JPH0239213A - Detection of generating temperature of high voltage/ temperature device for synthesization and synthetic temperature control method - Google Patents

Detection of generating temperature of high voltage/ temperature device for synthesization and synthetic temperature control method

Info

Publication number
JPH0239213A
JPH0239213A JP18936488A JP18936488A JPH0239213A JP H0239213 A JPH0239213 A JP H0239213A JP 18936488 A JP18936488 A JP 18936488A JP 18936488 A JP18936488 A JP 18936488A JP H0239213 A JPH0239213 A JP H0239213A
Authority
JP
Japan
Prior art keywords
temperature
heater
phase transition
pressure
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18936488A
Other languages
Japanese (ja)
Other versions
JPH0782399B2 (en
Inventor
Osamu Mishima
修 三島
Takashi Nagashima
長島 隆
Shunichi Osawa
大澤 俊一
Nobuo Yamaoka
山岡 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP63189364A priority Critical patent/JPH0782399B2/en
Publication of JPH0239213A publication Critical patent/JPH0239213A/en
Publication of JPH0782399B2 publication Critical patent/JPH0782399B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Control Of Resistance Heating (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To detect the accurate generating temperature within a device by detecting the phase shift caused by the temperature of a standard material touching partly a heater based on the electric resistance and the voltage/current change of the heater. CONSTITUTION:A cylindrical graphite heater 1 is laterally cut at its center and a standard material 2, i.e., NaCl is applied thinly at four areas of the section of the heater 1. These cut pieces are joined together and put into a pressure medium 3, e.g., boron nitride. The temperature of the heater 1 is in creased while the electric resistance or the voltage/current of the heater 1. Then the phase shift (fusion) of the material 2 is detected when the discontinu ous change occurs with the electric resistance or the voltage/current of the heater 1. Thus an accurate temperature of a high voltage/temperature device is detected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は間接通電加熱方式の高圧高温装置の発生温度の
検知ならびに合成温度制御法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for detecting the temperature generated in a high-pressure, high-temperature apparatus using indirect current heating and for controlling the combined temperature.

従来技術 従来、間接通電加熱方式の高圧高温装置の発生温度検知
法としては、熱電対を装置内に挿入して検知する方法が
行われている。しかし、この方法は装置内の大きな温度
勾配や、熱電対を通って逃げる熱のために、測定温度の
誤差が大きい欠点があった。また、熱電対を装置内に挿
入して温度測定を行うには繁雑な測定準備が必要で、技
術的にも容易でない問題点があった。
BACKGROUND ART Conventionally, as a method for detecting the temperature generated in a high-pressure, high-temperature apparatus using an indirect current heating method, a method has been used in which a thermocouple is inserted into the apparatus. However, this method has the disadvantage of large errors in the measured temperature due to large temperature gradients within the device and heat escaping through the thermocouple. Furthermore, in order to measure the temperature by inserting a thermocouple into the device, complicated measurement preparations are required, which poses a problem that is not easy technically.

また、ヒーターの電気抵抗が発生温度の検知に利用され
ることもあるが、ヒーターの材質や加圧中の変形等の各
加熱条件の違いに伴う電気抵抗の非再現性のため、大き
な誤差を生じ正確な温度検知が困難である欠点があった
In addition, the electrical resistance of the heater is sometimes used to detect the generated temperature, but due to the non-reproducibility of the electrical resistance due to differences in heating conditions such as the material of the heater and deformation during pressurization, large errors can occur. This has the disadvantage that accurate temperature detection is difficult.

一方、高圧高温下での合成温度の調整は通常ヒーターへ
の投入電力を制御することによって行われているが、従
来簡便で正確な発生温度の検知法がなかったため適正な
合成温度に調整保持することが難しい欠点があった。
On the other hand, the synthesis temperature under high pressure and high temperature is usually adjusted by controlling the power input to the heater, but since there was no simple and accurate method to detect the generated temperature, it was difficult to adjust and maintain the synthesis temperature at an appropriate temperature. There were some drawbacks that made it difficult.

発明の目的 本発明は従来の熱電対やヒーター抵抗による温度検知法
における繁雑あるいは誤差を生じ易い欠点を改善し、簡
便で正確な高圧高温装置の発生温度を検知する方法なら
びに合成の適温に容易に制御する方法を提供しようとす
るものである。
Purpose of the Invention The present invention improves the drawbacks of conventional temperature detection methods using thermocouples and heater resistors, which are complicated or prone to errors, and provides a simple and accurate method for detecting the temperature generated in a high-pressure, high-temperature device, as well as a method for easily determining the appropriate temperature for synthesis. The aim is to provide a method for controlling

発明の構成 本発明者らは前記目的を達成すべく鋭意研究の結果、温
度で相転移する物質を用い、これを高圧高温装置のヒー
ターの1部に接して置き、この物質の相転移の現象をヒ
ーターの電気抵抗またはヒーターへの電圧・電流の変化
で捕えると、装置内の発生温度を簡便かつ正確に検知し
得られることを知見し得た。またこのときのヒーターへ
の投入電力を基準として合成用電力を投入すると合成の
適温に容易に調整し得られ、再現性よく合成し得られる
ことを知見し得た。これらの知見に基づいて本発明を完
成した。
Structure of the Invention In order to achieve the above object, the present inventors conducted intensive research and found that they used a substance that undergoes a phase transition with temperature, placed it in contact with a part of the heater of a high-pressure, high-temperature device, and investigated the phenomenon of phase transition of this substance. We found that the temperature generated inside the device can be easily and accurately detected by detecting the electrical resistance of the heater or changes in the voltage and current applied to the heater. Furthermore, it was found that if the electric power for synthesis is input based on the electric power input to the heater at this time, the appropriate temperature for synthesis can be easily adjusted and the synthesis can be performed with good reproducibility. The present invention was completed based on these findings.

本発明の要旨は、 l)間接通電加熱方式の高圧高温装置のヒーターの1部
に接して、温度で相転移する標準物質を置き、該標準物
質の相転移現象をヒーターの電気抵抗またはヒーターへ
の電圧・電流の変化で捕えることにより、装置内の発生
温度を知ることを特徴とする合成用高圧高温装置の発生
温度検知法。
The gist of the present invention is as follows: l) A standard substance that undergoes a phase transition with temperature is placed in contact with a part of the heater of a high-pressure, high-temperature device using an indirect current heating method, and the phase transition phenomenon of the standard substance is applied to the electric resistance of the heater or to the heater. A method for detecting the temperature generated in a high-pressure, high-temperature device for synthesis, which is characterized by determining the temperature generated within the device by detecting changes in voltage and current.

2) 間接通電加熱方式の高圧高温装置のヒーターの1
部に接して、温度で相転移する標準物質を置き、該標準
物質の相転移現象をヒーターの電気抵抗またはヒーター
の電圧・電流の変化で捕えることにより、装置内の発生
温度を知り、この時のヒーターへの投入電力を基準とし
て合成の適温になるように投入電力を調整することを特
徴とする高圧高温装置による合成温度の制御法。にある
2) Heater 1 of indirect current heating type high pressure and high temperature equipment
By placing a standard material that undergoes a phase transition with temperature in contact with the device, and capturing the phase transition phenomenon of the standard material from changes in the electric resistance of the heater or the voltage and current of the heater, the temperature generated within the device can be determined. A method for controlling the synthesis temperature using a high-pressure, high-temperature device, which is characterized by adjusting the input power so that the appropriate temperature for synthesis is obtained based on the electric power input to the heater. It is in.

間接通電加熱方式の高圧高温装置に用いるヒーターは高
熱に耐え導電性を持つものであればよい。
The heater used in the high-pressure, high-temperature apparatus of indirect current heating type may be any heater as long as it can withstand high heat and has electrical conductivity.

例えば、白金、モリブデン、チタンを用いてもよいが、
安価に容易に得られ、かつ加工組み立ての容易さから黒
鉛ヒーター、好ましくは円筒状形のものがよい。また、
標準物質の相転移に伴う変化を捕えるためには、ヒータ
ーに接する圧力媒体は高圧高温で相転移を生じない六方
晶窒化はう素を用いるのが好ましい。
For example, platinum, molybdenum, titanium may be used, but
A graphite heater, preferably one having a cylindrical shape, is preferred because it can be easily obtained at low cost and is easy to process and assemble. Also,
In order to capture changes associated with phase transitions in the standard substance, it is preferable to use hexagonal boron nitride as the pressure medium in contact with the heater, which does not cause phase transitions at high pressures and high temperatures.

温度で相転移する標準物質としては、高圧下での昇温に
より相転移を起こし、その相転移をヒーターの電気抵抗
、またはヒーターの電圧・電流の変化として捕えられる
ものであればよい、特に塩化ナトリウムは高圧高温で融
解の相転移を起こし、そのときに大きな電気抵抗変化と
変形を伴うので、ヒーターの電気抵抗の変化を捕え易く
、その上取扱いも容易である点で好ましい、この標準物
質をヒーターの一部に接して置く方法としては、例えば
、第1図に示すように、円筒状の黒鉛ヒーター1の中央
を横方向に切断し、その断面の例えば4ケ所に標準物質
2の塩化ナトリウムを薄く塗布する。この切断したもの
を合わせて、圧力媒体3、例えば六方晶窒化はう素の中
に置(、この場合、標準物質の塗布量は円筒状黒鉛の断
面の0.1〜50%の範囲であることが好ましい。0.
1%未満では電気抵抗の変化がlトさり、50%を超え
るとヒーターの抵抗変化が大きくなり過ぎ安定した温度
の発生が困難となる。
Standard substances that undergo a phase transition with temperature are suitable as long as they undergo a phase transition when heated under high pressure and that phase transition can be detected as changes in the electrical resistance of the heater or changes in the voltage and current of the heater, especially chloride. Sodium undergoes a phase transition of melting at high pressure and high temperature, accompanied by large changes in electrical resistance and deformation. Therefore, this standard material is preferred because it is easy to detect changes in the electrical resistance of the heater and is also easy to handle. For example, as shown in Fig. 1, a method of placing the heater in contact with a part of the heater is to cut the center of the cylindrical graphite heater 1 in the horizontal direction, and place the standard substance 2, sodium chloride, at four locations on the cross section. Apply a thin layer. These cut pieces are placed together in a pressure medium 3, such as hexagonal boron nitride (in this case, the amount of the standard substance applied is in the range of 0.1 to 50% of the cross section of the cylindrical graphite). It is preferable that 0.
If it is less than 1%, the change in electrical resistance will be too small, and if it exceeds 50%, the change in resistance of the heater will be too large, making it difficult to generate a stable temperature.

ヒーターの電気抵抗は通常の方法で測定すればよい、こ
の電気抵抗に代えヒーターにかかる電圧や電流の変化で
相転移を捕えてもよい。
The electrical resistance of the heater may be measured by a conventional method. Instead of this electrical resistance, phase transition may be detected by changes in the voltage or current applied to the heater.

装置を加圧した後、ヒーターの電気抵抗またはヒーター
への電圧・電流を測定しながら昇温しでいけば、それら
に不連続な変化が生じた時が標準物質の相転移をした温
度である。
After pressurizing the device, if the temperature is increased while measuring the electrical resistance of the heater or the voltage/current to the heater, the point at which a discontinuous change occurs in these values is the temperature at which the standard material undergoes a phase transition. .

この不連続な変化が生じたときのヒーターに投入した電
力から、高圧高温装置の発生温度とそのときの投入電力
の関係をつかみ、合成温度に相当する投入電力を設定す
る。
From the power input to the heater when this discontinuous change occurs, the relationship between the temperature generated in the high-pressure, high-temperature device and the power input at that time is determined, and the power input corresponding to the composite temperature is set.

この場合、昇温速度、圧力、及び標準物質の位置と量は
各合成で一定に保っておくことが好ましい。これにより
再現性よく合成し得られる。
In this case, it is preferable to keep the heating rate, pressure, and position and amount of the standard substance constant for each synthesis. This allows synthesis with good reproducibility.

高圧高温装置により合成される物質は、例えばダイヤモ
ンド、立方晶窒化はう素が挙げられる。
Examples of substances synthesized using a high-pressure, high-temperature apparatus include diamond and cubic boron nitride.

しかし、これに限定されるものではない。However, it is not limited to this.

実施例1゜ 第1図に示す黒鉛円筒状ヒーターの中央を横方向に切断
し、その断面の4箇所に標準物質として塩化ナトリウム
を薄く塗布した。その全塗布面積をヒーター断面の約1
5%とした。このヒーターを合わせて円筒とし、これを
立方晶窒化はう素圧力媒体中に置いた。更に立方晶窒化
はう素合成用に六方晶窒化はう素の焼結体原料とほう窒
化リチウム触媒とをモリブデン製容器中に入れ、これを
ヒーター内の六方晶窒化はう素圧力媒体中に入れた。こ
れを高圧高温装置に入れて5.5 GPaまで加圧した
後、ヒーターに電流を通じ、単位時間当たり約500°
Cの割合で昇温した。この方法を5回繰返し行った。昇
温中、ヒーターの電気抵抗を投入電力に対比して測定し
た。電気抵抗に不連続の変化(第2図参照)  (0,
02オ一ム程度の段差)が生ずる時が塩化ナトリウムの
融解温度であり、これにより装置内の発生温度を知り得
た。
Example 1 The center of the graphite cylindrical heater shown in FIG. 1 was cut transversely, and a thin layer of sodium chloride was applied as a standard substance to four locations on the cross section. The total application area is approximately 1 area of the cross section of the heater.
It was set at 5%. The heaters were assembled into a cylinder which was placed in a cubic nitride pressure medium. Furthermore, for the synthesis of cubic boron nitride, a sintered raw material of hexagonal boron nitride and a lithium boron nitride catalyst were placed in a molybdenum container, and this was placed in a hexagonal boron nitride pressure medium in a heater. I put it in. After putting this in a high-pressure and high-temperature device and pressurizing it to 5.5 GPa, an electric current is passed through the heater to heat it at about 500 degrees per unit time.
The temperature was raised at a rate of C. This method was repeated five times. During the temperature rise, the electrical resistance of the heater was measured relative to the input power. Discontinuous change in electrical resistance (see Figure 2) (0,
The melting temperature of sodium chloride is the point at which a step difference of about 0.02 ohm occurs, and from this we were able to determine the temperature at which it occurred within the apparatus.

塩化ナトリウムの融解温度になった時の投入電力量を計
った。その結果は第2図に示す通りで、それぞれ3.5
2.3.50.3.46.3.4o、3.39キロワツ
トであった。更に立方晶窒化はう素を合成するに要する
温度となるように、前記検出温度を基準としてそれぞれ
4.88.4.85.4.79.4.69.4.68キ
ロワツトの電力を投入し、70時間保持して立方晶窒化
はう索車結晶を育成した。
The amount of electricity input was measured when the melting temperature of sodium chloride was reached. The results are shown in Figure 2, each with 3.5
2.3.50.3.46.3.4o, 3.39 kilowatts. Further, in order to obtain the temperature required to synthesize cubic boron nitride, 4.88, 4.85, 4.79, 4.69, and 4.68 kilowatts of power were applied, respectively, based on the detected temperature. , and held for 70 hours to grow cubic nitride crawler crystals.

得られた立方晶窒化はう素の単結晶の大きさ及び数は次
の通りであった。
The sizes and numbers of the cubic nitrided boron single crystals obtained were as follows.

第   1   表 するので、再現性よく容易に合成し得られる。Chapter 1 Table Therefore, it can be easily synthesized with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高圧高温装置のヒータ一部の一実施態様図、第
2図はヒーターの電気抵抗と投入電力との関係図。 1:黒鉛円筒状ヒーター、2:標準物質、3:圧力媒体
。 このように、適正温度に容易に調整し得られ、所望の合
成を再現性よく合成し得られる。 発明の効果 本発明の方法によみと、標準物質をヒーターの一部に接
して置き、該標準物質の温度による相転移現象を利用し
て高圧高温装置内の発生温度を検出するので、従来法に
おける検出誤差、操作の困難もなく、簡便、かつ正確に
検出し得られる。 また、該高圧高温装置による合成に際し、前記検出に投
入した電力によるヒーターの電気抵抗または電圧・電流
の値を基準とし、投入電力を調整第 図 手 続 補 正 書 (方 式) 事件の表示 昭和63年特許願第1139364号 発明の名称ゴウセイヲウコウアノコウオ7ノウチ  ノ
・ノ竜イオンド  ケンチ合成用高圧高温装置の発生温
度の検知ならびに補正をする者 事件との関係
FIG. 1 is a diagram showing an embodiment of a part of a heater in a high-pressure, high-temperature device, and FIG. 2 is a diagram showing the relationship between electric resistance and input power of the heater. 1: Graphite cylindrical heater, 2: Standard material, 3: Pressure medium. In this way, it is possible to easily adjust the temperature to an appropriate temperature, and the desired synthesis can be performed with good reproducibility. Effects of the Invention In the method of the present invention, a standard substance is placed in contact with a part of the heater, and the temperature generated in the high-pressure and high-temperature equipment is detected using the phase transition phenomenon caused by the temperature of the standard substance, which is different from the conventional method. There is no detection error or difficulty in operation, and it can be detected simply and accurately. In addition, during synthesis using the high-pressure and high-temperature equipment, the input power is adjusted based on the electrical resistance or voltage/current values of the heater due to the power input for detection. Application No. 1139364 Name of the invention 7. Person who detects and corrects the temperature generated in a high-pressure, high-temperature device for synthesis. Relationship with the case.

Claims (1)

【特許請求の範囲】 1)間接通電加熱方式の高圧高温装置のヒーターの1部
に接して、温度で相転移する標準物質を置き、該標準物
質の相転移現象をヒーターの電気抵抗またはヒーターへ
の電圧・電流の変化で捕えることにより、装置内の発生
温度を知ることを特徴とする合成用高圧高温装置の発生
温度検知法。 2)温度で相転移する標準物質が塩化ナトリウムである
請求項1の発生温度検知法。 3)ヒーターに筒状黒鉛を用い、筒状黒鉛の横方向断面
の0.1〜50%部分を標準物質で覆うようにした請求
項1の発生温度検知法。 4)間接通電加熱方式の高圧高温装置のヒーターの1部
に接して、温度で相転移する標準物質を置き、該標準物
質の相転移現象をヒーターの電気抵抗またはヒーターの
電圧・電流の変化で捕えることにより、装置内の発生温
度を知り、この時のヒーターへの投入電力を基準として
合成の適温になるように投入電力を調整することを特徴
とする合成温度の制御法。
[Claims] 1) A standard substance that undergoes a phase transition with temperature is placed in contact with a part of the heater of a high-pressure, high-temperature device using an indirect current heating method, and the phase transition phenomenon of the standard substance is applied to the electrical resistance of the heater or to the heater. A method for detecting the temperature generated in a high-pressure, high-temperature device for synthesis, which is characterized by determining the temperature generated within the device by detecting changes in voltage and current. 2) The generated temperature detection method according to claim 1, wherein the standard substance that undergoes a phase transition with temperature is sodium chloride. 3) The generated temperature detection method according to claim 1, wherein cylindrical graphite is used as the heater, and 0.1 to 50% of the lateral cross section of the cylindrical graphite is covered with the standard substance. 4) Place a standard material that undergoes a phase transition with temperature in contact with a part of the heater of a high-pressure, high-temperature device that uses indirect current heating, and measure the phase transition phenomenon of the standard material by changing the electric resistance of the heater or the voltage and current of the heater. A synthesis temperature control method characterized by determining the temperature generated within the device by capturing the temperature, and adjusting the input power so that the temperature is suitable for synthesis based on the power input to the heater at this time.
JP63189364A 1988-07-28 1988-07-28 Detection of temperature generated in high-pressure high-temperature equipment for synthesis and synthesis temperature control method Expired - Lifetime JPH0782399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63189364A JPH0782399B2 (en) 1988-07-28 1988-07-28 Detection of temperature generated in high-pressure high-temperature equipment for synthesis and synthesis temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63189364A JPH0782399B2 (en) 1988-07-28 1988-07-28 Detection of temperature generated in high-pressure high-temperature equipment for synthesis and synthesis temperature control method

Publications (2)

Publication Number Publication Date
JPH0239213A true JPH0239213A (en) 1990-02-08
JPH0782399B2 JPH0782399B2 (en) 1995-09-06

Family

ID=16240085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63189364A Expired - Lifetime JPH0782399B2 (en) 1988-07-28 1988-07-28 Detection of temperature generated in high-pressure high-temperature equipment for synthesis and synthesis temperature control method

Country Status (1)

Country Link
JP (1) JPH0782399B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509140A (en) * 1992-07-24 1996-04-16 Canon Kabushiki Kaisha Replaceable ink cartridge
US5619238A (en) * 1992-07-24 1997-04-08 Canon Kabushiki Kaisha Method of making replaceable ink cartridge
US5900898A (en) * 1992-12-25 1999-05-04 Canon Kabushiki Kaisha Liquid jet head having a contoured and secured filter, liquid jet apparatus using same, and method of immovably securing a filter to a liquid receiving member of a liquid jet head
US6174053B1 (en) 1993-05-13 2001-01-16 Canon Kabushiki Kaisha Ink tank, head cartridge and ink jet printing apparatus
US6332675B1 (en) 1992-07-24 2001-12-25 Canon Kabushiki Kaisha Ink container, ink and ink jet recording apparatus using ink container
US6350022B1 (en) 1994-09-02 2002-02-26 Canon Kabushiki Kaisha Ink jet recording apparatus
WO2012046638A1 (en) * 2010-10-04 2012-04-12 Ricoh Company, Ltd. Electric element
JP2012078247A (en) * 2010-10-04 2012-04-19 Ricoh Co Ltd Electric element, integrated element and electronic circuit
JP2012078245A (en) * 2010-10-04 2012-04-19 Ricoh Co Ltd Electric element, integrated element and electronic circuit
JP2012078285A (en) * 2010-10-05 2012-04-19 Ricoh Co Ltd Electric element, integrated element and electronic circuit
JP2012078246A (en) * 2010-10-04 2012-04-19 Ricoh Co Ltd Electric element, integrated element and electronic circuit
JP2012122861A (en) * 2010-12-08 2012-06-28 Ricoh Co Ltd Dew-point measuring device and gas characteristics measuring device
JP2012122863A (en) * 2010-12-08 2012-06-28 Ricoh Co Ltd Dew-point measuring device and gas characteristics measuring device
JP2012122862A (en) * 2010-12-08 2012-06-28 Ricoh Co Ltd Dew-point measuring device and gas characteristics measuring device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332675B1 (en) 1992-07-24 2001-12-25 Canon Kabushiki Kaisha Ink container, ink and ink jet recording apparatus using ink container
US6688735B2 (en) 1992-07-24 2004-02-10 Canon Kabushiki Kaisha Ink jet cartridge, ink jet head and printer
US6231172B1 (en) 1992-07-24 2001-05-15 Canon Kabushiki Kaisha Ink container, ink and ink jet recording apparatus using ink container
US6474801B2 (en) 1992-07-24 2002-11-05 Canon Kabushiki Kaisha Ink jet cartridge, ink jet head and printer
US6012808A (en) * 1992-07-24 2000-01-11 Canon Kabushiki Kaisha Ink container, ink and ink jet recording apparatus using ink container
US6095642A (en) * 1992-07-24 2000-08-01 Canon Kabushiki Kaisha Ink container, ink and ink jet recording apparatus using ink container
US6123420A (en) * 1992-07-24 2000-09-26 Canon Kabushiki Kaisha Container with negative pressure producing material
US6394590B1 (en) 1992-07-24 2002-05-28 Canon Kabushiki Kaisha Replaceable liquid container
US5742311A (en) * 1992-07-24 1998-04-21 Canon Kabushiki Kaisha Replaceable ink cartridge
US5619238A (en) * 1992-07-24 1997-04-08 Canon Kabushiki Kaisha Method of making replaceable ink cartridge
US6390578B1 (en) 1992-07-24 2002-05-21 Canon Kabushiki Kaisha Ink container, ink and ink jet recording apparatus using ink container
US6286945B1 (en) 1992-07-24 2001-09-11 Canon Kabushiki Kaisha Ink jet cartridge, ink jet head and printer
US6796643B2 (en) 1992-07-24 2004-09-28 Canon Kabushiki Kaisha Ink jet cartridge, ink jet head and printer
US6332673B1 (en) 1992-07-24 2001-12-25 Canon Kabushiki Kaisha Liquid container having reinforcing member
US5509140A (en) * 1992-07-24 1996-04-16 Canon Kabushiki Kaisha Replaceable ink cartridge
US5900898A (en) * 1992-12-25 1999-05-04 Canon Kabushiki Kaisha Liquid jet head having a contoured and secured filter, liquid jet apparatus using same, and method of immovably securing a filter to a liquid receiving member of a liquid jet head
US6325498B1 (en) 1993-05-13 2001-12-04 Canon Kabushiki Kaisha Ink tank with ink absorbing member
US6174053B1 (en) 1993-05-13 2001-01-16 Canon Kabushiki Kaisha Ink tank, head cartridge and ink jet printing apparatus
US6224200B1 (en) 1993-05-13 2001-05-01 Canon Kabushiki Kaisha Ink tank with ink absorbing member having particular holes or slits
US6350022B1 (en) 1994-09-02 2002-02-26 Canon Kabushiki Kaisha Ink jet recording apparatus
WO2012046638A1 (en) * 2010-10-04 2012-04-12 Ricoh Company, Ltd. Electric element
JP2012078247A (en) * 2010-10-04 2012-04-19 Ricoh Co Ltd Electric element, integrated element and electronic circuit
JP2012078245A (en) * 2010-10-04 2012-04-19 Ricoh Co Ltd Electric element, integrated element and electronic circuit
JP2012078246A (en) * 2010-10-04 2012-04-19 Ricoh Co Ltd Electric element, integrated element and electronic circuit
US8848436B2 (en) 2010-10-04 2014-09-30 Ricoh Company, Ltd. Electric element
US9184380B2 (en) 2010-10-04 2015-11-10 Ricoh Company, Ltd. Electric element
JP2012078285A (en) * 2010-10-05 2012-04-19 Ricoh Co Ltd Electric element, integrated element and electronic circuit
JP2012122861A (en) * 2010-12-08 2012-06-28 Ricoh Co Ltd Dew-point measuring device and gas characteristics measuring device
JP2012122863A (en) * 2010-12-08 2012-06-28 Ricoh Co Ltd Dew-point measuring device and gas characteristics measuring device
JP2012122862A (en) * 2010-12-08 2012-06-28 Ricoh Co Ltd Dew-point measuring device and gas characteristics measuring device

Also Published As

Publication number Publication date
JPH0782399B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
JPH0239213A (en) Detection of generating temperature of high voltage/ temperature device for synthesization and synthetic temperature control method
EP1136802B1 (en) Modulated differential scanning calorimeter
Tilford et al. Thermal expansions of solid argon, krypton, and xenon above 1 K
CN101308107B (en) Process for determining thermoconductivity
JP5395807B2 (en) Thermal analysis method and apparatus
Ramakumar et al. Experimental evaluation of procedures for heat capacity measurement by differential scanning calorimetry
Loriers‐Susse et al. Specific heat measured at high pressures by a pulse method
Mao et al. Techniques of electrical conductivity measurement to 300 kbar
Bourdariat et al. Influence of cooling rate on the heat capacity and thermal transitions of amorphous polyhexene-1
Sundqvist Electrical resistance of nickel in the range 300–725 K and 0–2 GPa
Charsley et al. Determination of the equilibrium temperatures and enthalpies of the solid–solid transitions of rubidium nitrate by differential scanning calorimetry
Sembira et al. High temperature calibration of DTA and DSC apparatus using encapsulated samples
US11141076B1 (en) Thermally activated non-invasive blood perfusion measurement systems
Beebe et al. Calorimetric Heats of Adsorption of Nitrogen, Carbon Monoxide, and Argon on Graphon at-70°
Szmyrka-Grzebyk et al. Measuring systems for thermometer calibration in low-temperature range
Besmann et al. High-temperature equilibrium between thorium dioxide, thorium dicarbide and carbon
JPH03217789A (en) Method of applying hot hydrostatic pressure
Skelskey et al. A relaxation phenomenon observed in fine gold wire
KR100614674B1 (en) Vacuum gauge of heat capacity type
Williams et al. A high pressure electrical conductivity apparatus
JP3246861B2 (en) Thermal characteristic measuring device and soil moisture content measuring device using the same
Cleveland An improved apparatus for measuring the thermal transmission of textiles
JPS6143658B2 (en)
Righini et al. Thermophysical properties of thoriated tungsten above 3600 K by a pulse-heating method
SU546073A1 (en) Method for determining plasma thermoelectromotive force

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term