JPH03152441A - Testing method for thermal fatigue - Google Patents

Testing method for thermal fatigue

Info

Publication number
JPH03152441A
JPH03152441A JP29135689A JP29135689A JPH03152441A JP H03152441 A JPH03152441 A JP H03152441A JP 29135689 A JP29135689 A JP 29135689A JP 29135689 A JP29135689 A JP 29135689A JP H03152441 A JPH03152441 A JP H03152441A
Authority
JP
Japan
Prior art keywords
temperature
test
test piece
thermal expansion
thermal fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29135689A
Other languages
Japanese (ja)
Other versions
JP2780826B2 (en
Inventor
Hiroshi Uno
宇野 博
Nobumasa Ichikawa
市川 順正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP1291356A priority Critical patent/JP2780826B2/en
Publication of JPH03152441A publication Critical patent/JPH03152441A/en
Application granted granted Critical
Publication of JP2780826B2 publication Critical patent/JP2780826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To enable execution of an accurate test entirely over a wide range of a test temperature from a normal temperature area to a high temperature area by computing a thermal expansion coefficient of a test piece at each temperature on based on a measured strain and by determining a control target value therefrom. CONSTITUTION:First, a control of a tester is executed so that a load on a test piece 1, i.e. a confinement ratio therefore, be zero. Heating of the test piece 1 by a heating coil 5 is started and the temperature of the test piece 1 is varied up and down within the range of a test temperature, while it is monitored by a temperature sensor 9. In cycles of heating and cooling, a control circuit 12 measures a strain of the test piece 1 through a displacement detector 10. Based on the measured strain, subsequently, the control circuit 12 determines of a thermal expansion coefficient of the test piece 1 at each temperature by computation and determines a control target value in a thermal fatigue test by using the determined thermal expansion coefficient. According to this method, an accurate test can be executed entirely over a wide range of the test temperature from a normal temperature area to a high temperature area.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は熱疲労試験方法に係り、特に、拘束率を一定に
保ってテストピースを所定の温度パターンで加熱冷却し
、熱疲労試験を行う熱疲労試験方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thermal fatigue testing method, and in particular, a thermal fatigue test is performed by heating and cooling a test piece in a predetermined temperature pattern while keeping a constant restraint rate. This relates to a thermal fatigue test method.

[従来の技術] 一般に、高温機器においては、起動、運転停止時の温度
変動に伴い、使用される金属材料は熱膨張、収縮を繰り
返す。このような熱膨張ひずみが拘束されると、第5図
に示すように熱応力が発生する。熱応力の繰り返しによ
る疲労を熱疲労という。拘束される全ひずみ範囲Δε1
は、Δε、=ηαΔT で与えられる。ここで、ηは拘束率、αは熱膨張係数、
ΔTは温度変動範囲である。熱疲労試験では上、下限温
度を定めた条件下で、拘束率によってΔε、を定め、Δ
ε、に対する破壊までの繰り返し数Ntが求められる。
[Prior Art] Generally, in high-temperature equipment, the metal materials used undergo repeated thermal expansion and contraction due to temperature fluctuations during startup and shutdown. When such thermal expansion strain is restrained, thermal stress is generated as shown in FIG. Fatigue due to repeated thermal stress is called thermal fatigue. Total constrained strain range Δε1
is given by Δε,=ηαΔT. Here, η is the constraint ratio, α is the coefficient of thermal expansion,
ΔT is the temperature fluctuation range. In the thermal fatigue test, Δε is determined by the restraint rate under the conditions of the upper and lower temperature limits, and Δ
The number of repetitions Nt until failure for ε is determined.

ところで、上記式から拘束率ηは、 η=ΔεL/αΔT で表され、全ひずみ範囲に対する熱膨張の比によって定
義され、固定拘束のとき1、自由膨張のときO1倍変位
のとき−lとなる。なお、温度変動範囲ΔTは計測温度
Tと変動中心温度Tmとの差(T−Tm)である。
By the way, from the above formula, the constraint ratio η is expressed as η=ΔεL/αΔT, and is defined by the ratio of thermal expansion to the entire strain range, and is 1 when the constraint is fixed, and −l when the displacement is O1 times the free expansion. . Note that the temperature fluctuation range ΔT is the difference (T−Tm) between the measured temperature T and the fluctuation center temperature Tm.

今、拘束率ηを一定にし、Δ2.を制御目標値として熱
疲労試験を行う場合、従来は制御目標値Δ11を下式に
よって決定している。
Now, with the restraint rate η constant, Δ2. When performing a thermal fatigue test using Δ11 as the control target value, conventionally the control target value Δ11 is determined by the following formula.

Δf、=αΔT+Δε。Δf,=αΔT+Δε.

αΔT−ηαΔT αΔT(1−η) α(T−Tm)(1−η)  ・・・・・・(1)この
際、上式(1)中の熱膨張係数αを予め別途計測してお
き、これを運転時に上式(1)に代入して制御目標値Δ
1.を求めていた。
αΔT−ηαΔT αΔT(1−η) α(T−Tm)(1−η) ・・・・・・(1) At this time, separately measure the coefficient of thermal expansion α in the above formula (1) in advance. , during operation, substitute this into the above equation (1) to obtain the control target value Δ
1. was looking for.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、熱膨張係数αは、常温域から高温域まで幅広く
試験を行った場合、温度をパラメータとしてα(T)と
変化するため、試験が正確に行うことができないという
問題があった。
However, when the thermal expansion coefficient α is tested over a wide range from normal temperature to high temperature range, it changes as α(T) with temperature as a parameter, so there is a problem that the test cannot be performed accurately.

よって本発明は、上述した従来の問題に鑑み、常温域か
ら高温域まで幅広く試験を行った場合でも、試験温度範
囲全域において試験を正確に行えるようにした熱疲労試
験方法を提供することを課題としている。
Therefore, in view of the above-mentioned conventional problems, it is an object of the present invention to provide a thermal fatigue testing method that allows the test to be performed accurately over the entire test temperature range, even when testing is performed in a wide range from room temperature to high temperature range. It is said that

〔課題を解決するための手段] 上記課題を解決するため本発明により成された熱疲労試
験方法は、拘束率と、所定の温度パターンで加熱冷却さ
れるテストピースの温度と、テストピースの熱膨張係数
とによりひずみ制御の目標値を求め、該目標値を利用し
て熱疲労試験を行う熱疲労試験方法において、前記熱疲
労試験の開始前に、テストピースを拘束しない状態でテ
ストピースの温度を前記温度パターンの下限温度と上限
温度との間で変化させ、このとき各温度においてテスト
ピースに生じるひずみを測定し、該測定したひずみに基
づいて各温度でのテストピースの熱膨張係数を演算によ
り求め、該演算により求めた熱膨張係数を利用して前記
熱疲労試験における目標値を求めることを特徴としてい
る。
[Means for Solving the Problems] In order to solve the above problems, the thermal fatigue test method according to the present invention is based on the following: the restraint rate, the temperature of a test piece that is heated and cooled in a predetermined temperature pattern, and the heat of the test piece. In a thermal fatigue test method in which a target value for strain control is determined based on the expansion coefficient and a thermal fatigue test is performed using the target value, the temperature of the test piece is adjusted before the start of the thermal fatigue test without restraining the test piece. is varied between the lower limit temperature and upper limit temperature of the temperature pattern, the strain occurring in the test piece at each temperature is measured, and the thermal expansion coefficient of the test piece at each temperature is calculated based on the measured strain. The target value in the thermal fatigue test is determined by using the coefficient of thermal expansion determined by the calculation.

〔作 用〕[For production]

以上の方法においては、熱疲労試験の際の制御目標値が
各温度における熱膨張係数を考慮して求められているの
で、常温域から高温域まで幅広く試験を行った場合の熱
膨張係数が温度をパラメータとして変化しても、この熱
膨張係数の変化を考慮した目標値が求められるようにな
る。
In the above method, the control target value for thermal fatigue testing is determined by taking into account the coefficient of thermal expansion at each temperature. Even if the coefficient of thermal expansion is changed as a parameter, a target value can be determined that takes into account the change in the coefficient of thermal expansion.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による熱疲労試験方法を実施するための
熱疲労試験機の一例を示す図であり、同図において、l
はテストピースで、その一端が油圧シリンダ2のピスト
ン2aにチャック3aを介して連結されると共に、その
他端が荷重検出器4にチャック3bを介して連結されて
いる。上述のように連結されたテストピースlには、油
圧シリンダ2を動作させてピストン2aを図中矢印A。
FIG. 1 is a diagram showing an example of a thermal fatigue testing machine for carrying out the thermal fatigue testing method according to the present invention.
is a test piece, one end of which is connected to the piston 2a of the hydraulic cylinder 2 via a chuck 3a, and the other end connected to a load detector 4 via a chuck 3b. The hydraulic cylinder 2 is operated to move the piston 2a to the test piece 1 connected as described above, as indicated by the arrow A in the figure.

B方向に移動させることにより、テストピース1に引張
、圧縮荷重を作用させる。
By moving in direction B, tensile and compressive loads are applied to the test piece 1.

また、テストピースlの周囲には、これを取り囲むよう
に加熱手段としての高周波コイル5が配置されている。
Further, a high frequency coil 5 serving as a heating means is arranged around the test piece l so as to surround it.

この高周波コイル5には、高周波電流を制御して加熱温
度を調節する温度調節器5aが設けられている。上記冑
周波コイル5の周囲には、第2図に示すように、高周波
コイル5及びテストピース1に冷却用空気を吹き付ける
ノズル6が配置されている。このノズル6に冷却用空気
を送る流路7には、流量を連続的に調節するサーボ弁8
が設けられている。
This high frequency coil 5 is provided with a temperature regulator 5a that controls the high frequency current and adjusts the heating temperature. As shown in FIG. 2, a nozzle 6 is arranged around the high-frequency coil 5 to blow cooling air onto the high-frequency coil 5 and the test piece 1. A servo valve 8 that continuously adjusts the flow rate is provided in the flow path 7 that sends cooling air to the nozzle 6.
is provided.

更に、テストピースlには、熱電対から構成された温度
センサ9が取付けられると共に、チャック3a及び3b
間の距離を計測してテストピース1のひずみを検出する
変位検出器IOが配置されている。
Furthermore, a temperature sensor 9 composed of a thermocouple is attached to the test piece l, and chucks 3a and 3b are attached to the test piece l.
A displacement detector IO is arranged to detect strain in the test piece 1 by measuring the distance between the test pieces 1 and 1.

上記荷重検出器4、温度センサ9及び変位検出器10の
出力はそれぞれアンプlla乃至11cで増幅されて予
め定められたプログラムに従って動作するマイクロコン
ピュータ(CPU)によつて構成された制御回路12に
入力される。
The outputs of the load detector 4, temperature sensor 9, and displacement detector 10 are amplified by amplifiers lla to 11c, respectively, and input to a control circuit 12 constituted by a microcomputer (CPU) that operates according to a predetermined program. be done.

制御回路12はアンプlla乃至ticを介して人力さ
れるアナログ信号をデジタル信号に変換して取り込み、
この取り込んだ信号を処理してテストピース1の温度を
所定の温度に上昇下降するため高周波コイル5に流す高
周波電流を制御したり、サーボ弁8の開度を制御するた
めの制御信号を出力する。
The control circuit 12 converts analog signals input manually via amplifiers lla to tic into digital signals and captures the digital signals.
The captured signal is processed to control the high frequency current flowing through the high frequency coil 5 in order to raise and lower the temperature of the test piece 1 to a predetermined temperature, and to output a control signal to control the opening degree of the servo valve 8. .

上述した構成の熱疲労試験機を使用して実行する本発明
による熱疲労試験方法を、第3図のタイミングチャート
を参照して以下説明する。
The thermal fatigue testing method according to the present invention, which is carried out using the thermal fatigue testing machine configured as described above, will be described below with reference to the timing chart shown in FIG.

まず、試験機の制御をテストピース1にかかる荷重が零
、すなわち拘束率が0になるような荷重制御にし、時点
t1において加熱コイル5によるテストピースlの加熱
を開始させ、温度センサ9によってテストピース1の温
度を監視しながら試験温度範囲の下限温度T、から上限
温度T2に適当な上昇率で上昇させる。テストピース1
の温度が時点t2において上限温度T2に達したらその
温度を時点t、までの所定時間保持した後、加熱コイル
5による加熱を停止し、必要な場合はテストピース1に
ノズル6から冷却用空気を吹き付けてその温度を上限温
度T2から下限温度T、まで適当な下降率で下降させる
。テストピース1の温度が時点L4で下限温度T1に達
したらその温度を一定時間保持した後、時点り、で加熱
コイル5によるテストピース1の加熱を再度開始し、時
点L6までの時間をかけて熱疲労試験開始温度T0まで
テストピース1の温度を上昇させる。
First, the test machine is controlled so that the load applied to the test piece 1 is zero, that is, the restraint rate is 0. At time t1, the heating coil 5 starts heating the test piece l, and the temperature sensor 9 performs the test. While monitoring the temperature of piece 1, it is raised from the lower limit temperature T of the test temperature range to the upper limit temperature T2 at an appropriate rate of increase. Test piece 1
When the temperature reaches the upper limit temperature T2 at time t2, that temperature is maintained for a predetermined period of time until time t, then heating by the heating coil 5 is stopped, and if necessary, cooling air is supplied to the test piece 1 from the nozzle 6. By spraying, the temperature is lowered from the upper limit temperature T2 to the lower limit temperature T at an appropriate rate of decline. When the temperature of the test piece 1 reaches the lower limit temperature T1 at time L4, after holding that temperature for a certain period of time, heating of the test piece 1 by the heating coil 5 is started again at the time point, and the heating of the test piece 1 is continued until time L6. The temperature of the test piece 1 is raised to the thermal fatigue test starting temperature T0.

上述したテストピースlの時点1+乃至t4の間の加熱
・冷却のサイクルにおいて、制御回路12は、変位検出
器10の出力に得られアンプ11Cによって増幅された
テストピースlのひずみを表すアナログ信号及び温度セ
ンサ9の出力に得られアンプIlbによって増幅された
テストピースlの温度を表すアナログ信号を適当なサン
プリング周波数でデジタル信号に変換し、これらをそれ
ぞれ取り込む。そして、この取り込んだデジタル信号の
内上記時点tl乃至り、及び時点t3乃至L4の期間の
信号をひずみデータ及び温度データとしてその内部に有
するメモリ12aにそれぞれ格納する。勿論、制御回路
12は、上記サイクルにおいて荷重零の荷重制御を行う
ため、荷重検出器4からの荷重信号によって油圧シリン
ダ2をサーボ制御している。
During the above-described heating/cooling cycle of the test piece l between times 1+ and t4, the control circuit 12 generates an analog signal representative of the strain on the test piece l obtained at the output of the displacement detector 10 and amplified by the amplifier 11C. An analog signal representing the temperature of the test piece I obtained from the output of the temperature sensor 9 and amplified by the amplifier Ilb is converted into a digital signal at an appropriate sampling frequency, and these signals are respectively taken in. Of the digital signals taken in, the signals for the periods from time tl to time t3 and from time t3 to L4 are respectively stored in the internal memory 12a as strain data and temperature data. Of course, the control circuit 12 servo-controls the hydraulic cylinder 2 based on the load signal from the load detector 4 in order to perform load control with zero load in the above cycle.

その後、制御回路12はメモリ12aに格納したひずみ
及び温度データに基づいて演算を行い、各温度における
熱膨張係数α求め、これを後の熱疲労試験の際制御目標
値Δ!、を算出するためのデータとして使用するため、
テーブル化してメモリ12aの所定の領域に格納する。
Thereafter, the control circuit 12 performs calculations based on the strain and temperature data stored in the memory 12a to determine the thermal expansion coefficient α at each temperature, which is then used as the control target value Δ! for the later thermal fatigue test. To use as data for calculating ,
It is made into a table and stored in a predetermined area of the memory 12a.

第4図はメモリ12aに格納した温度に対する熱膨張係
数α(T)の変化をグラフにして示している。
FIG. 4 is a graph showing changes in the coefficient of thermal expansion α(T) with respect to the temperature stored in the memory 12a.

上述のようにして温度に対する熱膨張係数αを求め終わ
ったら、時点t7において熱疲労試験を開始する。この
熱疲労試験においては、テストピース1を下限温度T+
 と上限温度T2との間で予め定められたパターンで加
熱冷却するため、制御回路12が加熱コイル5及びサー
ボ弁8を制御する。このとき制御回路12は、拘束率η
を所定の一定値η1に固定してひずみ制御するため、温
度センサ9によってテストピースlの実測温度Tを測定
すると共に、この温度に対する熱膨張係数α(T)をメ
モリ12aから読み出して、制御目標値ΔN、を上式(
1)を変形した下式、Δ11−α(T)(T−T、)(
1−η、)によって演算し、この演算した制御目標値Δ
!0を用いて油圧シリンダ2をサーボ制御する。
After determining the thermal expansion coefficient α with respect to temperature as described above, the thermal fatigue test is started at time t7. In this thermal fatigue test, the test piece 1 was placed at a lower limit temperature T+
The control circuit 12 controls the heating coil 5 and the servo valve 8 in order to perform heating and cooling in a predetermined pattern between the temperature T2 and the upper limit temperature T2. At this time, the control circuit 12 controls the constraint rate η
In order to control the strain by fixing η1 to a predetermined constant value, the temperature sensor 9 measures the actual temperature T of the test piece l, reads out the coefficient of thermal expansion α(T) for this temperature from the memory 12a, and sets the control target. The value ΔN is expressed by the above formula (
The following formula is a modification of 1), Δ11−α(T)(T−T, )(
1−η,), and the calculated control target value Δ
! 0 is used to servo control the hydraulic cylinder 2.

なお、上述した熱膨張係数α(T)の計測ルーチンは熱
疲労試験の途中の任意の区間において定期的に実行する
ようにすることもできる。このようにすると、テストピ
ース1の疲労の度合いによって変化する熱膨張係数α(
T)をも考慮した熱疲労試験が可能になり、より一層正
確な試験が行えるようになる。
Note that the above-described measurement routine for the coefficient of thermal expansion α(T) may be periodically executed at any interval during the thermal fatigue test. In this way, the coefficient of thermal expansion α (
It becomes possible to conduct a thermal fatigue test that also takes T) into consideration, and it becomes possible to conduct an even more accurate test.

〔効 果〕〔effect〕

以上説明したように本発明によれば、熱疲労試験の際の
制御目標値が各温度における熱膨張係数を考慮して求め
られているので、常温域から高温域まで幅広く試験を行
った場合の熱膨張係数が温度をパラメータとして変化し
ても、この熱膨張係数の変化を考慮した目標値が求めら
れるようになり、常温域から高温域まで幅広く試験を行
った場合でも、試験温度範囲全域において試験を正確に
行えるという効果が得られる。
As explained above, according to the present invention, the control target value during the thermal fatigue test is determined by taking into account the coefficient of thermal expansion at each temperature. Even if the coefficient of thermal expansion changes with temperature as a parameter, a target value that takes this change in coefficient of thermal expansion into account is now required. The effect is that the test can be performed accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による熱疲労試験方法を実施するために
使用される熱疲労試験機の一例を示す図、 第2図は第1図の一部分の詳細を示す図、第3図は本発
明の熱疲労試験方法を説明するための説明図、 第4図は本発明の方法の実行の過程で得られるデータを
示す図、 第5図は熱膨張によって生じるひずみ、拘束及び熱応力
の関係を示す図である。 l・・・テストピース、2・・・油圧シリンダ、2a・
・・ピストン、4・・・荷重検出器、5・・・加熱コイ
ル、6・・・ノズル、9・・・温度センサ、10・・・
変位検出器、12・・・制御回路、12a・・・メモリ
Fig. 1 is a diagram showing an example of a thermal fatigue testing machine used to carry out the thermal fatigue testing method according to the present invention, Fig. 2 is a diagram showing details of a part of Fig. 1, and Fig. 3 is a diagram showing the present invention. Figure 4 is a diagram showing data obtained in the process of carrying out the method of the present invention, Figure 5 shows the relationship between strain, restraint, and thermal stress caused by thermal expansion. FIG. l...Test piece, 2...Hydraulic cylinder, 2a.
...Piston, 4...Load detector, 5...Heating coil, 6...Nozzle, 9...Temperature sensor, 10...
Displacement detector, 12...control circuit, 12a...memory.

Claims (1)

【特許請求の範囲】 拘束率と、所定の温度パターンで加熱冷却されるテスト
ピースの温度と、テストピースの熱膨張係数とによりひ
ずみ制御の目標値を求め、該目標値を利用して熱疲労試
験を行う熱疲労試験方法において、 前記熱疲労試験の開始前に、テストピースを拘束しない
状態でテストピースの温度を前記温度パターンの下限温
度と上限温度との間で変化させ、このとき各温度におい
てテストピースに生じるひずみを測定し、該測定したひ
ずみに基づいて各温度でのテストピースの熱膨張係数を
演算により求め、 該演算により求めた熱膨張係数を利用して前記熱疲労試
験における目標値を求める、 ことを特徴とする熱疲労試験方法
[Claims] A target value for strain control is determined from the restraint ratio, the temperature of the test piece heated and cooled in a predetermined temperature pattern, and the coefficient of thermal expansion of the test piece, and the target value is used to control thermal fatigue. In the thermal fatigue test method for conducting the test, before the start of the thermal fatigue test, the temperature of the test piece is changed between the lower limit temperature and the upper limit temperature of the temperature pattern without restraining the test piece, and at this time, each temperature Measure the strain that occurs in the test piece at , calculate the thermal expansion coefficient of the test piece at each temperature based on the measured strain, and use the calculated thermal expansion coefficient to determine the target in the thermal fatigue test. A thermal fatigue test method characterized by determining a value.
JP1291356A 1989-11-10 1989-11-10 Thermal fatigue test method Expired - Fee Related JP2780826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1291356A JP2780826B2 (en) 1989-11-10 1989-11-10 Thermal fatigue test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1291356A JP2780826B2 (en) 1989-11-10 1989-11-10 Thermal fatigue test method

Publications (2)

Publication Number Publication Date
JPH03152441A true JPH03152441A (en) 1991-06-28
JP2780826B2 JP2780826B2 (en) 1998-07-30

Family

ID=17767867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1291356A Expired - Fee Related JP2780826B2 (en) 1989-11-10 1989-11-10 Thermal fatigue test method

Country Status (1)

Country Link
JP (1) JP2780826B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2361349A1 (en) * 2008-12-24 2011-06-16 Asociacion De Investigacion Metalurgica Del Noroeste Procedure for testing materials to predict their behavior in a conformed by fast warming in progressive processes. (Machine-translation by Google Translate, not legally binding)
CN106644749A (en) * 2016-10-27 2017-05-10 长春机械科学研究院有限公司 Tensile mechanical property testing device applicable to high-temperature vacuum
CN113720706A (en) * 2021-08-08 2021-11-30 中国飞机强度研究所 Thermal stress equivalent method for thermal fatigue test of three-nail connecting piece with mixed structure
JP2022044097A (en) * 2020-09-07 2022-03-17 株式会社島津製作所 Material tester and method of controlling the same
CN114878200A (en) * 2022-07-08 2022-08-09 中国飞机强度研究所 Aerospace plane component strength test heating system and method
US20220252462A1 (en) * 2019-06-28 2022-08-11 Kelk Ltd. State estimation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101956349B1 (en) 2017-01-26 2019-03-11 동아대학교 산학협력단 Fatigue Life Prediction Method by High Frequency Heat Treatment of Automobile Drive Shaft Using Specimen and Specimen and Induction Heating Coil for Heat the Specimen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212834A (en) * 1985-07-11 1987-01-21 Saginomiya Seisakusho Inc Mechanical strain piling type thermal fatigue testing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212834A (en) * 1985-07-11 1987-01-21 Saginomiya Seisakusho Inc Mechanical strain piling type thermal fatigue testing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2361349A1 (en) * 2008-12-24 2011-06-16 Asociacion De Investigacion Metalurgica Del Noroeste Procedure for testing materials to predict their behavior in a conformed by fast warming in progressive processes. (Machine-translation by Google Translate, not legally binding)
CN106644749A (en) * 2016-10-27 2017-05-10 长春机械科学研究院有限公司 Tensile mechanical property testing device applicable to high-temperature vacuum
CN106644749B (en) * 2016-10-27 2020-04-10 长春机械科学研究院有限公司 Tensile mechanical property testing device suitable for high-temperature vacuum
US20220252462A1 (en) * 2019-06-28 2022-08-11 Kelk Ltd. State estimation system
JP2022044097A (en) * 2020-09-07 2022-03-17 株式会社島津製作所 Material tester and method of controlling the same
CN113720706A (en) * 2021-08-08 2021-11-30 中国飞机强度研究所 Thermal stress equivalent method for thermal fatigue test of three-nail connecting piece with mixed structure
CN113720706B (en) * 2021-08-08 2023-11-28 中国飞机强度研究所 Thermal stress equivalent method for thermal fatigue test of three-pin connecting piece with mixed structure
CN114878200A (en) * 2022-07-08 2022-08-09 中国飞机强度研究所 Aerospace plane component strength test heating system and method
CN114878200B (en) * 2022-07-08 2022-09-30 中国飞机强度研究所 Aerospace plane component strength test heating system and method

Also Published As

Publication number Publication date
JP2780826B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
JPH0623935B2 (en) Heat treatment control method with improved reproducibility
CN102095479A (en) Flowmeters and methods for diagnosis of sensor units
JPH03152441A (en) Testing method for thermal fatigue
US6913383B2 (en) Method and apparatus for thermally investigating a material
KR20180089271A (en) Pid control apparatus, pid control method and pid control program
CN115046872A (en) Fatigue crack real-time measuring method
JP2519928B2 (en) Method for controlling heat quantity of laser heating device
JPH1123505A (en) Thermal analysis device
RU2250451C1 (en) Device for testing blades of turbine apparatus
JPH04143634A (en) Method for estimating thermal fatigue life of metal material
RU2059960C1 (en) Heat pipe quality control method
CN117872026B (en) Detection method and device for conductive adhesive material
JP2636447B2 (en) Temperature compensation method for semiconductor circuit
RU2109259C1 (en) Method of gas pressure checking in fuel element of nuclear reactor
SU934255A1 (en) Method of determining thermal diffusivity of material
SU1758411A1 (en) Method of monitoring object stressed-strained state
SU877414A1 (en) Calorometric device
CN118328727A (en) Reservation design method, monitoring system and device for shuttle kiln temperature measuring hole
JP2002181679A (en) Elevated temperature hardness meter
JPH06117986A (en) Thermal fatigue tester
JPH02219977A (en) Method for controlling heating temperature vertical induction heating furnace
CN117119621A (en) Temperature compensation method, control method and temperature adjustment system
JP4009847B2 (en) Heat treatment abnormality detection method and temperature controller
SU1663428A1 (en) Method of nondestructive testing of film coat thickness
CN117628872A (en) Multi-feedback oven heating system and control method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees