably determine the correct value even if the processing conditions change. The purpose of this invention is to provide a method for determining a heat insulating layer.

(課題を解決するための手段) 本発明は、そのための第1の手段として、高圧容器1内
に高圧の圧媒ガスを導入すると共に、高圧容器1内に断
熱層2を配して炉室3となし、該炉室3内に配したヒー
タ4により圧媒ガスを加熱することで炉室3内に配置し
た被処理品5に高温・高圧の圧媒ガスを作用させて処理
を行う熱間等方圧加圧装置の断熱層の劣化判定方法にお
いて、被処理品5の処理終了後、炉室3内の温度を降温
させる際に、複数の時点において炉室内の温度を4測し
、該計測した炉室3内の温度と該4測を行った時とから
炉室温度降下時定数を演算し、該演算した炉室温度降下
時定数が予め定められた値以−ドになったときに断熱層
2が劣化したと判定するものである(第4図にステップ
■[相]として記載した劣化判定方法)。
(Means for Solving the Problems) The present invention, as a first means for achieving this purpose, introduces a high-pressure pressure medium gas into a high-pressure vessel 1, and arranges a heat insulating layer 2 inside the high-pressure vessel 1 to provide a furnace chamber. 3, heat is applied to the workpiece 5 placed in the furnace chamber 3 by heating the pressure gas with the heater 4 placed in the furnace chamber 3, and the heat is applied to the workpiece 5 placed in the furnace chamber 3 with high-temperature, high-pressure pressure gas. In the method for determining the deterioration of the heat insulating layer of the isostatic pressurizing device, when the temperature in the furnace chamber 3 is lowered after the processing of the workpiece 5, the temperature inside the furnace chamber is measured four times at a plurality of times, A furnace chamber temperature drop time constant is calculated from the measured temperature in the furnace chamber 3 and the time when the four measurements were made, and the calculated furnace chamber temperature drop time constant is equal to or higher than a predetermined value. In some cases, it is determined that the heat insulating layer 2 has deteriorated (deterioration determination method described as step ① [phase] in FIG. 4).

また本発明は、第2の手段として、高圧容器1内に高圧
の圧媒ガスを導入すると共に、高圧容器1内に断熱層2
を配し°ζ炉室3となし、該炉室3内に配したヒータに
より圧媒ガスを加熱することで炉室3内に配置した被処
理品5に高温・高圧の圧媒ガスを作用させて処理を行う
熱間等方圧加圧装置の断熱層の劣化判定方法において、
被処理品5の処理終了後、炉室3内の温度を降温させる
際に、複数の時点において炉室3内の温度を計測し、該
計」1jシた炉室内の温度と該計測を行った時とから炉
室温度降下時定数を演算する演算処理を複数回行い、該
演算した各回の炉室温度降下時定数が他の回の炉室温度
降下時定数に比して、予め定められた値以」二に変化し
たときに断熱層2が劣化したと判定するものである(第
4図にステップ@[相]として記載した劣化判定方法)
Further, the present invention provides, as a second means, a high-pressure pressure medium gas is introduced into the high-pressure vessel 1, and a heat insulating layer is placed inside the high-pressure vessel 1.
A heater placed in the furnace chamber 3 heats the pressure medium gas to apply high-temperature and high-pressure pressure medium gas to the workpiece 5 placed in the furnace chamber 3. In a method for determining deterioration of a heat insulating layer of a hot isostatic pressing device that performs processing by
When the temperature in the furnace chamber 3 is lowered after the processing of the workpiece 5 is finished, the temperature in the furnace chamber 3 is measured at a plurality of points, and the temperature in the furnace chamber 3 is calculated based on the total temperature in the furnace chamber 3. The calculation process for calculating the furnace chamber temperature drop time constant from the time is performed multiple times, and the furnace chamber temperature decrease time constant of each calculated time is determined in advance as It is determined that the heat insulating layer 2 has deteriorated when the value has changed to 2 (deterioration determination method described as step @ [phase] in Fig. 4).
.

(実施例) 以下、本発明の実施例を図面に基いて詳述すると、第1
図において、1は高圧容器で、この高圧容器1内に高圧
の圧媒ガスを導入すると共に、断熱層2を配して炉室3
となしている。4は炉室3内に配したヒータで、このヒ
ータ4により圧媒ガスを加熱することで炉室3内に配置
した被処理品5に高温・高圧の圧媒ガスを作用させて処
理を行うようになっている。6は炉内温度を計測する熱
雷対で、熱電変換器7に接続されている。8はサイリス
クで、トランス9を介してヒータ4に投入される電力を
制御するためのものである。10は炉内温度を設定する
温度設定器、11は温度調節計で、比較部12、PID
制御部13から成り、温度設定器10からの設定温度と
熱電変換器7からの計測温度とを比較して、炉内温度が
設定温度となるようにサイリスク制御ユニッ目4を介し
てサイリスタ8を制御すべく構成されている。15はA
/D変換器で、炉内温度の信号をディジタル信号に変換
するためのものである。16は演算装置で、被処理品5
の処理終了後;炉室3内の温度を降温させる際に、第2
図で示すように、初期の降温特性Aに比べて断熱層2の
劣化8の降温特性Bが大きくなるので、この降温特性A
、Bの違いを利用し°ζ断熱層2の劣化を判定するよう
になっている。即ち、これは、複数の時点において炉室
3内の温度を熱電対6で副側し、その炉室内温度と計測
時とから炉室温度降下時定数Tを演算し、この炉室温度
降下時定数が予め定められた値以下になった時に、又は
演算処理を複数回行い、各回の炉室温度降下時定数Tが
他の回の炉室温度降下時定数に比して予め定められた値
以上に変化した時に、夫り断熱層2が劣化したものと判
定するように構成されている。
(Example) Hereinafter, the example of the present invention will be described in detail based on the drawings.
In the figure, reference numeral 1 denotes a high-pressure vessel, into which a high-pressure pressure medium gas is introduced, and a heat insulating layer 2 is arranged to form a furnace chamber 3.
That's what I'm saying. Reference numeral 4 denotes a heater placed in the furnace chamber 3. By heating the pressure medium gas by this heater 4, the high temperature and high pressure pressure medium gas is applied to the workpiece 5 placed in the furnace chamber 3 to perform processing. It looks like this. Reference numeral 6 denotes a thermoelectric pair for measuring the temperature inside the furnace, which is connected to a thermoelectric converter 7. Reference numeral 8 denotes a cyrisk, which is used to control the electric power input to the heater 4 via the transformer 9. 10 is a temperature setting device for setting the temperature inside the furnace, 11 is a temperature controller, a comparison section 12, a PID
The control unit 13 compares the set temperature from the temperature setting device 10 and the measured temperature from the thermoelectric converter 7, and controls the thyristor 8 via the thyrisk control unit 4 so that the temperature inside the furnace becomes the set temperature. configured to control. 15 is A
/D converter for converting the furnace temperature signal into a digital signal. 16 is an arithmetic unit, which is a processing unit 5
After the completion of the second process; when lowering the temperature in the furnace chamber 3,
As shown in the figure, the temperature decrease characteristic B of the deterioration 8 of the heat insulating layer 2 is larger than the initial temperature decrease characteristic A.
, B is used to determine the deterioration of the heat insulating layer 2. That is, this measures the temperature in the furnace chamber 3 at multiple points in time using a thermocouple 6, calculates the furnace chamber temperature drop time constant T from the furnace chamber temperature and the measurement time, and calculates the furnace chamber temperature drop time constant T from the furnace chamber temperature and the measurement time. When the constant becomes less than a predetermined value, or when the calculation process is performed multiple times, the furnace room temperature drop time constant T of each time becomes a predetermined value compared to the furnace room temperature drop time constant of other times. When the above changes occur, it is determined that the heat insulating layer 2 has deteriorated.

炉室温度降下時定数Tの演算は、次のように行う。今、 ui   i=o、1、・・・・・・N:計測した炉内
温度(uo  :ヒータオフ時の炉室内の温度)T  
         :炉室温度降下時定数 り、  i−0,1、・・・・・・N:計測時間(to
 =0)とすると、炉室3内の温度降下曲線は、次のよ
うになる。
The furnace room temperature drop time constant T is calculated as follows. Now, ui i=o, 1,...N: Measured temperature inside the furnace (uo: temperature inside the furnace when the heater is turned off) T
: Furnace chamber temperature drop time constant, i-0,1,...N: Measurement time (to
= 0), the temperature drop curve in the furnace chamber 3 is as follows.

ui +lJo・−ν    −−−−−[相][相]
式の両辺をU。で割り、更に両辺の対数をとると、 N、(−)−−一ら・−=−−−−−−−−−■uo 
     T となる。
ui +lJo・−ν −−−−−[phase] [phase]
U on both sides of the equation. Divide by and then take the logarithm of both sides, N, (-)−−1・−=−−−−−−−−−■uo
It becomes T.

ここで、αr =42(−)  1=1 、・・・・・
・、NT−β とおくと、 α1−β1 +      −−−−−0となる。即ち
、βはα3、L、の直線関係の傾きとし°ζ求まる。
Here, αr = 42(-) 1=1,...
・, NT-β, then α1-β1 + −−−−0. That is, β is determined as the slope of the linear relationship between α3 and L.

そこで、収集したデータ(α、、1.)を最小2乗法に
より直線回帰させ、その傾きβ、更にTを求めることが
できる。
Therefore, the collected data (α, 1.) is subjected to linear regression using the method of least squares, and its slope β and further T can be determined.

なお、直線回帰の手段は最小2乗法に限定されるもので
はなく、その他の方法を採っても良い。
Note that the linear regression method is not limited to the least squares method, and other methods may be used.

また、時定数Tは2点を採れば求まるが、測定誤差もあ
るので、実際にはIO点程度とることが望ましい。
Further, the time constant T can be found by taking two points, but since there is a measurement error, it is actually desirable to take about the IO point.

次に第3図及び第4図のフローチャートを参照して、動
作を説明する。被処理品の処理終了後、炉室内の温度を
降下させる際に、温度設定器10からシーケンス信号と
してヒータオフパルス信号があると(ステップ■)、熱
電対6、熱電変換器7により炉室3内の温度を計測し、
その降温データの収集を開始する(ステップ■)。なお
、このデータ収集は、降温開始直後から行っても良いが
、降温開始後しばらくしてから炉室3内の圧媒ガスを抜
くので、それまでの間であれば、降温開始から−・定時
間経過した後に開始しても良い。先ずヒータオフ時の炉
室3内の温度U。をセント(ステップ■)した後、Δを
経過毎にその時点の炉室3内の温度を蝮数回、;1測し
、その’lXA庚を人々L 71、する(ステップ■■
)。そして、計測回数が最小2乗法の計算に十分な値と
なれば(ステップ■)、その各計測時点における炉室内
温度と計測時点とのデータから炉室温度膝下時定数T、
を演算ずろ(ステップ”■)。
Next, the operation will be explained with reference to the flowcharts of FIGS. 3 and 4. When the temperature in the furnace chamber is lowered after the processing of the workpiece is completed, when a heater off pulse signal is received as a sequence signal from the temperature setting device 10 (step ■), the thermocouple 6 and thermoelectric converter 7 Measure the temperature inside the
Start collecting the temperature drop data (step ■). Note that this data collection may be performed immediately after the start of the temperature drop, but since the pressure medium gas in the furnace chamber 3 is removed after a while after the start of the temperature drop, it is possible to collect this data from the start of the temperature drop. It may be started after a certain amount of time has elapsed. First, the temperature U inside the furnace chamber 3 when the heater is turned off. After measuring Δ (step ■), measure the temperature in the furnace chamber 3 at that point several times every time Δ elapses, and measure the temperature (step ■■
). Then, when the number of measurements reaches a value sufficient for calculation using the least squares method (step ■), the time constant T of the furnace room temperature below the knee is determined from the data of the furnace room temperature at each measurement time and the measurement time.
Calculate (step ”■).

一方、炉室温度降下時定数′FのΔTm、]×、Tm1
nイ1lleを予め定めておき(ステップ■)、演算し
た口、5定数TJをそれらと比較して断熱層2の劣化を
1′]1定する。例えば、時定数ちが予め定められたT
m1n値よりも小であれば、断熱層2の異常と判定する
(ステップ■[相])。なお、このステップ■[相]に
より判定される異常は、断熱層2の経時的な劣化である
On the other hand, ΔTm of the furnace chamber temperature drop time constant 'F, ]×, Tm1
n1lle are determined in advance (step (2)), and the calculated constant TJ is compared with them to determine the deterioration of the heat insulating layer 2 by 1']1. For example, if the time constant is predetermined
If it is smaller than the m1n value, it is determined that there is an abnormality in the heat insulating layer 2 (step ■ [phase]). It should be noted that the abnormality determined in this step (2) [phase] is the deterioration of the heat insulating layer 2 over time.

また各回の時定数TJ と前回の時定数T、−1との差
ΔT= IT、 −Tj−+  lを求め(ステップ■
)、その値ΔTが予め定められたΔTmaxよりも大と
なるように変化すれば、断熱層2の異常と判定する(ス
テップ@[相])。一方、このステップ@■により判定
される異常は、ステップ■[相]で判定される異常と異
なり断熱層2の破損等の突発的な劣化である。そして、
異常と判定した時には夫々アラーム表示等を行う。
Also, find the difference ΔT=IT, -Tj-+l between the time constant TJ of each time and the previous time constant T, -1 (step ■
), if the value ΔT changes to become larger than a predetermined ΔTmax, it is determined that the heat insulating layer 2 is abnormal (step @[phase]). On the other hand, the abnormality determined in this step @■ is a sudden deterioration such as damage to the heat insulating layer 2, unlike the abnormality determined in step ■ [phase]. and,
When it is determined that there is an abnormality, an alarm is displayed, etc.

なお、実施例では最小2乗法による直線回帰を例に説明
したが、これに限定されるものではない。
In addition, although the linear regression by the least squares method was explained as an example in the embodiment, the present invention is not limited to this.

また精度等の問題から、実用」二は複数回の温度計測を
行い、その平均を採る方が望ましいが、理論上し1異な
る時点で2点或いは3点の温度を1測ずれば温度降下時
定数′Fを求めることが可能である。
Also, due to issues such as accuracy, in practice it is preferable to measure the temperature multiple times and take the average, but theoretically, if the temperature at two or three points at different times is deviated by 1, the temperature will drop. It is possible to determine the constant 'F.

ごの場合、2点或いは3点におりる各温度として、1回
の計測温度を用いず、各時点の前後2回又は3回計測し
た温度を1組としてその平均値を求める等した後、その
各平均値を各時点におりる温度として用いても良い。更
に指数関数の指数部の分母として表される温度降下時定
数Tは、他の直線回帰法を用いる場合等、他の数学的方
法で演算しても良い。
In this case, for each temperature at 2 or 3 points, do not use the temperature measured once, but calculate the average value of the temperature measured 2 or 3 times before and after each point. Each average value may be used as the temperature at each time point. Furthermore, the temperature drop time constant T expressed as the denominator of the exponential part of the exponential function may be calculated using other mathematical methods, such as using another linear regression method.

また温度を計測する際には、被処理品5を入れることに
より温度降下時定数が変わるので、被処理品5の状態が
路間しであることが必要である。
Furthermore, when measuring the temperature, the temperature drop time constant changes when the article 5 is inserted, so it is necessary that the article 5 be in a stable state.

このため同一品を繰返して処理する場合、或いは複数の
炉を切換えて使用する場合に特に有効である。なお、炉
の交換の際には、必ず水分を抜くために空焼きを行うの
で、この時のデータを用いれば良い。
Therefore, it is particularly effective when processing the same product repeatedly or when switching between multiple furnaces. Note that when replacing the furnace, dry firing is always performed to remove moisture, so the data from this time can be used.

(発明の効果) 請求項(1)に係る本発明によれば、炉室内の温度とそ
の計測時点とから炉室温度降下時定数を演算して断熱層
の劣化を判定するので、従来のようにヒ夕への投入電力
を計測する手段を要することなく 1lIi熱層の経時
的劣化を判定でき、また、その判定精度も正確番こでき
る利点がある。
(Effects of the Invention) According to the present invention as claimed in claim (1), the deterioration of the heat insulating layer is determined by calculating the time constant of temperature drop in the furnace chamber from the temperature in the furnace chamber and the time of its measurement, so that it is possible to determine the deterioration of the heat insulating layer. This method has the advantage that the deterioration of the 1lIi thermal layer over time can be determined without requiring a means for measuring the power input to the heater, and that the determination accuracy can also be accurate.

請求項(2)に係る本発明によれば断熱層の突発的な異
常劣化を判定できる。
According to the present invention according to claim (2), sudden abnormal deterioration of the heat insulating layer can be determined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は同降
温特性の変化を示す図、第3図及び第4図は同フローチ
ャー1・、第5図は従来例を示す特性図、第6図は同定
常状態保持電力の記録図である。 1・・・高圧容器、2・・・断熱層、3・・・炉室、4
・・・ヒタ、5・・・被処理品、16・・・演算装置。 −か 膚 q〕
Fig. 1 is a configuration diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing changes in temperature drop characteristics, Fig. 3 and Fig. 4 are flowchart 1, and Fig. 5 is a conventional example. The characteristic diagram, FIG. 6, is a record of the constant state holding power. 1... High pressure vessel, 2... Heat insulation layer, 3... Furnace chamber, 4
...Hitor, 5...Processed product, 16...Arithmetic device. -ka skin q]

Claims (2)

【特許請求の範囲】[Claims] (1)高圧容器(1)内に高圧の圧媒ガスを導入すると
共に、高圧容器(1)内に断熱層(2)を配して炉室(
3)となし、該炉室(3)内に配したヒータ(4)によ
り圧媒ガスを加熱することで炉室(3)内に配置した被
処理品(5)に高温・高圧の圧媒ガスを作用させて処理
を行う熱間等方圧加圧装置の断熱層の劣化判定方法にお
いて、 被処理品(5)の処理終了後、炉室(3)内の温度を降
温させる際に、複数の時点において炉室内の温度を計測
し、該計測した炉室(3)内の温度と該計測を行った時
とから炉室温度降下時定数を演算し、該演算した炉室温
度降下時定数が予め定められた値以下になったときに断
熱層(2)が劣化したと判定することを特徴とする熱間
等方圧加圧装置の断熱層の劣化判定方法。
(1) Introducing high-pressure pressure medium gas into the high-pressure container (1), and placing a heat insulating layer (2) inside the high-pressure container (1) to create a furnace chamber (
3) By heating the pressure medium gas with the heater (4) placed in the furnace chamber (3), high temperature and high pressure pressure medium is applied to the workpiece (5) placed in the furnace chamber (3). In a method for determining deterioration of a heat insulating layer of a hot isostatic pressurizing device that performs processing by applying gas, when lowering the temperature in the furnace chamber (3) after the processing of the processed product (5), Measure the temperature in the furnace chamber at multiple points in time, calculate the furnace chamber temperature drop time constant from the measured temperature in the furnace chamber (3) and the time of the measurement, and calculate the calculated furnace chamber temperature drop time constant. A method for determining deterioration of a heat insulating layer of a hot isostatic pressurizing device, characterized in that it is determined that the heat insulating layer (2) has deteriorated when a constant becomes equal to or less than a predetermined value.
(2)高圧容器(1)内に高圧の圧媒ガスを導入すると
共に、高圧容器(1)内に断熱層(2)を配して炉室(
3)となし、該炉室(3)内に配したヒータにより圧媒
ガスを加熱することで炉室(3)内に配置した被処理品
(5)に高温・高圧の圧媒ガスを作用させて処理を行う
熱間等方圧加圧装置の断熱層の劣化判定方法において、 被処理品(5)の処理終了後、炉室(3)内の温度を降
温させる際に、複数の時点において炉室(3)内の温度
を計測し、該計測した炉室内の温度と該計測を行った時
とから炉室温度降下時定数を演算する演算処理を複数回
行い、該演算した各回の炉室温度降下時定数が他の回の
炉室温度降下時定数に比して、予め定められた値以上に
変化したときに断熱層(2)が劣化したと判定すること
を特徴とする熱間等方圧加圧装置の断熱層の劣化判定方
法。
(2) Introducing high-pressure pressure medium gas into the high-pressure container (1), and arranging a heat insulating layer (2) inside the high-pressure container (1) to create a furnace chamber (
3) By heating the pressure gas with a heater placed in the furnace chamber (3), high temperature and high pressure pressure gas is applied to the workpiece (5) placed in the furnace chamber (3). In a method for determining the deterioration of a heat insulating layer of a hot isostatic pressurizing device that performs processing, the temperature in the furnace chamber (3) is lowered at multiple points in time after the processing of the product to be processed (5) is completed. , the temperature inside the furnace chamber (3) is measured, and the calculation process of calculating the furnace chamber temperature drop time constant from the measured temperature inside the furnace chamber and the time of the measurement is performed multiple times. Heat insulation layer (2) is determined to have deteriorated when the time constant of temperature drop in the furnace chamber changes by a predetermined value or more compared to the time constant of temperature drop in the furnace chamber at other times. A method for determining deterioration of a heat insulating layer of an isostatic pressurizing device.
JP25120690A 1990-09-19 1990-09-19 Deciding method for deterioration of adiabatic layer of hot isotropic pressurizer Pending JPH04126993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25120690A JPH04126993A (en) 1990-09-19 1990-09-19 Deciding method for deterioration of adiabatic layer of hot isotropic pressurizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25120690A JPH04126993A (en) 1990-09-19 1990-09-19 Deciding method for deterioration of adiabatic layer of hot isotropic pressurizer

Publications (1)

Publication Number Publication Date
JPH04126993A true JPH04126993A (en) 1992-04-27

Family

ID=17219276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25120690A Pending JPH04126993A (en) 1990-09-19 1990-09-19 Deciding method for deterioration of adiabatic layer of hot isotropic pressurizer

Country Status (1)

Country Link
JP (1) JPH04126993A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108526462A (en) * 2018-03-02 2018-09-14 浙江新光阳照明股份有限公司 A kind of sintering process of high-temperature hydrogen burning stove
WO2021212634A1 (en) * 2020-04-24 2021-10-28 宁波恒普真空技术有限公司 Multi-zone temperature control and air intake apparatus for walking beam type continuous degreasing sintering furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108526462A (en) * 2018-03-02 2018-09-14 浙江新光阳照明股份有限公司 A kind of sintering process of high-temperature hydrogen burning stove
WO2021212634A1 (en) * 2020-04-24 2021-10-28 宁波恒普真空技术有限公司 Multi-zone temperature control and air intake apparatus for walking beam type continuous degreasing sintering furnace

Similar Documents

Publication Publication Date Title
TWI281694B (en) Control process, temperature control process, temperature regulator, heat treatment and recordable medium
JP2005249427A (en) Thermophysical property measuring method and device
JP3370592B2 (en) Differential thermal analyzer
Wuxderlich et al. Dynamic differential thermal analysis of the glass transition interval
CN107727205A (en) Food quantity measuring method, food amount detecting device and cooking apparatus
CN107124780A (en) Electromagnetic heating temperature control method and device and electromagnetic heating equipment
CN108427453A (en) The automation temperature control system and method for sample heat treatment process under a kind of ultrahigh vacuum
JPH0239213A (en) Detection of generating temperature of high voltage/ temperature device for synthesization and synthetic temperature control method
JPH04126993A (en) Deciding method for deterioration of adiabatic layer of hot isotropic pressurizer
JP2023526426A (en) Passive and active calibration methods for resistive heaters
JP3370581B2 (en) High-speed thermal analyzer
RU2654823C1 (en) Method of measuring thermal conductivity of solid materials
JP5414068B2 (en) Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples
Walton A new technique for determining palaeomagnetic intensities
JP2519928B2 (en) Method for controlling heat quantity of laser heating device
Frano et al. Characterization of the thermal conductivity for ceramic pebble beds
JPH03152441A (en) Testing method for thermal fatigue
JP2006099352A (en) Temperature estimation device and controller unit using the same
RU2598699C1 (en) Method of determining temperature dependence of emissivity factor (versions)
JP2535351B2 (en) Thermocouple data correction method
JPH04249756A (en) Measuring method of expansion characteristic
JPS5922897B2 (en) Grain dryer control device
TWI306899B (en)
JP2950647B2 (en) Heat treatment method for solid packaged food
RU2504744C2 (en) Method of measuring heat pulse