JP2950647B2 - Heat treatment method for solid packaged food - Google Patents

Heat treatment method for solid packaged food

Info

Publication number
JP2950647B2
JP2950647B2 JP13348691A JP13348691A JP2950647B2 JP 2950647 B2 JP2950647 B2 JP 2950647B2 JP 13348691 A JP13348691 A JP 13348691A JP 13348691 A JP13348691 A JP 13348691A JP 2950647 B2 JP2950647 B2 JP 2950647B2
Authority
JP
Japan
Prior art keywords
food
temperature
heat
equation
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13348691A
Other languages
Japanese (ja)
Other versions
JPH04333111A (en
Inventor
友雄 三堀
親義 大田
謙治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HISAKA SEISAKUSHO KK
Original Assignee
HISAKA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HISAKA SEISAKUSHO KK filed Critical HISAKA SEISAKUSHO KK
Priority to JP13348691A priority Critical patent/JP2950647B2/en
Publication of JPH04333111A publication Critical patent/JPH04333111A/en
Application granted granted Critical
Publication of JP2950647B2 publication Critical patent/JP2950647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固形状個装食品の熱処理
方法に関し、詳しくは目標とする所望温度にて過不足な
く食品を熱処理する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of heat-treating a solid packaged food, and more particularly to a method of heat-treating a food at a desired desired temperature.

【0002】[0002]

【従来の技術】食品の熱処理は、加熱殺菌、蛋白質の変
性、有効成分の分離、諸反応抑制のための冷却凍結等各
種目的のために行なわれる。その際、温度と時間によっ
ては熱処理と同時に食品の歓迎されない変化も併発する
ので、それぞれの目標達成にとって必要な所望温度と処
理時間を過不足なく実現すべく温度履歴を制御しなけれ
ばならない。ところが、一塊の幾何学的形状を維持しな
ければならない固形状個装食品、例えばレトルト食品の
ように処理に都合の好い形状に変形出来ず、且つ、熱容
量が分布している場合、その熱処理において加熱工程が
進行する際、熱処理温度が目標値に達した時点で冷却工
程に移行すると、その初期では熱伝導が最も遅れるその
食品中心部の温度は惰性により未だ依然として上昇を続
けている。そのため、最終的に必要な処理温度と時間を
大幅に上回って熱処理過剰状態になり、逆に、惰性を見
込んで早めに冷却を開始すると、食品中心部の温度と時
間が目標値に達せず、熱処理不足状態になって温度制御
が頗る困難である。
2. Description of the Related Art Heat treatment of foods is performed for various purposes such as heat sterilization, protein denaturation, separation of active ingredients, and cooling and freezing for suppressing various reactions. At this time, depending on the temperature and time, unwelcome changes in the food may occur at the same time as the heat treatment. Therefore, the temperature history must be controlled so that the desired temperature and the processing time required to achieve the respective targets can be achieved without any excess or shortage. However, when solid heat-dissipating food that must maintain a lump of geometric shape, such as a retort food, cannot be transformed into a shape convenient for processing, and heat capacity is distributed, When the heat treatment temperature reaches the target value during the heating process, the process shifts to the cooling process. In the initial stage, the temperature at the center of the food, where heat conduction is most delayed, is still rising due to inertia. For this reason, the final required processing temperature and time significantly exceed the heat treatment, resulting in excessive heat treatment, and conversely, if cooling is started early in anticipation of inertia, the temperature and time at the center of the food will not reach the target values, Temperature control is extremely difficult due to insufficient heat treatment.

【0003】そこで、例えば、レトルト食品を加熱殺菌
する際、「F値(基準温度における殺菌時間)コンピュ
ータ」と呼ばれる計測器(食品中心部に挿入したセンサ
の出力によって、基準温度を121.1℃、熱致死曲線
勾配10℃としてF値を算出するもの。)を用いたとし
ても、測定した時点でのF値は表示されるけれども先々
の状態を予測できない。又、F値は温度の指数関数的に
変化するので、加熱工程が進行し中心温度が上昇してF
値が目標値に近付くに従い短時間に大きなF値変化が観
測される。そのためF値をモニタして装置を操作するこ
とは非常に困難な作業になる。更に、F値が目標値に達
した時点で冷却工程に移行したならば、冷却工程初期に
は中心温度は未だ依然として上昇を続けるので最終のF
値は目標値を大幅に上回る過殺菌の状態になる。従っ
て、通常は試行錯誤的に決定されたタイムスケジュール
によって行なわれた加熱殺菌作業の結果が、F値に換算
していくらであったかを確認する程度のことしか出来な
かった。
[0003] Therefore, for example, when heat-sterilizing retort food, the reference temperature is set to 121.1 ° C by an output of a measuring instrument called a “F value (sterilization time at reference temperature) computer” (a sensor inserted in the center of the food). Although the F value is calculated at a thermal lethal curve gradient of 10 ° C.), the F value at the time of measurement is displayed, but the state in advance cannot be predicted. Further, since the F value changes exponentially with temperature, the heating process proceeds and the center temperature rises, and
As the value approaches the target value, a large change in the F value is observed in a short time. Therefore, it is very difficult to monitor the F value and operate the apparatus. Further, if the process shifts to the cooling step when the F value reaches the target value, the center temperature still continues to rise at the beginning of the cooling step, so that the final F
The value is in a state of over-sterilization far exceeding the target value. Therefore, the result of the heat sterilization work normally performed according to the time schedule determined by trial and error can only confirm how much the result was converted into the F value.

【0004】そこで、従来、上記食品の物性(密度、比
熱、熱伝導率)と、装置及び食品の形状寸法等に由来す
る熱伝達率の値から温度経過を理論的計算にて算出し、
熱伝導の最も遅れる食品中心部におけるF値が加熱・冷
却の全工程終了時に目標値に達するための冷却開始時刻
を加熱工程終了以前の時期に予報してその時点で熱媒の
操作弁を制御していた。(「全水加工連だより」平成元
年3月号通巻第102号全国水産加工業協同組合連合会
発行)
In view of the above, conventionally, the temperature profile has been theoretically calculated from the physical properties (density, specific heat, thermal conductivity) of the above-mentioned food and the value of the heat transfer coefficient derived from the shape and dimensions of the apparatus and the food.
The cooling start time for the F value at the center of the food with the slowest heat conduction to reach the target value at the end of the entire heating and cooling process is predicted before the end of the heating process, and the operating valve of the heating medium is controlled at that time. Was. ("News from All Water Processing Federation", March 1989, No. 102, Issued by the Japan Federation of Fishery Processing Cooperatives)

【0005】[0005]

【発明が解決しようとする課題】解決しようとする課題
は、固形状個装食品の密度、比熱、熱伝導率等の物性値
を実用上必要な精度で事前に正確に知ることは相当に困
難である点である。
The problem to be solved is that it is considerably difficult to know in advance the physical properties such as the density, specific heat, and thermal conductivity of a solid packaged food with the precision required for practical use. Is that

【0006】[0006]

【課題を解決するための手段】本発明は、固形状個装食
品を熱処理するにあたり、その加熱工程初期における温
度変化の様相を観測してその食品固有の伝熱特性を特徴
付ける一又は複数のパラメータを特定し、上記パラメー
タを含む熱伝導方程式を解いて上記食品内部における注
目位置の以後の時間的温度変化を予測し、加熱・冷却全
工程終了時に上記食品の目標とする熱処理温度と時間を
食品内部においても過不足なく実現するための冷却開始
時刻を加熱終了以前に予知して熱処理することを特徴と
する。
According to the present invention, when heat-treating a solid packaged food, one or more parameters which characterize the heat transfer characteristic inherent to the food by observing the aspect of temperature change in the early stage of the heating step. , And solve the heat conduction equation including the above parameters to predict the temporal temperature change after the noted position inside the food, and set the target heat treatment temperature and time of the food at the end of all the heating and cooling processes to the food. It is characterized in that heat treatment is performed by predicting a cooling start time for realizing an adequate amount even before the completion of heating.

【0007】[0007]

【作用】上記技術的手段によれば、固形状個装食品の固
有の伝熱特性を特徴付ける一又は複数のパラメータを特
定し、そのパラメータを含む熱伝導方程式を解いて上記
食品内部における注目位置の以後の時間的温度変化を予
測し、加熱・冷却全工程終了時に上記食品の目標とする
所望の熱処理温度と時間を食品内部においても過不足な
く実現するための冷却開始時刻を加熱終了以前に予知す
る。
According to the above technical means, one or a plurality of parameters characterizing the inherent heat transfer characteristic of the solid packaged food are specified, and a heat conduction equation including the parameters is solved to determine a target position in the food. Predict the subsequent temporal temperature change, and predict the cooling start time before the end of heating to achieve the desired heat treatment temperature and time of the food at the end of the entire heating and cooling process even within the food. I do.

【0008】[0008]

【実施例】本発明に係る固形状個装食品の熱処理方法を
レトルト食品の加熱殺菌工程を一例にして以下に説明す
る。まず簡単のため上記食品は正方形平板状で、且つ、
幅(W)に比べて厚み(D)が十分に小さい(D《W)
とする。このような形態の食品は流通上の必要と熱処理
の合理化から近年、増加の傾向にあるので、実状に沿っ
ている。この場合、熱流は正方形平板表面から厚み
(D)に沿って平板に垂直に生じ、次に示す一次元熱伝
導方程式が成り立つ。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The heat treatment method for solid individual packaged food according to the present invention will be described below by taking a heat sterilization step of a retort food as an example. First, for simplicity, the food is a square plate, and
Thickness (D) is sufficiently smaller than width (W) (D << W)
And In recent years, foods in such a form have been increasing due to distribution needs and rationalization of heat treatment. In this case, the heat flow is generated perpendicularly to the flat plate along the thickness (D) from the surface of the square flat plate, and the following one-dimensional heat conduction equation holds.

【0009】[0009]

【数1】 (Equation 1)

【0010】ここで、Tは温度、Xは位置、tは時間、
ρは密度、Cpは比熱、λは熱伝導率である。
Where T is temperature, X is position, t is time,
ρ is density, Cp is specific heat, and λ is thermal conductivity.

【0011】加熱工程における境界条件は、表面熱伝達
率をh、初期温度をTi、熱媒温度をTh、食品の厚み
を2Dとすると、次式で表せる。
The boundary condition in the heating step can be expressed by the following equation, where h is the surface heat transfer coefficient, Ti is the initial temperature, Th is the heating medium temperature, and 2D is the thickness of the food.

【0012】[0012]

【数2】 (Equation 2)

【0013】そこで、上記基礎式に基づき固形平板状個
装食品の持つ伝熱特性について考察して本発明方法の基
本的考え方を示す。まず一個の食品内部での熱伝導現象
の時間的遅れを知る目安として内部時定数τがある。上
記内部時定数τは、単位温度差当りの伝熱量を示す内部
熱コンダクタンスをGa、食品を特徴付ける熱容量を
C、平板面積をS(=W2)とすると、次式で与えられ
る。
Therefore, the basic concept of the method of the present invention will be described by considering the heat transfer characteristics of the solid plate-shaped individually packaged food based on the above basic formula. First, there is an internal time constant τ as a guide to know the time delay of the heat conduction phenomenon inside one food. The internal time constant τ is given by the following equation, where Ga is the internal heat conductance indicating the amount of heat transfer per unit temperature difference, C is the heat capacity characterizing the food, and S (= W2) the plate area.

【0014】[0014]

【数3】 (Equation 3)

【0015】同様に食品外表面での熱伝導現象の時間的
遅れを知る目安として外部時定数τsがある。上記外部
時定数τsは、表面熱コンダクタンスをGsとすると、
次式で与えられる。
Similarly, there is an external time constant τs as a measure for knowing the time delay of the heat conduction phenomenon on the outer surface of the food. The external time constant τs is given by the surface thermal conductance Gs.
It is given by the following equation.

【0016】[0016]

【数4】 (Equation 4)

【0017】そこで、熱伝導方程式の独立変数と従属変
数を、次に示す各式で与えて無次元化する。
Therefore, the independent and dependent variables of the heat conduction equation are given by the following equations to make the dimensionless.

【0018】[0018]

【数5】 (Equation 5)

【0019】そうすると、上記熱伝導方程式と境界条件
は、それぞれ次に示す一般的な式を得る。
Then, the following general equations are obtained for the heat conduction equation and the boundary conditions, respectively.

【0020】[0020]

【数6】 (Equation 6)

【0021】その解を次式で示す。The solution is shown by the following equation.

【0022】[0022]

【数7】 (Equation 7)

【0023】但し、Pnは次式を満たすn次の根であ
る。(境界条件(7a)による)
Here, Pn is an n-th root satisfying the following equation. (Depending on boundary condition (7a))

【0024】[0024]

【数8】 (Equation 8)

【0025】又、Anは次式の通りである。(境界条件
(7b)による)
An is given by the following equation. (Depending on boundary condition (7b))

【0026】[0026]

【数9】 (Equation 9)

【0027】以上に示した解(8)は形式的に次のよう
になる。
The solution (8) shown above is formally as follows.

【0028】 η=η(θ、ξ、τ、Bi)…………(11) 即ち、上記式(11)によれば、一個の固形平板状個装
食品内部の位置ξにおける温度ηに関し、2個のパラメ
ータτ、Biを特定すると、θとの関係、即ちその時間
的変化が一義的に決まることを示す。上記パラメータ
τ、Biは、その食品固有の伝熱特性を特徴付ける特性
値であって食品素材の物性値ではないため、食品素材の
物性値についてその詳細を知る必要はない。従って、固
形平板状個装食品を熱処理するにあたり、加熱工程初期
において温度変化の様相を観測することにより食品固有
の特性値τ、Biを特定すると、加熱殺菌工程における
食品内部、特に熱伝導の最も遅れる中心部の温度履歴が
知られ、その高精度の時間的制御が可能となる。そこ
で、上記食品を温度Thの熱媒(通常、熱水)にて加熱
した際、熱伝導の遅れを見込んで食品内部における時間
的温度変化を予測し、F値が加熱・冷却全工程終了時に
目標値に達するための冷却開始時刻を加熱終了以前に予
知する。そして、その時刻に加熱を終了して冷却工程に
移行すると、食品内部、特に中心部においても過不足な
くF値を実現して熱処理することが可能になる。
Η = η (θ, ξ, τ, Bi) (11) That is, according to the above equation (11), regarding the temperature η at the position 内部 inside one solid flat plate-shaped packaged food, When the two parameters τ and Bi are specified, it indicates that the relationship with θ, that is, the temporal change is uniquely determined. Since the above parameters τ and Bi are characteristic values characterizing the heat transfer characteristic inherent to the food and not the physical properties of the food material, it is not necessary to know the details of the physical properties of the food material. Therefore, when heat-treating the solid plate-shaped individually packaged food, if the characteristic value τ, Bi unique to the food is specified by observing the aspect of the temperature change in the early stage of the heating process, the inside of the food in the heat sterilization process, particularly the most heat conduction, The temperature history of the delayed central part is known, and its highly accurate temporal control becomes possible. Therefore, when the food is heated with a heat medium (usually hot water) at the temperature Th, a temporal change in temperature inside the food is predicted in view of a delay in heat conduction, and the F value is determined at the end of the entire heating / cooling process. The cooling start time to reach the target value is predicted before the end of heating. Then, when the heating is completed at that time and the process proceeds to the cooling step, it becomes possible to realize the F value without excess and deficiency even in the inside of the food, especially in the center, and to perform the heat treatment.

【0029】次に、温度センサの誤差を検討し、観測値
に誤差を含んでいても、真値の推定が出来ることを示し
て本発明の実用化を容易なものとする。
Next, the error of the temperature sensor is examined, and it is shown that the true value can be estimated even if the observed value contains an error, thereby facilitating the practical use of the present invention.

【0030】まず加熱工程に入った時から数秒毎に食品
中の任意の位置Xの温度を3回以上、k回測定する。そ
して、観測時刻をt1、t2、…、tj、…、tkと
し、観測時刻に対応するそれぞれの温度の観測値をT
1、T2、…、Tj、…、Tkとして無次元化すると、
次式のようになる。
First, the temperature at an arbitrary position X in the food is measured at least three times, ie, k times, every few seconds from the start of the heating step. .., Tk, and the observed values of the temperatures corresponding to the observation times are represented by T1, T2,.
Dimensionless as 1, T2,..., Tj,.
It becomes like the following formula.

【0031】 θj=tj/τ、Yj=(Tj−Th)/(Ti−Th)、ξ=X/D……… …(12)Θj = tj / τ, Yj = (Tj−Th) / (Ti−Th), ξ = X / D (12)

【0032】又、真のパラメータ(未知)によって記
述されたη(θj、ξ、τ、Bi)と、観測されたYj
との差をEj(Ejは観測誤差であり、観測に誤差がな
ければ、0である。)とおくと、Ejは次式で与えられ
る。
Also, η (θj, ξ, τ, Bi) described by the true parameters (unknown) and the observed Yj
Is defined as Ej (Ej is an observation error and is 0 if there is no error in the observation), and Ej is given by the following equation.

【0033】 Ej=η(θj、ξ、τ、Bi)−Yj…………(13) そこで、対象食品に関するτ、Bi、ξの既知の概略
値(但し、真値の倍、又は半分位間違っていても良
い。)をτa、Bia、ξaとし、その周りに、
Ej = η (θj, ξ, τ, Bi) −Yj (13) Therefore, the known approximate values of τ, Bi, に 関 す る with respect to the target food (however, twice or half the true value) May be wrong.) As τa, Bia, ξa, and around it,

【0034】τ=τa+δτ、Bi=Bia+δBi、
ξ=ξa+δξ……(14)とする。そして、式(1
3)をテーラ展開して第1項をとると、Ejは形式的に
次式で与えられる。
Τ = τa + δτ, Bi = Bia + δBi,
ξ = {a + δ} (14) Then, equation (1)
When 3) is tailored to take the first term, Ej is formally given by the following equation.

【0035】[0035]

【数10】 ここで、式(15)のRjは近似関数に関する残差で、
観測値より算出でき、δηは基礎式の解(8)の全微分
である。Ejの2乗和を最小にすると、次式が成り立
つ。
(Equation 10) Here, Rj in equation (15) is a residual regarding the approximate function,
It can be calculated from the observed value, and δη is the total derivative of the solution (8) of the basic equation. When the sum of squares of Ej is minimized, the following equation is established.

【0036】[0036]

【数11】 更に、整理すると、次式のようになる。[Equation 11] Further rearranging is as follows.

【0037】[0037]

【数12】 上式(17a)(17b)(17c)で、Rjは測定値
より算出可能であり、他の偏微分式は、次式とする。
(Equation 12) In the above equations (17a), (17b) and (17c), Rj can be calculated from the measured value, and the other partial differential equations are as follows.

【0038】[0038]

【数13】 そこで、微小なdτ、dBi、dξについて数値微分す
るか、又は解析的に微分して値を得ることが出来る。従
って、δτ、δBi、δξは上記マトリクスを解くこと
によって決定されるので、次式によって真値τ、Bi、
ξが求まる。
(Equation 13) Thus, a value can be obtained by numerically differentiating or analytically differentiating minute dτ, dBi, dξ. Accordingly, since δτ, δBi, δ 決定 are determined by solving the above matrix, the true values τ, Bi,
ξ is found.

【0039】 τ=τa+δτ、Bi=Bia+δBi、ξ=ξa+δξ……(19) 即ち、上記操作では、真値と観測値との誤差Ejの2乗
和を最小化しているので、観測値に誤差が含まれる場合
でも真値を推定できることになる。尚、上記操作では既
知パラメータの周りにテーラ展開した際の第1項のみを
用いたので、上式で真値としたパラメータには高次の誤
差が残る。この場合、上式で求めた真値を新たな既知パ
ラメータとして同様の操作を数回繰り返せば良い。
Τ = τa + δτ, Bi = Bia + δBi, ξ = {a + δ} (19) That is, in the above operation, the sum of squares of the error Ej between the true value and the observed value is minimized. Even if it is included, the true value can be estimated. In the above operation, since only the first term when the Taylor expansion is performed around the known parameter is used, a higher-order error remains in the parameter obtained as a true value in the above equation. In this case, the same operation may be repeated several times using the true value obtained by the above equation as a new known parameter.

【0040】次に、上記の如く特定された伝熱特性に基
づき、加熱殺菌工程において加熱を終了して冷却工程に
移行する冷却開始時刻tqを求める。この場合、時刻t
qまで加熱し、それ以後、冷却水温度Tcの冷水によっ
て冷却工程に移行したとすると、式(1)に対応する冷
却工程での基礎式は次式のようになる。
Next, based on the heat transfer characteristics specified as described above, a cooling start time tq at which the heating is terminated in the heating sterilization step and the process shifts to the cooling step is determined. In this case, the time t
Assuming that the heating is performed up to q, and thereafter, the process shifts to the cooling process using the cold water at the cooling water temperature Tc, the basic formula in the cooling process corresponding to the formula (1) is as follows.

【0041】[0041]

【数14】 冷却工程での境界条件は次式のようになる。但し、Tq
(X)は式(8)に加熱工程最後の時刻tqを代入して
求めた温度分布である。
[Equation 14] The boundary condition in the cooling step is as follows. However, Tq
(X) is a temperature distribution obtained by substituting the time tq at the end of the heating step into the equation (8).

【0042】[0042]

【数15】 上記式(20)〜(22)を用いると、冷却工程におけ
る食品中心部の温度は、次式のようになる。
(Equation 15) Using the above equations (20) to (22), the temperature at the center of the food in the cooling step is as follows.

【0043】[0043]

【数16】 ここで、細菌の耐熱性については、簡単のため、Big
elowの対数法則を適用し、加熱致死曲線が常用片対
数方眼紙上で直線になるような最も典型的な場合を想定
する。この場合、基準温度Trにおける致死時間をFa
(F値)とすると、基準温度以外の任意温度Tでは温度
がZ度下がる(熱致死曲線の勾配)と所要殺菌時間F
(T)は10倍になり、次式が成り立つ。
(Equation 16) Here, regarding the heat resistance of bacteria, for simplicity, Big was used.
Apply the log law of elow and assume the most typical case where the heat lethal curve is straight on common semilogarithmic graph paper. In this case, lethal time at reference temperature Tr be Fa
(F value), at an arbitrary temperature T other than the reference temperature, the temperature drops by Z degrees (gradient of the thermal lethal curve) and the required sterilization time F
(T) is multiplied by 10, and the following equation is satisfied.

【0044】[0044]

【数17】 又、任意温度Tにおいて微小なdt時間に進行する微小
な殺菌達成割合dfは、微小操作時間dtのF(T)に
対する割合であり、次式が成り立つ。
[Equation 17] Further, a small sterilization achievement ratio df that progresses to a small dt time at an arbitrary temperature T is a ratio of the small operation time dt to F (T), and the following expression is established.

【0045】[0045]

【数18】 上式(26)を次式に示すように加熱工程と冷却工程の
全域を通して積分し、
(Equation 18) The above equation (26) is integrated throughout the heating and cooling steps as shown in the following equation,

【数19】 になるように冷却開始時刻tqを決定する。[Equation 19] The cooling start time tq is determined so that

【0046】尚、本発明による推算値と実測値とをモデ
ル食品について求めて描いたグラフを図1乃至図3に示
す。実験に用いたモデル食品は図1、図2ではアクリル
試料、図3では蒟蒻資料として、モデル食品を沸騰水を
満たした加熱ドラムに収納して加熱すると共に、流水を
満たした冷却ドラムに収納して冷却する。又、温度セン
サとして熱水温度Thと、冷却水温度Tcの測温にそれ
ぞれ熱電対を用い、更に伝熱特性値特定のための実験シ
ステム入力用温度センサTsと、予測した中心温度の検
証用温度センサTmを食品内部に埋設する。図1では挿
入位置ξ=0.5、図2ではξ=0.16、図3ではξ
=1.0(外表面)とする。
FIGS. 1 to 3 show graphs in which the estimated value and the actually measured value according to the present invention are obtained and drawn for the model food. The model food used in the experiment was an acrylic sample in FIGS. 1 and 2, and as a konjac material in FIG. 3, the model food was stored in a heating drum filled with boiling water, heated, and stored in a cooling drum filled with running water. And cool. Further, a thermocouple is used as a temperature sensor for measuring the hot water temperature Th and the cooling water temperature Tc, respectively. Further, a temperature sensor Ts for inputting an experimental system for specifying a heat transfer characteristic value, and a verification for the predicted center temperature. The temperature sensor Tm is embedded in the food. The insertion position ξ = 0.5 in FIG. 1, ξ = 0.16 in FIG. 2, and ξ in FIG.
= 1.0 (outer surface).

【0047】図において横軸は加熱開始からの経過時
間、縦軸は温度とFp値(F値)で、図中×印は伝熱特
性特定のために実験システムが採取した入力データ(図
示では10秒間隔に21個で挿入位置不明の点の温度セ
ンサTsによる)を表している。又、図中の点線で描か
れた曲線はすべて予測値を表し、予測したセンサ挿入位
置の温度と中心温度、及び予測した中心温度より求めた
予測Fp値の3種である。又、図中の実線で描かれた曲
線はすべて実測値を表し、中心温度Tm及びTmより求
めた実測Fp値の2種である。実測値と推算値とはよく
一致しているので、実線と点線とが区別できない部分も
ある。
In the figure, the horizontal axis represents the elapsed time from the start of heating, and the vertical axis represents the temperature and the Fp value (F value). In the figure, the crosses indicate input data (in the figure, data) collected by the experimental system to specify the heat transfer characteristics. 21 at an interval of 10 seconds, which is determined by the temperature sensor Ts at an unknown insertion position. Further, all the curves drawn by dotted lines in the figure represent the predicted values, and are three types of the predicted temperature of the sensor insertion position and the center temperature, and the predicted Fp value obtained from the predicted center temperature. In addition, all the curves drawn by solid lines in the figure represent actual measured values, and are two types of central temperatures Tm and actual measured Fp values obtained from Tm. Since the measured value and the estimated value are in good agreement, there are some parts where the solid line and the dotted line cannot be distinguished.

【0048】図示の如く何れもFpの誤差は小さく、初
期の目的を達している。
As shown, the error of Fp is small in each case, and the initial purpose is achieved.

【0049】[0049]

【発明の効果】本発明によれば、固形状個装食品を熱処
理するにあたり、その食品固有の伝熱特性を特徴付ける
内部時定数と外部時定数を特定して熱伝導方程式を解
き、上記食品内部における時間的温度変化を正確に予測
し、加熱・冷却全工程終了時に上記食品の目標とする熱
処理温度と時間を食品内部においても過不足なく実現す
るための冷却開始時刻を加熱終了以前に予知してその温
度と時間にて熱処理するようにしたから、作業の進行中
に作業結果を正確に予測できて固形状個装食品の熱処理
の最適化制御を容易、且つ、正確に行なえる。又、温度
センサの挿入位置が不明であっても時定数を特定できる
ので、センサ装着の作業性が改善される。或いは、セン
サを食品内部に挿入しなくとも、食品表面の温度変化に
よっても時定数を特定できるので、全品非破壊検査も可
能となる。
According to the present invention, when heat-treating a solid individual packaged food, the internal time constant and the external time constant that characterize the heat transfer characteristic of the food are specified, the heat conduction equation is solved, and the internal Precisely predicts the temperature change over time, and predicts the cooling start time before the end of heating in order to achieve the target heat treatment temperature and time for the food at the end of the entire heating and cooling process, even within the food. Since the heat treatment is performed at that temperature and time, the operation result can be accurately predicted during the operation, and the optimization control of the heat treatment of the solid packaged food can be easily and accurately performed. Further, since the time constant can be specified even when the insertion position of the temperature sensor is unknown, the workability of mounting the sensor is improved. Alternatively, the time constant can be specified by the temperature change of the food surface without inserting the sensor inside the food, so that the nondestructive inspection of all the products can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アクリル試料を用いた本発明による推算値と実
測値とを示すグラフである。
FIG. 1 is a graph showing an estimated value and an actually measured value according to the present invention using an acrylic sample.

【図2】アクリル試料を用いた本発明による推算値と実
測値とを示すグラフである。
FIG. 2 is a graph showing an estimated value and an actually measured value according to the present invention using an acrylic sample.

【図3】蒟蒻資料を用いた本発明による推算値と実測値
とを示すグラフである。
FIG. 3 is a graph showing estimated values and measured values according to the present invention using konjac materials.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−281042(JP,A) 特開 平3−216990(JP,A) 特開 平4−273916(JP,A) (58)調査した分野(Int.Cl.6,DB名) G05D 23/00 - 23/32 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-281042 (JP, A) JP-A-3-216990 (JP, A) JP-A-4-273916 (JP, A) (58) Field (Int.Cl. 6 , DB name) G05D 23/00-23/32

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固形状個装食品を熱処理するにあたり、
その加熱工程初期における温度変化の様相を観測してそ
の食品固有の伝熱特性を特徴付ける一又は複数のパラメ
ータを特定し、上記パラメータを含む熱伝導方程式を解
いて上記食品内部における注目位置の以後の時間的温度
変化を予測し、加熱・冷却全工程終了時に上記食品の目
標とする熱処理温度と時間を食品内部においても過不足
なく実現するための冷却開始時刻を加熱終了以前に予知
して熱処理することを特徴とする固形状個装食品の熱処
理方法。
1. When heat-treating a solid individual packaged food,
Observe the aspect of the temperature change in the early stage of the heating process, identify one or more parameters that characterize the heat transfer characteristic of the food, solve the heat conduction equation including the above parameters, Temporal temperature change is predicted, and at the end of the entire heating / cooling process, the target heat treatment temperature and time of the food are predicted even before and after the cooling start time for realizing the target heat treatment temperature and time within the food without any shortage. A method for heat-treating solid, individually packaged foods.
JP13348691A 1991-05-08 1991-05-08 Heat treatment method for solid packaged food Expired - Lifetime JP2950647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13348691A JP2950647B2 (en) 1991-05-08 1991-05-08 Heat treatment method for solid packaged food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13348691A JP2950647B2 (en) 1991-05-08 1991-05-08 Heat treatment method for solid packaged food

Publications (2)

Publication Number Publication Date
JPH04333111A JPH04333111A (en) 1992-11-20
JP2950647B2 true JP2950647B2 (en) 1999-09-20

Family

ID=15105897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13348691A Expired - Lifetime JP2950647B2 (en) 1991-05-08 1991-05-08 Heat treatment method for solid packaged food

Country Status (1)

Country Link
JP (1) JP2950647B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5893051A (en) * 1994-09-27 1999-04-06 Matsushita Electric Industrial Co., Ltd. Method of estimating temperature inside material to be cooked and cooking apparatus for effecting same

Also Published As

Publication number Publication date
JPH04333111A (en) 1992-11-20

Similar Documents

Publication Publication Date Title
JP7126410B2 (en) Heating and cooling device performance evaluation method
JP2950647B2 (en) Heat treatment method for solid packaged food
Loureiro-Homs et al. Accounting for crack closure effects in TMF crack growth tests with extended hold times in gas turbine blade alloys
Nezhad et al. Studying the transient thermal contact conductance between the exhaust valve and its seat using the inverse method
Kulacki et al. Measurement of the thermo‐physical properties of common cookie dough
CN113609739B (en) Construction method of material heat treatment process and microstructure and performance relation database
Caro-Corrales et al. Analysis of random variability in biscuit cooling
CN112285151A (en) Method for determining heat transfer coefficient of complex heat transfer component interface based on actual product
JPH0638071B2 (en) Method and apparatus for measuring thermal conductivity
MIHORI et al. A control system for achieving correct heat sterilization processes: a one‐dimensional approach to packaged conduction heating of foods
Gunasekaran et al. Cheese melt/flow measurement methods--recent developments
RU2480739C1 (en) Thermal non-destructive testing method of resistance to heat transfer of building structure
RU2613194C1 (en) Method of measuring thermal properties of anisotropic materials by linear impulse of heat source
JPH06342027A (en) Method and apparatus for evaluating wire
JP3138802B2 (en) Environmental test equipment
Jiji et al. Approximate analytical solution for one-dimensional tissue freezing around cylindrical cryoprobes
RU2167412C2 (en) Method of complex determination of thermophysical properties of materials
FA et al. Correlation Between Thermal Diffusivity Variation and Quality of Cold Preserved Fish
WO2021235362A1 (en) Injection molding machine control device and program
JPH0722129B2 (en) Wafer temperature control system in oxidation / diffusion device
Menard et al. Prediction of solid fat index (SFI) values of food fats using DSC
Guisbert Precision and accuracy of the continuous cooling curve test method
McMasters et al. A Two-Dimensional Non-Linear Model for Finding Thermal Diffusivity in Foods
Šeruga et al. Individual heat transfer modes during baking of “mlinci” dough
Mokheimer et al. Freezing time calculations for various products

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110709

EXPY Cancellation because of completion of term